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I INTRODUCTION
A general planar motion as given by
(1.2) y1=xcost — y sinf + a
y2=xsinf +y cosf + b
If 6, a and b are given by the functions of time parameter t, then this motions is called as one parameter motion.
One parameter planar motion given by (1.1) can be written in the form

Y A C\rX

(1) - (o 1) (1)
or
(1.2) Y=AX+C, Y=[yy,]". X=[xy]",C= [ab]T
where A € SO(2), and Yand Xare the position vectors of the same point B, respectively, for the fixed and moving
systems, and C is the translation vector. By taking the derivates with respect to t in (1.2), we get
(1.3) Y=AX+AX+C
(1.4) Vo, =V +V;
where the velocites V, = Y,V; = AX + C, V, = AXare called absolute, sliding, and relative velocites of the points
B, respectively. the solution of the equation V; = 0 gives us the pole points on the moving plane. The locus of

these points is called the moving pole curve, and correspondingly the locus of pole points on the fixed plane is
called the fixed pole curve. by taking the derivates with respect to t in (1.3), we get

(1.5) Y = AX + 2AX + AX + C
(1.6) b, = b, + b, + by
where the velocites

(1.7 b, =Y,

(1.8) b = AX + C,
(1.9 b, = AX,
(1.10) b, = 2AX,

are called absolute acceleration, sliding acceleration, relative acceleration and Coriolis accelerations, respectively.
The solution of the equation

(1.11) AX+C=0

gives the acceleration pole of the motion.

1. HOMOTHETIC MOTION IN EUCLIDEAN PLANE
Definition 2.1. The transformation given by the matrix

=y D)
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is called Homothetic motion in E*. Here h = hl, is a scalar matrix, A € SO(4) and C = C € IR? [1].
Definition 2.2. Let ] c IR be an open interval let O €]. The transformation F(t) = E* - E*given by

F = (NOAO €0

is called one-parameter homothetic motion in E*,where the function h: ] — IR the matrix A € SO(4) and the 4 x
1 type matrix C are differentiable with respect to [1]. Since h is scalar we have B~ = h™1A™! = %AT for XeE*,
the geometric plane of the points is a curve in E* [3]. We will denote this curve by

(2.1) Y(t) = B(H)X(t) + C(t)

differentiating with respect totwe obtain [3];

2.2) S=Cx+BT 4+

Definition 2.3. Equation of the general motion in E*

(2.3) Y(t) = B(t)X(t) + C(t)

where A = A(t) € SO(4) and C = C(t) € IR} [1]. Differentiating this equation with respect to ¢ we have

dy dB ax ac

(24) E—;X—l—BE'FE

Here
V_dY V—BdX dV—dBX+dC
« T T M T dt

and are called absolute velocity, relative velocity and sliding velocity of the motion, respectively [1]. We deonte
motions in E* by E/E where E'is fixed plane and E is the moving plane with respect to E'. If te matrix Aand C
are the functions of the parameter telR this motion is called a one parameter motion and denoted by B, =
By 11l

Definition 2.4. The velocity vector of the point X with respect to the Euclidean plane E (moving space) i.e. the
vectorial velocity of X while it is drawing its orbit in E is called relative velocity of the point X and denoted by
V. [1].

Drefinition 2.5. The velocity vector of the point Xwith respect to the fixed plane E is called the absolute velocity
of X and denoted by V/,. Thus we obtain the relation

(2.5) Vo =Vr+ 1,

If X is a fixed point in the moving plane E, since V. = 0, then we have V, = V; The quality (2.5) is said to be the
velocity law the motion B; = /E' [3].

I11. POLES OF ROTATING AND ORBIT

The point in which the sliding velocity V; at each moment ¢ of a fixed point X in E in the one-parameter
homothetic motion B; = E/E' are fixed points in moving and fixed plane. These points are called the pole points
of the motion.

Theorem 3.1. In a motion B; = E/E whose angular velocity is non zero, there exists a unique point which is

fixed in both planes at every moment t.
Proof. Since the point X € E isfixed in E then V. = 0 and since X is also fixed in E" then V; = 0. Hence for this
type of points if V; = 0 then

(3.1) BX+C=0
and
(3.2) X =-B"'C
Indeed,since
hcos¢p —hsing 0 0
B= hsing hcose 0 0
0 0 hcosp —hsing
0 0 hsing hcosg
and
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[fl cosp —hpsing —hsing —h¢ cos @ 0 0 ]
_ hsing + h¢pcos@  hcos ¢ — h@sing 0 0
_| 0 0 hcosp —hpsing —hsin(p—h¢cos¢|
l 0 0 fzsin<p+h<pcos<p hcos<p—hgbsingoJ
then
(3:3) C = [erce5cq]”
implies that
(34) C= [51525354]T
and
(3.5) detB = (h? + h2¢?)? # 0.
Thus B is regular and
Kcosp —Msing —Ksing — M cos ¢ 0 0
a1 _ 1 Ksingo+Mcosep Kcosp—Msing 0 0
(h? + h2@?)? 0 0 Kcosp—Msing —Ksing— Mcos @
0 0 Ksing+Mcosep Kcosp—Msing

Hence there exists a unique solution Xof the equation V; = 0. This point X is called pole point in moving plane.
For this reason (3.2) leads to
(3.6) X =-B7'C

[ ¢1(K cos ¢ — M sin @) + ¢, (K sin @ + M cos ¢) 1
_ -1 | =¢1(K sin g + M cos @) + ¢, (K cos ¢ — M sin @) |
B (A2 + h2p2)2| c3(K cos @ — M sin @) + ¢, (K sing + M cos ¢)

—C3(K sing + M cos @) + ¢,(K cos ¢ — M sin @)

where K = h® + h?h@?, M = hh%¢ + h3¢3and the pole point in the fixed plane is
(3.7) P'=BP+C
setting these values in their planes and calculating we have

_ClhK - Cth C1
1 C:th - Cth C2

y=pP = T | ~cshk — cyhvt| |
&;hM — c,hk | Lea
or as a vector
(3.8)
Y = P = (W(=c,hK — ¢,hM) + ¢y, W (E,hM — E,hK) + ¢y W (—CshK — ¢,hM) + ¢3, W (CshM — ¢, hK)
+c,)
1

where W = W .

Corollary 3.2. If ¢(t) = t then we obtain

¢, (Ucos o —Vsing)+c,(Using +V cos @)
_ -1 —¢,(Using +V cos @) + ¢, (U cos ¢ —V sin @)
- (h2 + h2)*| ¢3(U cos @ =V sing) + ¢,(Using +V cos @)
—C3(U sing +V cos @) + ¢, (U cos ¢ —V sin @)

P=X

where U = h3 + h%?h,V = hh? + h3.

Corollary 3.3. If ¢(t) = t and h(t) = 1, then we obtain
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C18ing — c,cos@
C1€0SQ + C,Sing
C3SIinQp — C,coSQ
C3C0SQ + CySing

Corollary 3.4. If ¢(t) = t, then we obtain

_C.th + dth Cl
’ _1 _C.th + C.zh,U CZ
V=P = vy | ahu+ iy | T e

—C3hV + c,hU]  Lca
Corollary 3.5. If ¢(t) = t and h(t) = 1, then we obtain
(3.9) Y =P =(=C,+c1,¢; +Cp—Cy + 3,65 +¢4)
Here we assume that ¢»(t) # 0 for all t. That is, angular velocity is not zero. In this case there exists a unique pole

points in each of the moving and fixed planes of each moment t.
Definition 3.6. The point P = (p1,p2,p3,p4) is called the instantanious rotation center or the pole at moment ¢ of the

one parameter Euclidean motion B; = /E [4].
Theorem 3.7. The following relation exists between the pole ray from the pole P to the point X, and the sliding

velocity vector V; at each moment t.

(3.10) 1V [[cosg = 21iPy]

Proof. The pole point in the moving plane

(3.11) Y =BX + C,

implies that

(3.12) X=BY(Y-0),

(3.13) V= BX+C,

and

(3.14) BX+C=0

leads to

(3.15) X=P=-B7IC

Now Let’s find pole points in the fixed plane. Then we have from equationY = BX + C
(3.16) Y =BX +C,

(3.17) Y=P =B(-B7'C)+C.
Hence, we get

(3.18) P'—C=-BB7'C,

(3.19) C=-BBY(P'-0)

If we substitute this values in the equation V; = BX + C, we have Ve = BB~'P'Y. Now let us calculate the value
of BB™'P'Y heresince P'Y = (y; — 1, Y2 — P2, V3 — P3, Y4 — Pa), then
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h . ) h h )
Ve = (E 1 —=p1) =02 —p2), (1 — 1) + E()’z —DP2), E()’s —13) —9(Va — Pa),
h
¢z —p3) + E(ﬂ - P4)>

hence we obtain '

(3.21) (Ve PY) = 2[(n = p1)? + (72 = P2)? + (s = p3)2+ (s — pa)?]
(3.22) (V7. P'Yy = L IPY 2

on the other hand we know that

(3.23) Ve, PY) = ||[Vi |- I1P'Y Il cosep.
This from the equelities in (3.22) and (3.23) we have that

h !
(3.24) ||Vf||cos<p = E”P Y|

Corollary 3.8. The pole ray from the pole P to the point X, when the scalar matrix h is constant, is perpendicular
to the sliding velocity vector V; at each instant moment ¢.
Theorem 3.9. The length of the sliding velocity vector V; is

= ((3) +o) e

h ) . h h .
Ve = (E 01 —p) =02 —p2), (1 — 1) + E(}’z —P2), E("3 —13) — Vs — Pa),

(3.25)

Proof.

_ h
o3 —p3) + 7 s — m))
hence

3.27) vl = () +92)upi

Corollary 3.10. If the scalar matrix is h is constant, then length of the sliding velocity vector is
(3.28) Vel = lolllPY

Corollary 3.11. There is a relation among the pole ray from the pole P to the point X, the sliding velocity vector
Vr and angular velocity ¢(t) # 0 at each moment ¢.

(3.29) h(t) = exp([(cotf(t)@(t)dt)

proof. By the using of equations (3.24) are (3.27), we have

(3:30) colse (%) - <(%> + QDZ)
therefore we get
(3.31) h(t) = exp([(cot(t)p(t)dt)
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Definition 3.12. In Euclidean motionB; = E/E the geometric place of the pole points P in the moving plane E

is called the moving pole curve of the motion B; = E/E and is denoted by (P). the geometric place of the pole
points P in the fixed plane E'is called fixed and is denoted by P'[2].

Theorem 3.13. The velocity on the curve (P) and (P") of every momenttof the rotating pol P which draws the
pole curves in the fixed and moving planes are equal to each other. In other words, two curves are always tangent
to each other.

Proof. The velocity of the point X € E while drawing the curve (P) is V. and the velocity of this point while
drawing the curve (P") is V,. Since Ve =0thenl, =V,

Definition 3.14. If two curves a and «' are tangent to each other of each moment t and if length of the ways
ds and ds of the point drawing these two curves at moment dt on these curves are the same then o.and " are said
to be revolving by sliding on each other. Here h is the coeffcient of rolling [2].

Theorem 3.15. In the one parameter planer Euclidean motion B, = E/E the moving pole curve (P) of the space
E revolves by sliding on the fixed pole curve (P') of the space E'.

Proof. Acording to the definition of ray element of a curve ray of (P) is ds = ||V,.|| and those of (P) is ds" = ||V,]I.
Since for (P) and (P"), V, = V, then ds = hds'. According to this theorem we way define a Euclidean motion

without mentioning the time. A Euclidean motion B; = E/E is obtained by a moving pol curve (P) of E
revolving without sliding on a fixed pol curve (P") .

Definition 3.16. Absolute accelaration vector of the point X with respect to the xed Euclidean plane E" is V,. This
vector is denoted by b, . Since then V, =Y, then b, =V =Y [1].

Definition 3.17. Let Xbe a fixed point the moving Euclidean plane E.The accelaration vector of the point X with
respect to the fixed Euclidean plane E'is called as sliding accelaration vector and denoted byby. Since in the

accelaration of the sliding accelaration X is a fixed point of E, then by = V; = BX + (' [4,5].

IV. ACCELERATIONS AND UNION OF ACCELERATIONS
Assume that the Euclidean motion B; = E/E of the moving euclidean plane E with respect to the fixed

Euclidean plane E exists. In this motion, let us consider a point X moving with respect to the plane E, and thus
moving respect to the plane E'. We had obtained the velocity formulas concering the motion of X, now we will
obtain the acceleration formules the acceleration of the point X.
Definition 4.1. The vector b, = V. = BX which is obtained by differenttiating the relative velocity vector V. =
BX of the point X with respect to the moving plane E is called the relative accelaration vector of X in E and denote
by b, Since when taking the derivative X is considered as a moving point in E, the matrix A is taken as constant
[6].
Theorem 4.2. Let X be a point in the moving Euclidean plane which moves with respect to a parameter t. Hence
we have that

bg = b, + b, + by,

Here , b, = 2BX is called Corilois acceleration.

Corollary 4.3. If a point X € E is constant,then the sliding acceleration of the point X is equal to the absolute
acceleration of X.
Proof. Note that
V,=BX+BX+C
differentiating the both sides we have

(4.3) V,=BX+2BX+BX+C
since the point X is constant its derivativeis zero. Hence
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(4.4)

Va = BX + C = bf
Theorem 4.4. We have the following relation between the Coriolis acceleration vector b, and relative velocity
vector V.

(4.5) (be, Vi) = 2RA(X, % + %,° + %3% + %,7)

Proof. Since

(4.6) bC = ZBX = (m)fl - anz, Tl)fl + mxz, m.x:3 - Tlx'4, n.X:3 + m.x:4)
4.7 V. = BX = (X,hcosp — X, hsing, X, hsing + X,hcosp, ¥3hcosp — X, hsing,

Xshsing + x,hcosp)
(4.8) (b, Vi) = 2hh(X,% + %, + %52 + %,%)
where m = hcosg — hgsing,n = hsing + h¢pcose.

Corollary 4.5. If h is a constant,then Coriolis acceleration b, is perpendicular to the relative velocity vector V. at
each instant moment ¢.

V. FIRST AND SECOND ACCELERATION POLES
The solution of the equation V; = 0 gives the first order acceleration pole. V; = BX + € = 0 impliesX = P, =
-B1C.
Now calculating the matrices —B~* and € and setting these in X = P, = —B~1C we obtain

[ (kicos@ — kysing) + ¢, (kycose + kyising) ]
¥=p = —1| =t (kycos9 + kysing) + ¢ (kycosp — k,sing)
L7 S | &(kicosp — kysing) + ¢, (kycosg + kyising)
—t3(kycosp + kysing) + ¢, (kicosp — k,sing)

Here, P, is called first order pole curve in the moving plane. Denoting the pole curve in fixed plane by P';we get
(5.1

P, =BP, +C
Hence
_C.lhkl - C.zhkz Cl
Y=p. = -1 ¢1hk, — ¢, hky cy
1 (hZ + hZ(pZ)Z —C3hk1 - C4hk2 C3
¢3hk, — ¢ hk, Cy
where
D —-FE 0 0
- EF D 0 0
b= 0 0 D —F
0 0 E D
then
(5.2) ¢ = [C1C2C3C4]T,
implies that
(6.3) € =[ci6,c3¢]"
and
(5.4) detB = (k? + k2)? = §? # 0.

Thus B is regular and
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kicosp — kysing  kycose + kysing 0 0

b1 1 —k,cosp — kysing kicosp — k,sing 0 0
S 0 0 kicosp — k,sing  k,cosg + kysing
0 0 —k,cosp — kysing k,cosp — k,sing

where D = (h — h¢p?)cosp + (—hd — 2h@)sing, E = (2he + h¢)cosp + (h — h¢?)sing,
ky =h—h@? k, = 2he + hp

Corollary 5.1. If ¢(t) = t, then we obtain
[ ¢ (Fcosp — Gsing) + ¢,(Geose + Fsing) 1
_ -1 | =¢1(Gcose + Fsing) + ¢,(Fcose — Gsing) |
- (h—h)? + (2h)2| ¢3(Fcosgp — Gsing) + ¢,(Gecose + Fsing) |
—t3(Gcosp + Fsing) + ¢, (Fcosp — Gsing

Py

where F = h— h,G = 2h.

Corollary 5.2. If (t) = t ve h(t) = 1, then we obtain

—C, cos@ — ¢,sing
¢1sing — ¢,cosp)

—C3 COSQ — C3Sing
C3 SInQ — C,cosQ

X=P =

Corollary 5.3. If ¢(t) = t, then we obtain
—GhF — &hGY G
_ 1 ¢ hG — ¢,hF + cy
(h — h)? + (2h)? | €3 hF — ¢,hG C3
¢3 hG — ¢,hF Cy

2

Corollary 5.4. If (t) =t ve h(t) = 1, then we obtain
(55) Y=P1’ = (61+C1,_62 +C2,_(::3 +C3,_64_+C4)

The solution of the equation V} = 0 gives the seond order acceleration pole.
V; = BX + C'= 0 implies X = —5~'C. Now calculating the matrices —5~* and C and setting these in X = P, =
—B~1C we get
¢, (acosp — bsing) + ¢,(bcose + asing)
—1{-¢& (bcosp + asing) + & (acosp — bsing)
R | & (acosp — bsing) + ¢,(bcosp + asing)
—¢3(bcosg + asing) + ¢, (acosp — bsing)

The pole curve in the fixed plane is obtained as

(1 1 -1
P, = (? (é1ah + €;bh) + c1,— (&ah — €1bh) + ¢z — (&ah + €4bh) + c3,

1
— (&ah — Ebh) + c4)

where

o o
|
© 0Ty,

oo o
|
x5

where k; = h — h¢?, k, = 2h¢ + h
D= (h - h(,bz)cosgo + (—hgb - Zfng)sinqo = kicos@ + k,sing
E = (Zhgb + hgb)cos<p + (h - hgbz)singo = k,cosp + kysing
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D= (fcl - kz(p)cosq) + (—k1¢ - fcz)sin(p = acosy — bsing
E= (fcz + kl(p)cosq) + (kl—kz(p)sin(p = bcosp + asing
a=k, —k,p, b=k, +kp
(5.7) detB = (a? + b?)? = R? # 0. Thus B is regular and

acosy — bsing bcosp + asing 0 0

-1 = l —(bcosg + asing) acose — bsing 0 0
R 0 0 acosy — bsing bcosp + asing
0 0 —(bcosep + asing) acose — bsing

Corollary 5.5. If ¢(t) = t then, we obtain

[ ¢, (Tycosp — Tysing) + ¢, (Tocos@ + Ty sing) 1
_ —1|=¢,(T,cos + Tysing) + &, (Tycosp — T,sing) |
h T_3| ¢3(Tycosp — Tysing) + €, (Tycos@ + Tysing) |
—C3(Tycos@ + Tysing) + €, (T cosp — T,sing)
where T, = i — 3k, T, =3h—h, T, = (i —3h)" + (3 —h)’ dir.

X=P2

Corollary 5.6. If @(t) = tve h(t) = 1, then we obtain

—¢,cos@ — ¢,sing7
—C;sing — ¢,cos@
—C3C08( — C,sing
€3sing — ¢,cos@ |

P,=X=

Corollary 5.7. If @(t) = t, then we obtain
¢ hT; +¢,hT, [Cq
_ —1|[¢hT, —¢;hT, Cy
T T, |&hTy, — €hT, Cs
¢3hT; — ¢,hT, [ Cy

YZPVZ

Corollary 5.8. Ife(t) = t ve h(t) = 1, then we obtain

(58) Y= Pzr = (_Cz + Cl'.é.l + Cy, _C4_ + C3,‘64 + C4).
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