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ABSTRACT: Kullback-Leibler (KL) optimality criterion has been considered in the literature for model
discrimination. However, Hellinger distance has many advantages rather than KL-distance. For that reason, in
this paper a new criterion based on the Hellinger distance named by Hellinger (%) -optimality criterion is
proposed to discriminate between two rival models. An equivalence theorem is proved for this criterion.
Furthermore, a new compound criterion is constructed that possess both discrimination and a high probability
of desired outcome properties. Discrimination between binary and Logistic GLM are suggested based on the
new criteria.
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I. INTRODUCTION
The key importance in various theoretical and applied statistical inference and data processing
problems is the distance (divergence) measures. They are mainly namely the f— divergences and the Bergman
divergences. f — divergences between probability densities are defined as:

Lv.0) = [ aGor (22 dx

with f a convex function satisfying f(1)=0,f'(1)=0,f"(1)=1. Some of the well-known measures of f —
divergences are; Kullback-Leibler divergence, Hellinger distance, y2-divergence, Csiszar a- divergence, and
Kolmogrov total variation distance.

Hellinger distance (also called Bhattacharyya distance), since it was first defined in its modern version
in Bhattacharyya [4], is used to measure the similarity between two points of a parametric family. Under certain
regularity conditions, its limit behavior as the difference in the parameter values goes down to 0, is closely
related to Fisher information. Hellinger distance can also be used to study information properties of a parametric
set in non-regular situations (e.g., when Fisher information does not exist). It promises certain advantages
relative to such alternative information measures as Kullback-Leibler divergence.

Kullbach-Leibler -distance plays a major role in information theory and finds many natural applications
in Bayesian parametric estimation. However, neither Kullbach-Leibler nor 2 chi-square distance measures are
symmetric Shemyakin [8]. Hellinger metric is symmetric, non-negative and it satisfies the triangular inequality.
Extra properties of Hellinger distance were reviewed in several studies, e.g., Gibbs and Su [5]. The advantages
of Hellinger distance rather than Kullbach-Leibler -distance motivate us to propose a new optimality criterion
based on Hellinger distance and unite it to form a compound criterion to achieve more provided properties.
Lépez-Fidalgo [6] was introduced an optimal experiment criterion for discriminating between non-normal
models namely KL-optimality. It is mainly based on Kullback-Leibler (KL) distance. Most of the proposals
assume the normal distribution for the response and provide optimality criteria for discriminating between
regression models. Tommasi et. al. [10] proposed a max-min approach for discriminating among competing
statistical models (probability distribution families). However, designs that are optimal for model discrimination
may be inadequate for parameter estimation. Hence, some compound criteria are found to yield designs that
offer efficient parameter estimation and model discrimination for example, DT by Atkinson [2], DKL-optimality
criterion by Tommasi [9], CDT by Abd EI-Monsef and Seyam [1].

McGree and Eccleeston [7] proposed a criterion that maximizing a probability of a desired outcome
named by Probability-based optimality (P-optimality) and a compound criterion that unite the D-optimality and
P-optimality called by DP-optimality is also studied for generalized linear models. P-optimality is different from
the criterion proposed by Verdinelli and Kadane [11] for a Bayesian optimal design for linear models, which
attempted to maximize the information and outcome. Their criterion was motivated by impracticality of running
an experiment that observes new successes, despite the ability to estimate model parameters.
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The paper is organized as follows: The optimum design background is introduced in Section 2. Probability-
based design criteria is presented in Section 3. A new criterion namely F-optimality is proposed in Section 4,
the properties of this criterion are discussed, and a general equivalence theorem is derived. In Section 5, new
compound design, H'PA -optimum design, is derived. An equivalence theorem for the new compound criterion
is proved, which is the basis for the numerical construction and checking of optimum designs. Hellinger
Discrimination between binary models with high optimum probability of success is defined in Section 6.

Il.  OPTIMUM DESIGN PRELIMINARIES
Consider the generalized linear models GLMs

EW)=pn=n=g"'Xp)
which 1s defined by the distribution of the response. Y. a linear predictor n and two functions:

e A link function g(.) that describes how the mean. E(Y;) = p; depends on the linear
predictor g(y;) = Y;.
e A variance function that describes how the variance, Var(Y;) depends on the mean
Var(Y;) = ¢(V(w)

where the dispersion parameter ¢ is a constant.

In GLMs, the errors or noise €; have relaxed assumptions where it may or may not have
normal distribution. GLMs are commonly used to model binary or count data. Some common
link functions are used such that the identity, logit. log and probit link to induce the traditional
linear regression, logistic regression, Poisson regression models.

A design ¢ defines. for i = 1, ..., n. the vector of experimental conditions x; € y related
to y;. where y i1s a compact experimental domain and the experimental weights w;
corresponding to each x;. where }'}' ; w; = 1.The design space can be then expressed as 6 =
{& € X™ x [0,1])™: YXI-, w; = 1}. Such designs are called approximate or continuous designs.

I11.  PROBABILITY-BASED OPTIMALITY: P,-OPTIMALITY CRITERION
Every so often. experimenters wish to increase or maximize the probability of an
outcome. To this aim. McGree and Eccleston [7] have offered a P-optimality criterion. which
1s defined as a criterion that maximizes a function of the probability of observing a particular
outcome. The general form of P-optimality considered for the logistic GLM is the
maximization of the function @, defined as

DPp(8) = f(m:(6,¢5)). for i =12, ..,m
where. f (-) 1s some function of the probability of success m;(8, &;). fori=1.....n.

Specifically, McGree and Eccleston [7] suggested two forms of P-optimality; one of
them concerns with maximizes the mimimum probability of success for a given design &. and
the other maximizes the average probability of success of a given design. The criterion
considered here is the maximization of a weighted sum of the probabilities of success. The
form of this criterion 1s

®p,(8) = TP, (0, &)W for i=1.2,unim (1)
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where. ;(0, &;) is the i-th probability of success given by &; and w; is the experimental effort
relating to the i-th support point. In this criterion. design weights have been included and will
play a role in maximizing the probabilities.

A P,-optimal design satisfies the following equivalence theorem. proved by McGree and
Eccleston [7]

Theorem 1. For a Py-optimal design, ¢p, . the following three conditions are equivalent.

(1) The design ¢p, satisfies the inequality

UJPA(X- 'f;A) < 0.
where.
Pp,(x) = Pp,(5)
®p, (©)
is the directional derivative of ®@p, () in the direction of §; = &, — ¢

lib.PA (X, f) =

(i1)  The upper bound of Yp A(x, &p A) 1s attained at the points of the optimum design.
(i11)  For any non-optimum design ¢, that is the design for which:
Dp,(§) < @p,(8p,). supxeyihp,(x,§) > 0.

The P, - efficiency of a design ¢ relative to the optimum design ¢p, is
o Yie1 (0, &)w;
i=1 ”i( "SPA)WI'
This efficiency is a pure number mn (0, 1) which measures the goodness of a design &.

IV. HELLINGER OPTIMUM DESIGNS: #-OPTIMALITY CRITERION

Hellinger distance measure is the corner stone for the new optimality criterion proposed
in this paper to discriminate between two rival probability densities. Suppose that a parametric
family of probability measures {Fg, & € 0} is defined on a measurable space (y, B) hence. all
measures from the family are absolutely continuous with respect to some o-finite measure on
B. Let y be an observable random variable and let f;(y,x,6,) and fo(y, x,85) be two rival
probability density functions of y which depend on an experimental condition x € y and on a
vector of unknown parameters. 8; € 0;,i = 1,2.

To discriminate between f;(y, x, 1) andf2(y. x, 65). the H -optimality criterion will
defined. If £, (v, x, ;) 1s assumed to be completely known “true” model, then the H -optimality
criterion function H,, (&) is

Hm(f) = s}g’gélz ij{(fl*fz-x’ 62) &(dx) 2)
where,
H(f1 f2,%,6,) = [IX{\/fl(Y-X: 61) —\/fz(y}x: 6,))dylz, x€x 3)

is Hellinger distance between f;(y,x,6,) and the alternative model £ (y,x,65). A
design denoted by §*H21. which maximizes H,,(¥) will be called 7 -optimum design. A

design for which the optimization problem
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Q,(¢) = {éz: gz(f) =arg E}iggz fx'}f(fpfzrx*gz)f(dx)} (4)

has a unique solution. is a regular design otherwise is called a singular design.

Assuming that the optimal design is regular. Let & and & be any two designs: then the
directional derivative of Hy; at ¢ in the directional of é’g = & — & is defined as

aHzl(f- é') — AIHE:'_ [H21{(l_‘1){::ﬁ‘f}_ﬂ'21(‘f) :I (5)

Suppose that £ is regular, then

3H21(f. g) = f)( ¢J21(x,{:)f(dx)

where, 154 (x, §) 1s the directional derivative of Hy,at ¢ in the direction of 8 = ¢, — & and

¢, 1s the design which puts the whole mass at point x.

Theorem 2. Suppose that ¢"is regular H -optimum design.

(1) The design &*is H -optimum design if and only if y,;(x, &) < 0,x € y. where,
Pa1(x, &) = er(fbfz»i’f- §2) - ijf(fl»fz- X, §z)€(dx)
is the directional derivative of H,, () in the direction of 6z = ¢, — ¢ and 8 is the
unique solution of the optimization problem (4).

(11)  The function 54 (x, ") achieves its maximum value at the points of the optimal
design support.

Proof.
Consider equations (2) and (5), let

h(§.02) = [ [ (VAGx0) ~ VRO m Byl ()
X

X
Thus, Hy4 (&) = BII}Eié‘Il {h(&,65)}. Following Ucinski and Bagacka [12]. we obtain
2 2
0Hz:1(£.8) = 9221@1;1@){ Oh(&,62,.8)}

If ©,(¢) = {6,}. then 9H,,(&,&) = 9h(£,0,,,8).
Let

r() = [ WA 100 — [ faly.x: 6,)}2dy].
R(§) = g(£.02) = [, r(x)&(dx)

where. & is any design. For any other design &.

OR(£,§) = imGI[, () {(1 = D + A8} — [ r()E(dx) 1)
A—0t
=[, 7 (E(dx) = [, 7 ()¢ (dx)
Then,
IR(§.§) = 0H1(8.8) = [, P21 (x. $)E(dx) ©

where.

P21, &) = H(fu, for 2, 63) — f H(for forx. 85)E(dx) = DHr (€, €x)
X
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Thus. 4(x,§) is the directional derivative of Hy4 (&) in the direction of 65, = &, — ¢.
Since. Hy, (&) i1s concave function of &. then the optimality of &*exists if and only if

dH,,(&, &%) < 0 for any design ¢. From equation (6). a necessary and sufficient condition for
the optimality of £* 1s that £* satisfies the inequality

mas{ [ 2100680} < 0
Accordingly. ,,(x,&*) =0, Vx E);((

To prove that y,, (x, &*) attains its maximum value of 0 at all points of £*. suppose the
reverse, i.e suppose that there is a set ¥ < supp (&™) and a scalar a such that

Jy21(x, 8 (dx) = a <0 and ¥,,(x, &) =0, Vx € x—Y.
Then.

[ Yo, (x,E)E(dx) =a <0
Tx

This is a contradict the requirement

fx Poqr(x,E%)E(dx) =0

where &* is the optimal design that is obtained from (6) for £* = £.

V. HPy- OPTIMALITY CRITERION

In general. Py-optimal designs have little ability or efficiency for discriminate between
any two statistical models. However, a combined criterion involving both H'- and P4-optimality
should vield designs that offer true model and a high probability of observing a particular
outcome. A method for forming this compound criterion, similar to that of 4rkinson [3] for DT-
optimality.

From the definition of the compound design criterion which is a weighted geometric
mean of efficiencies design &. we defined a new compound criteria which combines - and
P,- optimality. weighted by a pre-defined mixing constant
0 = o < 1. This criterion will be called H P,- optimality. That is

Duep, (§) = [EffocOI[Effo (O]

1-a
_ [ Hz1($) ]a Ty T8 )wy (7)
Ha1(G0d S, mi(0.63 , )w:

when @ = 0 we obtain Py-optimality and when « = 1 we obtain H -optimality. Taking the
logarithm of (7) yields,

log ®sp,(§) = alogHy (§) + (1 — a)log X, m;(8, §)w; ()

Because the terms involving &, and {5, are constants. when a maximum is found over §. they
can be ignored. A H P,-optimum design. &3.p, . maximizes log @;.p, (£) .
The equivalence theorem may be stated as follows,

Theorem 3. For }{ Py-optimal design, ¢7.p . the following three conditions are equivalent.
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(1) A necessary and sufficient condition for a design {75, to be H P,-optimum is
fulfillment of the inequality

UJG{PA(x* f;fPA) =0, x€x

Waq(x, &) . QDPA(XJE)
T IS YT AR

where

lpj‘{PA(x- =a

is the directional derivative of the criterion function (8) at ¢ in the direction of 6z =

gx_f-

(1)  The upper bound of Y4p, (x, Eep A) is attained at the points of the optimum design.
(11) For any non optimum design . that is a design for which @zrp, (§) < Parp,(E30p,)-
SN-PxeleJ{PA(XJ f;fPA) >0

Proof. Since. 0 = a = 1. log P;.p, () given by (8) is a convex combination of logarithm of
two design criteria. The first of which is logH,;(¢) and the second criterion
islog Yie1mi(0,&)wi. As Hp(§) =0 and 3L, m(0,§)w; = 0. logHz; () and
log Y™ m;(0,&)w; are concave functions of concave design criteria. Consequently. the

criterion log ®z0p,(§) 1s a convex combination of two concave functions. Therefore
log ®3rp,(&) 1s concave and the H P,- criterion satisfies the conditions of convex optimum
design theory and an equivalence theorem applies similar to Theorems 1 and 2. Furthermore.
Yscp, 1s the linear combination of the directional derivatives given by theorems 1 and 2. That
is, the first term of Y;.p, is that from H -otimality and the second term is from P4-otimality.

Thus, the theorem has been proved.

V1. HELLINGER DISCRIMINATION FOR BINARY MODELS WITH P,-OPTIMUM

DESIGN
Assume that the response variable y has a binomial distribution satisfies the P, -

optimum design probability of success P(Y =1) = Y1, m;;(x, 6;,&;)w;.j = 1,2 where
6; are the parameters for the two possible models. To obtain the optimal design for
discrimination between binary models which satisfy Py-criterion. maximization of the
following criterion using Hellinger distance is considered:

A5(£.61) = infg,eq, ([fx{\/ma.x Y (x, 01, E)wy — ymax Y wip(x, O, ffz)wi}z +

1

(V1 —max X1 miy (x, 01, &)w; — J1T —max X1 mip(x, erfizjwi}z-f(dx:)]z) (9)

The proposed optimality criterion (9) can be appropriate for GLMs according to the
applicability of Py-optimality for these models.
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