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Abstract
Let pu,p2 and | be distinct odd primes and let | be a primitive root modulo p% ' with
| i Lf g , ,
ged(¢(pi"), ¢(p;7)) = 21 < i < J < ang ged(l,pi — 1) = 1. In this paper it is shown that the explicit
expression of 81(x) from the ring ;,Fi_[i]l is sufficient to obtain all Gaussain periods over I-cyclotomic cosets modulo
m for m = pip2. In Theorems 2.5, it is shown that for computation of all irreducible factors of
™ — 1, m = py"P5” over Fi: a1, apare positive integers, it is sufficient to compute all irreducible factors of
xP102 — 1 Therefore, in this paper we obtain the irreducible factors of xP*2 — 1 over F,with the help of the Gaussian
periods.
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. Introduction

The factorization of x™ — 1 over a finite field F,is a problem of much interest. In coding theory, the
irreduciable factors of x™ —1 over Fjare used in error correcting codes, secure communication, deterministic
simultation of random processes and digital tracking system (see [4]). Since each irreducible factor can be used
to generate a minimal cyclic code (see [1], [9]), therefore many authors have obtained the irreducible factors of
X™— 1 over Fjunder different conditions to compute the minimum distance and the weight distribution of cyclic
codes of length m. When p|(lI — 1), Chen et al. [2] showed that the irreducible factors of x*P"— 1 over F,are either
binomials or trinomials. For a positive integer m, Martinez et al. [8] investigated that x™— 1 can be written as a
product of irreducible polynomials of the form x!— a or x** —ax!+b over F. Li and Cao [7] showed that the factors
of x2brc—1 gver F), where p and r are odd prime divisors of (I — 1), are either binomials or trinomials. In [11] Wu
et al. factorized x™—1 over F;, where rad(d) does not divide (I — 1) and rad(d)|(I"— 1);w prime. They also counted
the number of irreducible factors.

— m o €8 [
Ifn""(‘T) Meeemo (z—¢ ) is the minimal polynomial corresponding to the cyclotomic cosets C™ \here
& is a primitive mth root of unity and

O(O.in(i)) = T Then #5(x) = X"— fix" "+ ... + (—1)"B, where B are sum of the products of dtaken i at a time.
b

l
Gaussian period corresponding toqn( ) is denoted by o5(¢&), where

i
Therefore, to compute f; we need the sum of the form < ecy'® ¢ , Where s runs over each cyclotomic cosets. As

_ i
75(§) = 2iecm® S , therefore the different os(¢) are used to evaluate the

coefficients of #s(x).
Throughout the paper Fis a finite field of order | and p1,pz are distinct primes where | as a primitive root modulo

Pl ged(o(pi). o(p;”

a

)) = 2 and ged(l,pi— 1) = 1. In this paper, all the irreducible factors of xP;1— 1,

xP11P,%2 —1 are obtained by using the irreducible factors of xP* —1, xP**2—1. Further in Lemma 2.7 it is shown that

to obtain all the irreducible factors of xP**2—1 and xP2*3-1 over F, the explicit expression of primitive idempotent
"

- 2]
o7 (3’7) (from<zP1P2—1>) is useful.
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This paper is organized as follows. In Section 2, some deflnltlons are given and the irreducible factors of Pt —
1 over Fare obtained. If f(x) = Qmuy(x — &), where(Y |s a l-cyclotomic coset modulo m and &is a s€Cs

primitive mth root of unity, then the coefficient of x' in f(x) is of the form

. .. m(l) .
Pteioi(€) (see [10]), where t; are solutions of Xy + X2 + ... + xk=i in Cs @, truns over each I-cyclotomic coset

0i(€) = Xyeem €

Algorithm 2.10 is given to compute the irreducible factors of aP1'P2% 1 over
Fi.

modulo m and

. er (}22
Il.  Factorization ofz”’1 727 — 1 over F,

In this section we obtain all irreducible factors of :r:p?lpgg —1 over F. First we give some definitions and results
which are used throughout the paper.
Denote the I-cyclotomic coset modulo m containing s;0 <s<m-—1 by

m(l N B LJt— . e
Cy M= {s,sl, sl?, ..., sl 1} wheretls the smallest posmve mteger such that
sl = s(mod m). The O(CY )denote the order ofC Corresponding

to eachc there exist an irreducible factor of x"— 1 defined as’ls ( ) -

Meemn (@ (& —¢& ), where & is a primitive mth root of unity. It is also shown
that the factorisation of ~ #P1' —1 over Fiis trivial.
Definition 2.1 J-mapping ( Definition 2.2 [5]). Let A; = {0,1,2,....p1— 1}, A2 = {0,1,2,...p2— 1} and A =
{0,1,2,...,p1p2}. Then the mapping A1 x A, — A defined by /l(al,az) = aip2 + azpi(mod p1p2) is called a 2 — mapping.

_ Atz
Definition 2.2 (Prlmltlve idempotent [1]) Leth - im 1bea sem|5|mple ring. The primitive ldempotent
_ m—1

corresponding toq denoted byH "()is given by 1" (z) =Ty ' wherEe = Z»}ECT?U)& .
Pt
As | is a primitive root moduloP?" , therefore, there are two I-cyclotomic cosetsCo1 andC11 ) modulo p;. If xP*

-1 = no(X)n(x), where n1(x) is the minimal polynomial of
imiti 1 . —1
pr|m|t|ve0?1th rootaof unity, pt 1 — Mo )Hn 1 m (Ip ). then i

Theorem 2.3 The

u]
; (1
Proof Slnce I is a primitive root modulonp1 there are n + 1 cyclotomic cosets moduloP" , hamely, Co and

(‘;} 0 < [ < N — o a1 ) .’,[:pl _ 1 — n*(l) 1—[(21 r] (
at 1. Let 8 be a primitive P1 th root of unity. Then 0 =0 p}
), where
T]*; (‘I’ . .. N Bp’ 5_8p" ) —i—1
P1 ") is the minimal polynomial of 77, Let =271, Then dP1 isa
—i—1

primitive psth root of unity. If #1(x) is the minimal polynomial ofgPL’ ,
o —i—1

R . n (@) =
then #1(xP? ) is the minimal polynomial of §. Consequently, 'P1

o) —i—1 e a)—i—1

m(” ) Hencet™ — 1= no(x) [T (a1 ). ©

Note 2.4 It is easy to see that when | is a primitive root modulop?l, then no(X) =x—Land y(X) = 1 + X + X2+ ...
+xP11 o
We now compute the irreducible factors of xP1*2— 1 over Fjunder the following conditions: For 1 <i <2, (i) | is
a primitive root modulo p% ' (ii)
ged(d(pi™), ¢(p3*)) = 2 (iii) ged(l, pi —1) = 1. Then, by Lemma 2 [6], the
0 (l) _ ¢ ;fnpz) ) )
order of I modulo pip;i.e. ~rip2 - . Therefore, there are five Icyclotomic cosets
pip2(l) - ~pip2(l) - ~pipa(l)  pap2(l) pip2(l)
Co , O , ¢, Cpf ’ andO§§')2 modulo pipz, where a is not congruent to I*mod p1p..
Therefore, if xPP2—1 = 5o(X)571(X) 7a(X)7p1(X)77p2(X), Where 71(X)na(x) is a product of minimal polynomials of g
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and 2, pa(X) = 1 + x + X2+ ... + xP>"Lis minimal polynomial of P, #p2(X) = 14+x+x2 +...4+xP* L is minimal
polynomial of g°2; g is a primitive pipsth root of unity, then

] g oy —i—1 ag—j—1
P

( _]s '_1)
Theorem 2.5 The ah Pt — 1 = no(a )H(?;):(Sj)) m (" : )

a)—i—1 ag—j—1 (Q _1) a)—i—1 (O.' _1) ag—j—1
Na (-L'p Pz ) Hf:b 77;02(7’1)] ) Hj=20 Wp1($p2 )
g+ +as+11 Tipg?
Proof. The 2" 2+ 1 2+ o o e a -cyclotomlc cosets modulop 1 ,gg o, are( See
T"l pQ “) Cpl 772 “) P pg “) erfl ]72 I) ‘ (‘,)
Theorem 1[6]), Pll 2 P Tapiipy 0 TRPYY and ’P?I?’z 0<
Ly ipy . (a1—1,a2—1) *
R Ry T L
i<a—1,0<j<o1l Then'L -l () H( 7)=(0,0) ’I’L?’J( ) 'Irm‘ P (z
(n]—l (02 1)
a7 ()5 Mg
[i=o ( ) 1= Iy, 'PJ( G ) is the minimal polynomial corre-
. 1PT1p'(;2(l)
sponding toC's .
Let y be a primitive 1 2 th root of unity. Then, o' »’ (w)”apf v (:;:) isa
) 12 12
- : PAPS 4 i pi § = PP
product of minimal polynomials of and y#';P,,. Choose i and
) —i—1 apg—j—1 al_i_l (lz_j_l

0" = ’W/ﬂmPJz o b2 Thenand 621 P2 are primitive pip.th root of unity. Therefore, the product

of their minimal polynomials is #1(X)#a(x).

n (r})“l i lpn2 J— l) T]”(T;Uul i— 1pc12 i—1 - N
Consequently, a i o j)isaproduct of minimal
1— =1 9— -1
*x)n® . i (x) = TP Dy
polynomials of § and 6. Hence nﬁ%?’é( )napﬂ-py( ) = ml )
P T pg2TITh - . PP is g
Ma (ip P2 ). The minimal polynomial of ! ]” 2 (2 ) If we take
D) Leep—i—1
0 = ’)’plp? then (5 ) becomes primitive pith root of unity, therefore,) is its minimal polynomial.
Npe () = (L + 2+ ... + 2P~ 1 Equivalently,
i al__l ”1 i—1
Ml ()= T (a7,

np2(XPy ) is the minimal polynomial of ¢+. Hence

P ) — ,.}’thz_J_l o
simitarty, i ()= o (2727

Lemma 2.6 Let B = {si+s,+...+si[sjare distinct elements of C%P?(0} has ty; solutions of X1+ X2+ ... + x=1i;i=0or
loraorpiorpyl <

k< o(cnet )) —1. Then CP*2D appears t; times in B. Moreover, if

PseCsplp2(l) s =0, then, in B, tk,i = tO(Csp1p2(1))—k,—i.
Proof. Let X1 = s1,X2 = S,...,Xk = Sk be a solution of x1+Xo+...+X¢ = i, then
S1+ S+ ... +Sk=1i

Equivalently,

Sllv + s2lv + ... + sklv = ilv;0 <v < O(Csplp2(l)) — 1 (1)

A o(l), . .
In (1), the left hand side is a sum of elements ofcf'm( )taklng k at a time
while right hand side is CP20), therefore, for each solution of x; +Xz +...+ X« = i, the CP*20) appears t;times in B.

If,
S1+ So+ oo+ S+ S + ...+ Socnr®y = 0;s; € CPr2l)
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and, if s;+sp+...+s¢= i, then, from above equation, Sk+1+...+SocSp1P2(ly) =
—i. Equivalently, tk,i = tO(Csp1p2(l))—k,—i. o

Lemma 2.7 Let 6i(¢) = Psecipip2(y & and, let p1 be of 4k + 1 type and p be of 4k +3 type. Then

_ 1=v—pip2 _ v=pip2 _
a1(§) = 2p B, 0,8 = gp 2, Tpr (&) = 71, 0p2(¢&) =—1 and 00(&) = 1. Further, if p1and

p2 both are of 4k+3 type, then
_ 1+ypip2 _ 1=y/Pip2 _ —
a1 (5) - 2 oa(§) = 2 1 Im (&) = *_1’ Upz(g) — 1 and o0(¢) = 1. Proof. By Definition
22, in71 € = Lgeopm 77 = L opmo & =
U(c’)i’]f’z(”)

L —g_.(&
WT) 1(é).Therefore,

O(CPH)Q(U)

o-i(§) = (G)W "

We now discuss two cases:
CPle(") Cppz(l)

(i) When p1 is 4k+l type and p, is 4k+3 type. Then ‘a ,
_ 14+/—pip2 £ — 1—+/—pip2 € — (D(m) e, = (D(pg) o — o(p1p2)
- a 2 P L T 2 P2 T and“0 — — 2 (for
— 1=v—pp
the valules of & see Theorem 3[1]). Therefore, by (2) 1 (‘5) - 2 =
+ J — -
Un.(‘g) = Qplpz’ Tpy (f) =—1, Tp, (6) — Tlandoo(d) = 1.
pa(l p1pall
(ii) p1and p, both are of 4k + 3 type. Then,—Cium() = Cflpz( ), €1 =
1+y/pip2 € = L1—v/P1p2 €. = _ 9(p1) € = _ (p2) d(p1p2)
P e T oy o T e 2 and €07 T Again by (2)
o1(§) = /=77, 0u(§) = =5, 05 (8) = —1, 05,(8) = —1 and op(@) = 1.0
O((. p1P2(l ]) b 0 C,i)lpg(i) _k
Theorem28The7ls( ) = 2= (—1)*apx (Cs ) , where
—/ =12 14+/—p1 1
_pteot boa G + o g — ey — iy p1 = 4K +1andp,= 4k +3

1+/p1p: 1—v/p1p: .
teo +th1 =5 +tha—5— —thp —thp ;p1=4k +3and p,=4k + 3

Proof. The #s(X) = %ecspap2(n(X — &), where & is a primitive pip2th root of unity. Since the order of C*?0 is
O(C12M), the degree of 5s(X) is

P1p2() ) )
L m@) = ST rgeoer k]
O(Cp'p ). Let , Where ay is a sum of products
of its roots taking k at a time. Therefore, axis a sum of terms of form ¢s1+s2+...+sk;si € Csplp2(l). Then, by

Lemma 2.6, ak = tk,000(&) + tk,101(¢) + tk,aca(f) + tk,plopl(E) + tk,p20p2(&). By Lemma 2.7, the

tho + tha TSR =2t Dopibe oy —tipy 01 = 4k pr=4k+3
o

1— /Bpa
Lo+ Tk w + tk.a# — tipy — thops :p1= 4k + 3 and

Remark 2.9 (i) Trivially, 70(X) = x = Lypa(x) = 1 + x + ... + xP2Tand spo(X) = 1 + x + ... + xP¥'L,

(ii) If p1and p2 both are of 4k + 3 form, then *Clmpz = TW( ) Therefore, by Lemma 2.6, we have to

P(p1p2)
<k <o

compute ty; for 1 = as
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tk,i = t(ptp2)—k,i
4
a. Algorithm to compute the irreducible factors of xP*P2— 1

We have following algorithm to compute the 7s(X) = secspip2(y(x — &).
.. 2 (1l
Step 1. Compute B = {s1+s»+...+s¢[s; are distinct elements of Cflpz( )}Step 2. Compute tx;, where ty;are number

of solutions of X1+ X2+ ... + xx=1i;i=00r 1 or aor piorp

in B.

Step 3. Compute axas discussed in Theorem 2.8.

I o(crr20) . P12y,
ns(r) = kin' )(_1)}\“!"5];0(65 )=k

Step 4. The.

Step 5. Stop.

I11.  Example

Example In this example we find all the irreducible factors of x*°*— 1 over Fy7. The 5 distinct 17-cyclotomic cosets

modulo 35 arecﬁs:ciiﬁ:a?aacgts and 0:735. As 17 is a primitive root modulo both 5% and 7%, therefore, we
compute the irreducible factors of x*°— 1 over F17. Let y be a primitive 35th root of unity. As order of 17 modulo
35is 12, we need to compute ax;1 <k < 11. By Lemma 2.7, ao(y) = 1,01(y) = 7,02(y) = 11,05(y) = —1 and o+(y) = —1
Therfore, by Lemma 2.6, 1,0 =0,t1,1 =1,t1,2=0,t1,5=0,t1,7=0,and al = ol(y) = 7,12,0 = 0,t2,1 = 2,t2,2 =
1,t2,5 =3,t2,7 = 3, and a2 = t2,060(y)+t2,151(y)+

t2,202(y) + 12,5065(y) + t2,767(y) = 2, 13,0 =0,t3,1 = 6,t3,2 = 7,t3,5 = 6,t3,7 = 7, and a3 = t3,060(y)+t3,101(y)+
t3,202(y) + t3,565(y) + t3,767(y) = 4, t4,0 = 15,t4,1 = 12,t4,2 = 15,t4,5 = 16,t4,7 = 15, and a4 = t4,000(y) +
t4,161(y) + t4,262(y) + t4,565(y) + t4,707(y) = 12, 15,0 = 24,t5,1 = 22,t5,2 = 25,t5,5 = 20,t5,7 = 21, and a5 =
t5,000(y) +

t5,101(y) + t5,202(y) + t5,505(y) + t5,767(y) = 4,16,0 = 38,t6,1 = 26,t6,2 = 26,t6,5 = 27,t6,7 = 25, and a6 = t6,060(y)
+

t6,101(y) + 16,2062(y) + 16,505(y) + 16,707(y) = 12, 17,0 = 24,t7,1 = 25t7,2 = 22,t7,5 = 20,t7,7 = 21, and a7 =
t7,060(y) +

t7,101(y) +t7,202(y) + t7,505(y) + t7,767(y) = 9, 18,0 = 15,t8,1 = 15,t8,2 = 12,t8,5 = 16,t8,7 = 15, and a8 = t8,050(y)
+

t8,151(y) + t8,202(y) + t8,505(y) + 18,767(y) = 0, 19,0 = 0,19,1 = 7,t9,2 = 6,19,5 = 6,t9,7 = 7, and a9
t9,000(y)+t9,1061(y)+

t9,262(y) +19,5065(y) + 19,747(y) = 0, 10,0 = 0,t10,1 = 1,t10,2 = 2,t10,5 = 3,t10,7 = 3, and a10 = t10,060(y) +
t10,161(y) + t10,262(y) + t10,565(y) + t10,767(y) = 6, t11,0 = 0,t11,1 = 0,t11,2 = 1,t11,5 = 0,t11,7 = 0, and a1l
t11,000(y) +

t11,101(y) + t11,262(y) + t11,5065(y) + t11,707(y) = 11,

Hence

0 (x) = o = To't 42210 — 429 4122 — 42" +122° — 92° + 62° — 11a4q

_ 35 . 35
Since the roots of?72 are reciprocal of roots of71 ", therefore,
n(x) = o' — 1" + 621 — 927 + 122° — 4a® + 122 — 42 + 22 — Tz + 1.
Further, by Remark 2.9(i), it is easy to see that

P (x) =a+ 2"+t + 28+ oy
P (x) =2+ 2° + 2° + T4 1 ang

35 _
M6 (T) = T —1. Hence x¥*~1 = (X=1)(x12 =7xM +2x10 —4x°® +12x8 — 4x7 + 12x8 — 9x5 + 6x2 — 11x + 1)(x*2— 11xM +
BX10— OX7 + 12x8 — 4x5 + 12x* —4x3 +2x2 —7x+1) (X* +x3 +x2 +x+1) (X8 +x° +x* +x3 +x2 +x+1).

P57 (e (a1—=laz—1) 12(501—i-17ee—i=1)
By Theorem 2.5, L= (= DIli =00 @
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7x11(5a1-i-17a2—j~1)+2x10(5a1-i-17a2—j—1)-4x9(5al —-i-1702—j-1)+12x8(50:1 —i~1702—j—1)—
AX7(5al-i-17a2-j—1)+12x6(5a1—i-17a2—j-1)-9x5(5a 1 —i—1702—j~1)+6x2(50: 1 —i~1702—j~1)—
11x(501-i-1702-j-1)+1)(x12(5a1 —i-1702—j~1)~11x11 (501 —i~1762j-1)+6x10(5a1~i~17a2—j~1)—
9X7(5a1-i-1702—j~1)+12x6(50:1—i—1702—j—1)~4x5(5a1-i-17a2—j-1)+12x4(5a1 —i-1702—j-1)—
4x3(5a1-i-17a2-j-1)+2x2(5a1-i-17a2—j—1)~Tx(5al-i-17a2—j—1)+1)=02—1(X4(Ta2—j~1)+
X3(702—j~1)+x2(702—j~1)+xTa2—j~1+1)ui=o1~1(X6(5a1—i~1)+x5(5a 1 —i~1)+x4(5a1—i~1)+ x3(5a'—i—1) +
x2(5a1—i-1) + x5al-i-1 + 1).
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