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Abstract: This paper is an attempt to obtain a linear equation algorithm for a proposed time series model 

connecting two variables – the Nigerian current account and the exchange rate in United States dollars. The 

proposed time series model was identified and investigated for adequacy using the modified statistic (Li Mclead 

Q-test) and then transformed into a linear model. The transformed linear model was estimated by a system of 

linear equations. A linear equation algorithm and analogous that well explained the behaviour of the variables 

when the sum of squares function converged was obtained. The identified model fitted was verified for the 

justification of the simplification by adopting Guessed Initial Estimates or Extreme Initial Estimates recursive 

methods. The result offers an added verification and offers more backing that the time series model is adequate.  
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I. INTRODUCTION 

There are several types of “mixed models” in different disciplines which have been given various 

names. Longitudinal models, panel data models, transfer function models, dynamic regression models, and 
linear system models are some of such models. In this study, a mixed model known as the transfer function 

model in time series analysis was considered.  An explanatory model like the transfer function model is suitable 

because it integrates evidence regarding additional variables, instead of limiting the forecast to only historical 

values of the variable.  

There exist some justifications for the selection of a time series explanatory model by a forecaster 

instead of a mixed or an explanatory model. The first reason is that the understanding of the system might be a 

problem and supposed it was implicit it might be somewhat complex to quantify the presumed connections that 

strongly influence the system and to manage the behaviour of such relationships.  

The next reason is that the knowledge or forecast of the upcoming values of the multifarious predictors 

to facilitate the forecast of the key variables of interest is necessary, and it might be a complex task.  

Thirdly, the key problem might be solely to forecast the future event and not just the reasons that led to 

the occurrence of the event.   Lastly, the transfer function model also known as the time series explanatory 
model is likely to yield more reliable forecasts than other mixed models. The Transfer Function Model (TFM) is 

used to model an input (Xt) and an output time series (Yt) which is used for predicting upcoming values of the 

time series. In these models, Xt and Yt stand for the deviations from the symmetry of the structure output and 

input. In reality, the system is affected by some turbulence with an intention to distort or corrupt some amount 

of the Transfer Function (TF) predicted output Nt. To derive optimal predicted values with evidence from Xt 

and Yt series, the identified TF-noise model linking both series, Xt and Yt is needed for model adequacy. 

Therefore, this paper aims to investigate the identified transfer function model adequacy of the relationship 

between the output Yt (transfer function model) and the input time series Xt  ( Exchange rate) in [1]); hoping 

that the chosen model is hoped to be fascinating, then its future values forecast can be valid and reliable for 

adaption by policymakers. 

Although the utilization of TFM has spanned over four decades, contemporary studies have expanded 
its application in areas such as scheduling in maintenance practices [2], and [3]. [4] explored the relationship 

between saving and investment in South Africa, using a transfer function model, where predicted variable 

yielded indication of imperfect capital mobility. The ARIMA (5,1,0) performed better than other models utilized 

and it was used also adopted for the process of pre-whitening. The estimated model thereafter was adopted to 

carry out a forecast for the venture series. The transfer function model diagnostic checking yielded sufficient 

information to clinch that the ARIMA (5,1,0) is effective, however, no parameters estimation procedure or 

iterations was done.  
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Similarly, [5], prescribed the use of the transfer function model as a dominant instrument provided there are 

suitable conditions for its use. It showed that to generalize the three phases (identification, estimation and 
checking, application) of Box-Jenkins univariate procedures we need a transfer function model framework.   

 

II. METHODS AND ALGORITHM 

A transfer function model is used to define an input time series “ t


” and a matching output time series “ t
Y

” 
for a specific physical system. This model can be represented by 
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and in expanded form as; 
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w h ere  b is the delay parameter, 1 2
, , . . . ,

r
  

are parameters of the corresponding output time series, and 

0 1 2
, , , . . . ,

s
w w w w

are parameters of the input time series. 
In reality, the system is affected by some turbulence with an intention to distort or corrupt some amount of the 

transfer function (TF) predicted output t
n

. Therefore, the joint transfer function-noise model is given as;  
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w h ere  
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Equation (4) can transform from a nonlinear model to a linear model, that is  
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 w h ere  r
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 are parameters to be estimated.  
The transformed model can be estimated by systems of linear equations, which is  
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The first approximation to the solution of the linear equation above is taken by using Gauss-Seidel iteration 

method. Firstly, a recursive computation of the output from the input time series using a developed algorithm 
in Jupyter notebook was done as stated in the steps below. Two runs were made of the nonlinear least square 

technique by two diverse sets of values, which are extreme and guessed initial estimates. 

Step 1: The transfer function model is multiplied out to form a linear model and then used for estimating after 

the estimation of the model parameters, as deliberated.    

Step 2: The parameters of the model are estimated with the ordinary least square method (OLSM). The value of 

the parameters are selected to reduce the Sum of the Squared Residuals (SSR) between the estimated values and 

the real data.  

Step 3: The non-linear approximation method is then used to estimate the identified parameters above to 

optimize the probability of the observed series given the parameter values. The following criteria are used by the 

methodology in parameter estimation.  

At a minimal change of 0.001 in all parameter estimates between iterations, the estimation process stops.   
At a minimal change of 0.001 in the SSR between iterations, the parameters estimation procedure stops.  

Step 4:  Based on the diagnosis verification step, the residuals from the fitted model are inspected alongside 

adequacy. It is achieved through correlation via the goodness-of-fit test and residual plots of ACF using the Chi-

Square test. The model is then refined in step one above if the residuals are correlated. Else, the autocorrelations 

are white noise and the model is suitable for the representation of our time series [6].. 

Note: The factored model could be checked and refitted to show the justification of the simplification using 

Guessed Initial Estimates (GIE) or Extreme Initial Estimates (EIE) recursively method. 

However, every model building required the following steps: (1) Identification, (2) Estimation, (3) Diagnostics 

Checking, and (4) Forecasting (where intended).   

 

III. DIAGNOSTICS CHECKING OF TRANSFER FUNCTION WITH NOISE MODEL 
Before accepting the model in Equation (2.4) to be an appropriate illustration of the system, autocorrelation and 

cross-correlation verifications were adopted, using the modified statistic (Li Mclead Q-test)) approximate test 

for model adequacy. The test was done under the following hypothesis; 

Hypothesis: 

  H0: The identified TFM is adequate 

 H1: The identified TFM is not adequate 

However, the modified statistics for testing the transfer function model is 

 
1 2
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(6) 

w h ere  Q̂  is defined in terms of the ARIMA model situation, m is the number of parameters, k is the number 

lag considered and 
2

t t
e e

r is the k cross-correlation of the residual ˆ
t

e . Q̂  is roughly circulated as chi-square (
2


 ) 

with n-p-q degrees of freedom(df). It is worthy of note that the df in 
2


  depends not on the number of 

parameters in the transfer function model; where m= n-p-q but on the number of parameters in the noise model. 

 

IV. RECURSIVE COMPUTATION OF OUTPUT FROM THE’ INPUT TIME SERIES 

USING A DEVELOPED ALGORITHM IN JUPYTER NOTEBOOK 
Algorithm / Source Code 

def RSS(X, Y, m): 
    temp = 0 
    for I in range(X[0].shape[0]): 
        predicted_value = ((m[0]*X[0][i]) +  (m[1]*X[1][i]) +  (m[2]*X[2][i]) +  (m[3]*X[3][i]) +  (m[4]*X[4][i]) +  

(m[5]*X[5][i]))    
        actual_value = Y[i] 
        temp = temp + ((predicted_value – actual_value)**2) 
    return (np.sqrt(temp/X[0].shape[0])) 
def predictedValueForSpecificRow(X, I, m):  
    return (m[0]*X[0][i]) +  (m[1]*X[1][i]) +  (m[2]*X[2][i]) +  (m[3]*X[3][i]) +  (m[4]*X[4][i]) +  (m[5]*X[5][i])  

# GRADIENT DECSCENT FUNCTION 
def gradientDescentAlgorithm(X, Y, learning_rate): 
    print(‘Trianing MLR model using Gradient Descent’)     
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    maximum_iterations = 400    
    has_converged = False    
    rows_count = X[0].shape[0]    
    m = [0.04, -0.01, 0.05, -3000, 1200 , 1500] 
    error = RSS(X, Y, m)  
    print(‘initial value of RSS(Cost Function) is {} when model parameter is {}’.format(error, m))   
    I = 0  
    while not has_converged:    
        g1 = (1.0/ rows_count)*sum([(predictedValueForSpecificRow(X, I, m) – Y[i])*X[0][i]  for I in 
range(rows_count)]) 
        g2 = (1.0/ rows_count)*sum([(predictedValueForSpecificRow(X, I, m) – Y[i])*X[1][i]  for I in 
range(rows_count)]) 
        g3 = (1.0/ rows_count)*sum([(predictedValueForSpecificRow(X, I, m) – Y[i])*X[2][i]  for I in 
range(rows_count)]) 
        g4 = (1.0/ rows_count)*sum([(predictedValueForSpecificRow(X, I, m) – Y[i])*X[3][i]  for I in 
range(rows_count)]) 
        g5 = (1.0/ rows_count)*sum([(predictedValueForSpecificRow(X, I, m) – Y[i])*X[4][i]  for I in 
range(rows_count)]) 
        g6 = (1.0/ rows_count)*sum([(predictedValueForSpecificRow(X, I, m) – Y[i])*X[5][i]  for I in 
range(rows_count)]) 
        temp1 = m[0] – learning_rate * g1 
        temp2 = m[1] – learning_rate * g2 
        temp3 = m[2] – learning_rate * g3 
        temp4 = m[3] – learning_rate * g4 
        temp5 = m[4] – learning_rate * g5 
        temp6 = m[5] – learning_rate * g6 
        m[0] = temp1 
        m[1] = temp2 
        m[2] = temp3 
        m[3] = temp4 
        m[4] = temp5 
        m[5] = temp6 
        current_error = RSS(X, Y, m)   
        if I % 20 == 0:     
            print(‘iteration {} Current value of RSS is {} based on updated values of model parameters:{}’.format(I + 
1, np.round(current_error), np.round(m, 2)))    
        35rror = current_error 
        I = I + 1   
        if I == maximum_iterations: 
            print(‘Training process halted as number of iteration maxed up’) 
            has_converged = True 
    return np.round(m, 2) 
 

V. RESULTS 

Hence, the TFM with added noise (Edema 2020) is 

1 0 2 2

1 2
1

t

t t t

e
Y Y w

 
 

   
   

                                                                                 

(7) 

 

VI. DIAGNOSTIC CHECKING 
 Prior to the acceptance of the model in equation (6) as a satisfactory illustration of the system, cross-

correlation checks, and autocorrelation were applied, using the modified statistics approximate hypothesis test 

for model adequacy in section three, equation (6); That is; 
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w h ere m=n-p-q=57-2-0=55, K=20 and  
2 0

1 2

1

t t
e e

k

m k r




 = 0.0057. 

Comparison of  Q̂  with the 
2


  table for K − p − q = 20 − 2 − 0 = 18 (

2

0 .0 5
(1 8 ) =9.39) df offers no basis for 

questioning the adequacy of the model. 

The model in equation (6) is nonlinear. Parameters can be used as rough estimates. Hence, the identified transfer 
function model with added noise is adequate. Conversely, to attain parsimony in parameterization, we simplify 

the model by factorization and the least square approximation technique turns out to be tremendously possible 

since the error minimum appears to lie on a surface on the parameter space.     

We have 
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(9) 

Substitute the parameters 
1

  = 0.4689, 
2

 = 0.5346 and 
0

w =-39977.93 into Equation (3.3) gives 

4 4 4

1 2 3 2 3 4
1 .4 7 0 .0 6 6 0 .5 4 4 .0 1 0 1 .8 7 1 0 2 .1 4 1 0

t t t t t t t t
Y Y Y Y e

     
                          

(10) 

[7] suggested that the least square estimates and their approximate standard errors can be used to obtain 

parameters of the transfer function model when performing generalized least squares estimation of the 

regression equation (10) assuming the noise 
t

e  follows some autocorrelated time series ARIMA model. A 

linear equation algorithm and analogous that will behaviour well when the sum of squares function converged. 

The factored model may be checked and refitted to show the justification of the simplification by using Guessed 

initial estimates or extreme initial estimates recursively method. 
 

VII. ESTIMATION OF THE NON LINEAR TRANSFER FUNCTION MODEL 
Using the guessed initial estimates recursively method, the estimates are derived with the conditional least 

square algorithm described in Section (II) to obtained Table I. 

Let  
1 1 2 2 3 3 0 2 1 3 2 4

ˆ ˆ ˆ ˆ ˆ ˆ
t t t t t t t t

Y Y Y Y w w w e  
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(10) 

w h ere   
11

1ˆ   , 
212

ˆ   , 
23

ˆ   , 
00

ˆ ww  , 
101

ˆ ww   and 
202

ˆ ww   

Set the guessed initial estimates 
1

  = 0.1, 
2

 = 0.5 and 
0

w =-10000 

 

Table I: Convergence of Nonlinear Least Square Fit to the Data set, Using Guessed Initial Estimates 
Iteration 

1
̂  

3
̂  0

w  
Sum of Square 

1 0.3015 0.2855 -9700.95 2718498 

21 0.6773 0.6613 -9330.36 12349 

41 0.6773 0.6613 -9330.36 12349 

61 0.6773 0.6613 -9330.36 12349 

81 0.6772 0.6613 -9330.36 12348 
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Footnote: 1


 equal to coefficient of 1t
Y

  “
 1

ˆ1 
”; 2


 equal to coefficient of 3t

Y
 “ 3

̂
” and 0

w
 equal to 

coefficient of 2t
X

 “ 0
ŵ

” . 
 

From Table I, the parameters are 
1

  = 0.3231, 
2

 = 0.6614 and 
0

w = -9330.33 compare to the estimated 

parameters 
1

  = 0.4689, 
2

 = 0.5346 and 
0

w =-39977.93. This result shows that guessed initial values method 

does not give a close estimate to two of parameters, before the convergence of nonlinear least square fit to the 

data set. 

Set the extreme initial estimates 
1

  = 0.40, 
2

 = 0.50 and 
0

w = -30000.0      

 

TableII: Convergence of Nonlinear Least Square Fit to the data set, Using Extreme Initial Estimates 
Iteration 

1
  

2
  

0
w  

Sum of Square 

1 0.2183 0.2184 -29780.21 2039372.00 

21 0.5002 0.5004 -29500.01 12515.00 

41 0.5002 0.5004 -29500.01 12515.00 

61 0.5002 0.5004 -29500.01 12514.00 

81 0.5002 0.5004 -29500.01 12514.00 

101 0.5001 0.5004 -29500.00 12514.00 

121 0.5001 0.5004 -29500.00 12514.00 

101 0.6772 0.6613 -9330.36 12348 

121 0.6772 0.6613 -9330.36 12348 

141 0.6772 0.6613 -9330.35 12348 

161 0.6771 0.6613 -9330.35 12348 

181 0.6771 0.6613 -9330.35 12347 

201 0.6771 0.6613 -9330.35 12347 

221 0.6771 0.6613 -9330.35 12347 

241 0.6770 0.6613 -9330.35 12347 

261 0.6770 0.6613 -9330.34 12347 

281 0.6770 0.6613 -9330.34 12346 

301 0.6770 0.6614 -9330.34 12346 

321 0.6769 0.6614 -9330.34 12346 

341 0.6769 0.6614 -9330.34 12346 

361 0.6769 0.6614 -9330.34 12346 

381 0.6769 0.6614 -9330.33 12345 
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141 0.5001 0.5004 -29500.00 12514.00 

161 0.5001 0.5004 -29500.00 12513.00 

181 0.5000 0.5004 -29500.00 12513.00 

201 0.5000 0.5004 -29500.00 12513.00 

221 0.5000 0.5004 -29490.99 12513.00 

241 0.5000 0.5004 -29490.99 12513.00 

261 0.4999 0.5004 -29490.99 12512.00 

281 0.4999 0.5004 -29490.99 12512.00 

301 0.4999 0.5004 -29490.99 12512.00 

321 0.4999 0.5004 -29490.99 12512.00 

341 0.4998 0.5004 -29490.98 12512.00 

361 0.4998 0.5004 -29490.98 12511.00 

381 0.4998 0.5004 -29490.98 12511.00 

Footnote: 
1

  equal to the coefficient of 
1t

Y


 “  1

ˆ1  ”; 
2

  equal to the coefficient of 
3t

Y


“
3

 ” and 
0

w  

equal to the coefficient of 
2t

X


“
0

ŵ ”   

 

In Table II, the parameters are 
1

  = 0.5002, 
2

 = 0.5004 and 
0

w = -29490.98 compare to the estimated 

parameters 
1

  = 0.4689, 
2

 = 0.5346 and 
0

w =-39977.93. This result shows that the extreme initial values 

method gives closer estimates to all three parameters, before the convergence of nonlinear least square fit to the 

data set.  

In addition, Table I shows that convergence occurs after six iterations while convergence occurs after five 

iterations in Table II. Based on the available results, in realistic conditions, several inputs can be handled 

without serious estimation difficulties. Also, forecasting can be done using the identified transfer function model 

with noise. 

     

VIII. CONCLUSION 
The transfer function–noise model result offers an extra verification and offers more backing to the time series. 

Finally, the identified transfer function noise model linking the series Yt and Xt is adequate (or fit to the series Yt 

and Xt).  

 

REFERENCES 
[1]. Victor-Edema, U. A., & Essi, D. I., (2020). A transfer function modelling of Nigerian current account (net) and exchange rate. 

International Journal of Statistics and Applied Mathematics. 5(4). 177-185.  

[2]. Nwobi-Okoye, C. C. & Igboanugo, A. C. (2012). Performance evaluation of hydropower generation system using transfer function 

modelling. International Journal of Electrical Power, 43(1), 245-254. 

[3]. Nwobi-Okoye, C. C., Okiy, S. & Igboanugo, A. C. (2015). Performance evaluation of multi-input-single-output (MISO) production 

process using transfer function and fuzzy logic: case study of a brewery. Ain Shams Engineering Journal. 6(2). 541-551.  

[4]. Moroke, N. D. (2015), “Box-Jenkins Transfer function Framework Applied to saving-Investment Nexus in the South African 

context”. Journal of Governance and regulation; 4(1).  

[5]. Makridakis S., Wheelwright S. C, and Hyndman, R. J. (1998). “Forecasting methods and applications” John Wiley and Sons. Inc. 

[6]. Naill, P. E. & Momani, M. (2009). Time series analysis model for rainfall data in Jordan: case study for  using time series  analysis. 

American Journal of Environmental Sciences. 5(5), 599-604.  

[7]. Pankratz, A. (1991). Forecasting with dynamic regression models. Wiley, New York. 

Uyodhu Amekauma Victor-Edema. "Convergence of Nonlinear Least Square Fit to an Identified Time Series Model, Using Extreme 

and Guessed Initial Estimates." International Journal of Mathematics and Statistics Invention (IJMSI), vol. 09(03), 2021, pp. 32-38. 


