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ABSTRACT: Modelling the complex protein m RNA coupled equation that cause thecancer problem could be 

key to understanding and treating these abnormal cancer. The promise of sequencing portable or desktop 

computers would help predict cancer.We used the Peyrard-Bishop models using symmetric Morse potential.It is 

imperative to analyze DNA with the influence of viscous medium and external forces with their corresponding 

sequencing in a portable way in the production of the type of proteins. 
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I. INTRODUCTION 

 
 Is imperative the numerical simulations in the Peyrard -Bishop model of DNA inhomogeneous [0-1] 

and DNA homogeneous [1-3]. There are problems related to the functions of the gene and the mechanisms of 

gene expression [4]. 

 The development patterns are explained with the theoretical and experimental models of coupled 

oscillators (2). 

The present study aims to describe in a computational simulation the dynamics of messenger  of RNA and 

proteins. The stationary case is analyzed, which is equivalent to the experimental case, usually in the cell 

medium. In general, the solutions for a set of parameters are determined and they are observed as they behave as 

a station after a certain time.  

 

 
 

 

II. METHODS 

 

 

 
2.1 Peyrard Bishop model for DNA , RNA , Inosina in  DNA with solvent and external potentials 

 

The deoxyribonucleic acid DNA is a thread-like chain of nucleotides carrying the genetic information of 

all organisms. The coding sequences for genes and regulatory information are located in DNA and is 

marginally stable and undergoes a “melting phase transition”. There are many experimental ways to 

study the fluctuations or breathing of DNA: Hydrogenexchange, formaldehyde probing, protein-nucleic acid 

interactions, DNA replication, DNA base analogue spectroscopy, single molecule DNA-protein interactions, 

two-dimensional fluorescence spectroscopy .  The interaction between the viscous potential and external forces 
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prevent DNA to unzip perfectly but allows DNA to split at a certain distance from its original position . 

S.Flach gives the theory of the “discrete breathers” and applications. 

   The mobility and breathing of DNA depends of the harmonic bifurcation
. 

 The strong dependence on 

sequence, temperature and salt concentration for the breathing dynamics of DNA found here points at a good 

potential for applications and the effect of the viscous and external forces  

First, the PB model is introduced. It is then followed by the dynamical and the thermodynamic formulations. We 

show that mobile breather can lead to the observed breathing, but the amplitude of the breather is determinant 

for the transient conformational fluctuations of DNA. The numerical simulations verify the existence of  

breather   with the conditions describes by R.S. Mackay. The symmetric potential does not give a solution for 

the transition of the DNA. For that reason, it is necessary to investigate the effect of the solvent and external 

potentials. The calculation of hydrogen bond stretching using transfer integral operator and difference finite 

methods are presented. 

 
 We consider the Peyrard-bishop model with the symmetric Morse potential The biomechanics of DNA is 

represented by two degree of freedom Xn and Yn which correspond to the displacement of the base pair from 

their equilibrium position along the direction of the hydrogen bonds connecting the two-base pair of nucleotides.   

 

The studies of the Symmetric Peyrard-Bishop (S-PB) models that included the modified Morse potential was 

done by adding the absolute value: 

 21)exp(
2

1
)(  uuV (1) 

 
Where V = symmetric Morse Potential.    

 
The profile of symmetric Morse potential can be seen in Figure 1.  

 

 

 

Figure 1.  The symmetric Morse potential. 
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Where N = number of the pairs of bases; K = coupling constant; 
.

uvelocity  ; and un = stretching of 

the hydrogen bonds = (Xn – Yn)/√2. 

 

 

 

The associated equations for equation (4) are the system equations (n=1, 2... N) 
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Using the approximation for the oscillator n and T=2π/wb 





mk

k

b

k

nnn tkzzu
1

0 )cos(2  .          (4)                                            

 

And substituting in (3) one has    
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Which depend on the parameter K, and V'n
k
 is the k

th
 Fourier coefficient for the periodic 

 Function V'(un(t)).  

 

 

The breather solution is obtained conditions (t=0) where all the oscillators are at rest, while the central 

one is shifted. The codification for one site breather is 0,0,…0,1,0,…,0,0. 

 

In Fig. 2 the  breather is depicted. This figure shows the numerical solution of the equations (5). The 

second derivative of the symmetric Morse potential is given by 
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Figure 2.Spatial breather configuration of the symmetric Morse potential.  
 

 The dynamics of the DNA is a set of coupled oscillators, and the vibrational motion is equivalent to 

equations (3) which depend of the Symmetric Morse potential and constant K of coupling.  

The amplitude of the breather is determinant for the transient conformational fluctuations of DNA. In 

our case the Figure 2 gives 0.6 angstrom of amplitude.  

 

 Harmonic bifurcation  

We analyze the stability of the breather solution   Let us introduce a function ũn(t) = un(t) + n(t), 

where un(t) is the periodic breather solution shown in Figure 2.  The term εn(t) is a perturbation: ũn(t) 

must satisfy the system (3) and expanding around un(t) to first order (linearization), we obtain the 

following system of equations for εn(t)   

 

 

  0)2())((" 11   nnnnnn KtuV  .    (6)            

 

We can associate a monodramamy matrix for this equation with Fouquet multipliers. 

 The solution is stable if the modules of Fouquet multipliers are one. The especial instability 

(“harmonic bifurcation”) in our case happens when a pair of Fouquet multipliers merges at λ = 1 and 

splits off circle onto the positive real axis in Fig. 3. 
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Figure 3.  The instability “harmonic bifurcation” with the evolution of the Fouquet multipliers. Case 

SPB model with the parameters: K=0.004, wb=0.8 for the breather. 

 Mobile breather  

For the coupling K=0.004 and wb=0.8 there is a harmonic bifurcation. In this case we can construct a 

dark breather mobile. Once the system of equations (3) is worked out by RungeKutta method for the 

Cauchy problem with the equations (3).  We can use the Figure 2 for the initial conditions of the 

position and average speed of each position “n” respect to the harmonic oscillation corresponding to 

the DNA.  

The center of energy of the breather mobile is given by
5
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Where the density energy has the form 
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It is very important the initial velocity of the BM for the displacement a long of sites of DNA and can 

be produced of DNA breathing. 

This parameter initial velocity v(0) is transcendental for DNA breathing. 

 

We can use the profiles of the stationary dark breather obtained of equations (3). The velocity is a 

vector which the components are given by     

2/))0()0(()0( 11   nnn uuv

      (9) 

 The components of this vector perturbation V are given by  
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Where v is the normal of the vector of the components vn(0). 

The initial value problem is given by 
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Initial conditions: u.(0) = profiles of the solutions of the Figure 2. The velocities are given by the 

expression (10) with λ=0.1. We can obtain the solutions of the equations using initial condition with 

the software Fortran (for a review, see ref. 3). 

 

The evaluation of the partition of equation (2) using the transfer integral operator method in the 

thermodynamic limit reduces to solving the pseudo-Schrodinger equation (12): 
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We use the symmetric Morse potential. The fluctuations or breathing of DNA can be performed numerically 

using the finite difference methods. Firstly, we obtain the ground state wave function of equation (12). For 

estimate the mean value of the fluctuations we use the formula 

uduu 0
2




                          (15) 

The ground state wave function for the symmetric Morse potential is symmetric in consequence the mean value 

of the fluctuations is approximately zero (for a review, see ref. 3). 

 In Figure 4 is depicted the example of the ground state wave function for the symmetric Morse potential. 
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Figure 4.  Ground state wave function   for the symmetric Morse potential with the control parameter 

Temperature=70 °K.  

Thermodynamics in the PB modelwith solvent and external potentials 

We can consider the new potential for the equation (13): 

)2/ln()2/1()1.0exp()()2()( 2

0  KuVuVsolventuVuU nnnn 
    (16) 

The solvent potential is given by: V solvent = 0.04*ν*than (u n/5  -1). In Figure 5 is depicted the example of the 

solvent potential. 

 

Figure 5.  The solvent potential with the control parameter ν=0.025. 

For the symmetric Morse potential in the S-PB Model we can get many values of the melting temperatures. For 

example, for T =270 K and the control parameter ν = 0.001, V0 = 0.005 the mean value of the fluctuations <u> = 

1.9586 Å. The hydrogen bond stretching as a function of temperature gives a melting temperature depicted in 

Figure 6. 
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  a)  b) 

Figure 6.    The hydrogen bond stretching as a function of temperature for external  

Potential V = V0  exp (-0.1 u
2
 ) , V0 =0.005  and solvent potential with the viscosity control parameter v: a) 

ν=0.001 and b) v=0.025. 

 

 The solutions of the dynamical equations (5) give the dark breather mobile.  We have the mobile breather using 

the center of energy for the initial velocity of 0.1. This method is based on the literature 

 We have obtained harmonic bifurcation using the symmetric Morse potential with the parameter K=0.004. 

We have obtained the Eigen functions of the pseudo-Schrodinger equation (12) for demonstrate that the mean 

value breathing of DNA is zero. The analysis is based on the reference
12.  

For the symmetric Morse potential in the S-PB Model, we can get the melting temperature for  

T = 270 K, control viscosity parameter ν = 0.001 and the constant of the external potential V0 = 0.005. For these 

values the mean value of the fluctuations <u> is 1.9586 Å.  In this case, we can get the DNA breathing with the 

variations of temperatures (Figure 6(a)). 

Figure 6(b) indicates that mean value of stretching <u> is direct proportional to the coefficient of viscosity. The 

increase of the viscosity will increase the hydrogen bond stretching. The viscous and external potential effect is 

direct proportional to hydrogen bond stretching. For V0 = 0.5 the mean value of hydrogen bond is <u>= 3.82 

with the temperature T = 270 K and viscosity v = 0.025.   

The figure 6 shows that for T > 150 K the viscous force is not important for the DNA breathing. This result is 

similar to that obtained in the literature. 

The stability of thebreather  have been obtained with the Fouquet’s theory.  It is very important to emphasize 

that dark breathers at low coupling are shown to be stable in the PB model with k<0.004. For k=0.004 we have 

harmonic bifurcation and the mobile dark breather. In this case and using numerical simulations we can 

demonstrate that the mean value of the hydrogen bond stretching is zero. 
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For the symmetric potentials we have significant fluctuations in the analysis of the breathing DNA with solvent 

and external potentials. The external potential is more important than the viscous force for the estimated melting 

temperature and the mean value of the hydrogen bond stretching.   

 

 

 

4.2 Concentrations are asymptotic to stationary solution 

 
m: Messenger concentration.  

p  :Proteins 

 

 
A system of differential equations was used to analyze the dynamics of mRNA concentration (m), and protein 

concentration (p). 
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  (1) 

 

The constant L is the translation coefficient and U is the protein degradation coefficient. 

U is the degradation coefficient of  mRNA. The function f (p) is the transcription function. The classical method 

of solving systems of differential equations is with Runge -Kutta fourth order method and is computationally 

processed with the ODE tool 45 of the MATLAB program. 

To determine the stationary solution, we have considered the set of parameters: L = U = V = 1 and the function f 

(p) given by: 

 

 

 f(p)=10/( 1+ p
2
 /25) 

 

The stationary solution was found by solving the system: 
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 . 

 

A concentration of m = p = 5 will be horizontal asymptote for dynamic solutions. 

The system of coupled equations generates two solutions as indicated in figure 7. Figure 7 shows its final 

vibration equal to 5. 
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Fig.7. coupled solutions 

 

 The system (1) can be controlled in a computational manner depending on the set of parameters. These 

results can be optimized by manipulating the constants L, U, V and the function f (p). There are a complexity 

problem with the folding protein .Numerical methods with MATLAB are found in Di Stefano's reference [4]. 

It can be analyzed with an optimal control theory and better control of proteins. Biologically it is based on 

microRNAS controllers.  

 

4.3 Kinase-targeted cancer therapies: G-protein coupled receptors 

Recent advances have elucidated a crucial role for kinases in the carcinogenesis and metastases of cancer [5]. 

 

 

 

 

 

III. CONCLUSION 
For the protein – mRNA    coupled equation the concentrations are asymptotic to stationary solution. 

It is imperative to analyze DNAwith the influence of viscous medium and external forces with their 

corresponding sequencing in a portable way in the production of the type of proteins 
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