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ABSTRACT : In this paper, we focus on gausi-conformal curvature tensor of (LCS),,-manifolds. Here we study
quasi-conformally flat, Einstein semi-symmetric quasi -conformally flat, £-quasi conformally flat and ¢-quasi
conformally flat (LCS),,-manifolds and obtained some interesting results.

Keywords: Einstein semi-symmetric, #-Einstein manifold, Lorentzian metric, quasi-conformal curvature tensor,
quasi-conformally flat.

l. INTRODUCTION
In 1968, Yano and Sawaki [25] introduced the quasi-conformal curvature tensor given by
C(X,Y)Z = aR(X,Y)Z + b[S(Y,2)X —S(X,2)Y + g(Y,Z)QX — g(X,Z)QY ]

(o= +2b) [g (. DX — g (X, 2V, (11)

where a and b are constants and R, S, Q and r are the Riemannian curvature tensor of type (1,3), the Ricci
tensor of type (0,2), the Ricci operator defined by S(X,Y) = g(QX,Y) and scalar curvature of the manifold

respectively. Ifa=1andb = —anZ, then (1.1) takes the form

C(X,Y)Z =R(X,Y)Z — ﬁ [S(Y,2)X — S(X,2)Y + g(Y,2)QX — g(X,Z)QY ]

r
Th-Dm-D [9(Y.2)X — g(X,2)Y ] = C(X,Y)Z, (1.2)

Where C is the conformal curvature tensor [24]. In [7], De and Matsuyama studied a quasi-conformally flat
Riemannian manifold satisfying certain condition on the Ricci tensor. Again Cihan Ozgar and De [5] studied
quasi conformal curvature tensor on Kenmotsu manifold and shown that a Kenmotsu manifold is quasi-
conformally flat or quasi- conformally semi-symmetric if and only if it is locally isometric to the hyperbolic
space. The geometry of quasi-conformal curvature tensor in a Riemannian manifold with different structures
were studied by several authors viz., [6, 16, 17, 20].

The present paper is organized as follows: In Section 2 we give the definitions and some
preliminary results that will be needed thereafter. In Section 3 we discuss quasi-conformally
flat (LCS),,-manifolds and it is shown that the manifold is n-Einstein. Section 4 is devoted to the study of
Einstein semi-symmetric quasi-conformally flat (LCS),, -manifolds and obtain Qausi Conformal Curvature
Tensor on (LCS), -Manifolds 3 that the scalar curvature is constant. In section 5 we consider &-quasi-
conformally flat (LCS),,-manifolds and proved that the scalar curvature is always constant. Finally, in Section 6,
we have shown that a ¢-quasi conformally flat (LCS),,-manifold is an n-Einstein manifold.

1. PRELIMINARIES
The notion of Lorentzian concircular structure manifolds (briefly (LCS),-manifolds) was introduced by A.A.
Shaikh [18] in 2003. An n-dimensional Lorentzian manifold M is a smooth connected paracompact Hausdorff
manifold with a Lorentzian metric g, that is, M admits a smooth symmetric tensor field g of type (0,2) such that
for each point p € M, the tensor g,:T,M X T,M — R is a non-degenerate inner product of signature
(= +, ..., +), where T,M denotes the tangent vector space of M at p and R is the real number space.

Definition 2.1 In a Lorentzian manifold (M, g), a vector field P defined by g(X, P) = A(X), for any vector field
X € y(M) is said to be a concircular vector field if

(VxA)(Y) = alg(X,Y) + w(X)AV)],
Where a is a non-zero scalar function, A is a 1-form and w is a closed 1-form.
Let M be a n-dimensional Lorentzian manifold admitting a unit timelike concircular vector field &, called the
characteristic vector field of the manifold. Then we have

g€, &) =-1. (2.1)
Since ¢ is a unit concircular vector field, there exists a non-zero 1-form » such that
9X, &) =n(X), (2.2)

the equation of the following form holds
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Vxm(¥) = alg(X,Y) + n(XOn(¥)], (@ # 0) (2.3)
for all vector fields X,Y , where r denotes the operator of covariant differentiation with respect to Lorentzian
metric g and « is a non-zero scalar function satisfying

Vya = (Xa) = da(X) = pn(X), (2.4)
p being a certain scalar function given by p = —(¢a). If we put
1
$X =—Vx§, 2.5)
Then from (2.3) and (2.4), we have
¢X =X +nX)§, (2.6)

from which it follows that ¢ is a symmetric (1,1) tensor. Thus the Lorentzian manifold M together with the unit
time like concircular vector field &, its associated 1-form n and (1,1) tensor field ¢ is said to be a Lorentzian
concircular structure manifold (briefly (LCS),-manifold). Especially, if we take « = 1, then we can obtain the
Lorentzian para-Sasakian structure of Matsumoto [12]. In a (LCS),,-manifold, the following relations hold ([18],

[19]):

n(¢) = -1,¢¢ =0,n(¢X) =0, (2.7)
9(@X,¢Y) = g(X,Y) + n(X)n(Y), (2.8)
n(R(X,Y)Z) = (a* - p)[g(¥,Z2)n(X) — g(X, 2n(¥V)], (2.9)
R(X, V)¢ = (a® — p)In()X — n(X)Y], (2.10)
(Vxd) (V) = alg(X,Y)§ + 2n(X)n(¥Y)E + n(¥Y)X] (2.11)
5,8 = (- D(a? — p)nX), (2.12)
S(¢X,¢Y) = SX,Y) + (n — D(a® — p)nXn(Y), (2.13)
Q¢ = (n—1)(a® - p)g, (2.14)

for any vector fields X,Y,Z, where R, S denote respectively the curvature tensor and the Ricci tensor of the
manifold.

Definition 2.2 An (LCS),,-manifold M is said to be Einstein if its Ricci tensor S is of the form
SX,Y) =ag(X,Y), (2.15)
for any vector fields X and Y, where a is a scalar function.

1. QUASI-CONFORMALLY FLAT (LCS),-MANIFOLDS
Let us consider quasi-conformally flat (LCS),,-manifolds, i.e., C(X,Y)Z = 0. Then from (1.1), we have

RX,Y)Z = —Z[S(Y, X —-SX,2)Y + g(Y,2)QX — g(X,Z)QY]
+;—n(—ni1 +2b) gV, )X —g(X,2)Y ]. (3.1)
Taking inner product of (3.1) with respect to W, we get
+ar_n(—n i 7t 2b) [g(Y, D)g (X, W) — g(X,Z)g (Y, W)]. (3.2)

Also from (2.9), we have

R, Y,Z,§) = —(a* = p)[g(¥,Z) + n(¥"In(2)]. (3.3)
Putting X = W = & in (3.2) becomes

b
- (o224 2b) [9(, 2)9(6.8) — 96, Dg (¥, O] (3.4)

an 1
By virtue of (2.1), (2.2), (2.12) and (3.3) equation (3.4) yields

SY,z2) =Mg(Y,Z) + Nn(Y)n(2), (3.5)
Where

r,oa a’—p
—E(n_1+2b)— b [a+ b(n—1)],

T, oa a’—p
—R(n_1+2b)— —la+2b(n - 1],

Thus we state:
Theorem 3.1 A quasi-conformally flat (LCS),,-manifold is an n-Einstein manifold.
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V. EINSTEIN SEMI-SYMMETRIC QUASI-CONFORMALLY FLAT (LCS),,-MANIFOLDS
The Einstein tensor is given by

E(X,Y) = S(X, V) — g g(x,v), (4.1)

Where S is the Ricci tensor and r is the scalar curvature. An n-dimensional quasi-conformally flat (LCS),-
manifold is said to be Einstein semi-symmetric if,
RX,Y)-E(Z,W) = 0. (4.2)
By using equation (3.5), we have
QX = MX + Nn(X)¢. (4.3)
Substituting (3.5) and (4.3) in (3.1), we get
RX,Y)Z = Alg(Y,2)X — g(X,2)Y] + Bln(¥)n(2)X —nCOn(2)Y + g(¥,2n(X)§ — g(X,2)§],  (4.4)

Where
2

b

a a
A=

p a
[a+b(n—1)—ﬁ(

a’—p

n—1+2b)

T
| P (o) - e Dl
Now, we consider the quasi-conformally flat (LCS), -manifold which is Einstein semi-symmetric i.e.,
R(X,Y)-E(Z,W) = 0.
Then we have

E(R(X,Y)Z,U) +E(Z,R(X,Y)U) = 0. (4.5)
By virtue of (4.1), equation (4.5) becomes
SR(X,Y)Z,U) — gg(R X,Y)Z,U) + S(Z R(X,Y )U)—%g(Z, R(X,Y)U) = 0. (4.6)
Using (3.5) in (4.6), we get
S(R(X,Y)Z, U)—g gRX,V)Z,U) + S(Z,RKX, Y)U) — g 9(Z,R(X,)U) = 0. 4.7)
PutZ = & in (4.7), we obtain
r r
(M—E) IR EV) + (M - 5) n(R(X,Y)U) + Nn(R(X, Y)E)n(U) — Nn(R(X,Y)U) = 0, (4.8)
By virtue of (4.4), above equation becomes
N(B - A)[g¥,UnX) — gX,U)n¥)] = 0. (4.9)
Putting Y = £ in (4.9), we get
NlgX,U) +n(U)n)] = 0. (4.10)
Again putting U = QW in (4.10), we have
NS, W) +n(@W)n()] = 0. (4.11)
Using (4.3) in (4.11), gives
N[S(X, W) + (M — N)n(W)n(X)] = 0. (4.12)

Either N=0o0or S(X,W) + (M — N)n(W)n(X) = 0.
As N = 0, we have

SX, W)+ M —N);n(Wyn(x)] =o. (4.13)
Put X = W = ¢, in (4.13) and taking summation over i, 1 < i < n, we get
r=(n-1)(a? - p). (4.14)

Hence we can state the following:
Theorem 4.2 In an Einstein semi-symmetric quasi-conformally flat (LCS), -manifold, the scalar curvature is
constant.

V. §&QUASI CONFORMALLY FLAT (LCS),-MANIFOLDS
A Let M be an n-dimensional é-quasi conformally flat (LCS),,-manifold. i.e.,
CX,Y)é=0, VX, YETM. (5.1)
Putting Z = ¢ in (3.1), we get
C(X,Y)¢ = aR(X,Y)E + b[S(Y, )X — SX, )Y + g(¥,&)QX — g(X,£)QY]

~ (=5 +20) 9, DX — gX, Y. (52)
SinceC(X,Y)¢& = 0, we have
r
aR(X, V)§ = = (=== +2b) [g(Y, X — g(X, Y]

Using(2.2), (2.10) and (2.12) in (5.3) becomes

a(a® = p)[INX = nCOY] = = (——+2b) [1(1)X ~ nCO)Y]
n\n—1

WWW.ijmsi.org 36 | Page



Qausi Conformal Curvature Tensor On (LCS),,-Manifolds

—2b(n — D)(a® — ) (V)X —n(X)Y] (5.4)

Again putting Y = € in (5.4), we get
T a
~a(a? = p)IX +n(0E] = —— (== +2b) [X +nCNE] +2(n ~ D(a? = PbIX +n(0EL.  (5.5)
Taking inner product of above equation with respect to W , we obtain
T a
—a(a? = p)lg, W) + n(W)] = —— (== +2b) [g(X, W) + n(nW)]

+2(n — 1)(a® = p)b[g(X, W) + n(XIn(W)]. (5.6)

PutX = W = e; in (5.6) and taking summation over i, 1 < i < n, we get

n
—— 2b(n — 1)(a® — .
(n @ . Zb) (a+2b(n—1)(a* - p))

T =

Hence we can state:
Theorem 5.3 In an &-quasi conformally flat (LCS),-manifold, the scalar curvature is constant.. (10)

VI.  ¢$-QUASI CONFORMALLY FLAT (LCS),-MANIFOLDS
A Let M be an n-dimensional (LCS),,-manifold is said to be ¢-quasi conformally flat if it satisfies
*C(PpX, pY)PZ = 0. 6.1)
Theorem 6.4 An n-dimensional ¢-quasi conformally flat (LCS),.-manifold is an n-Einstein manifold.
Proof: Let us consider ¢-quasi conformally flat (LCS),.-manifold. i.e., p2C(¢pX, pY)pZ = 0.
It can be easily see that
9(C(pX, pV)PZ,¢pW) = 0. (6.2)
By virtue of (1.1), we have
ag(R(¢X, pY)PZ, pW) = —b[S(PY, pZ)g(dX, pW)] — S(PpX, pZ) g (@Y, W)
+§ (¢X(.1¢W )9 (PY,PZ) — S(¢Y, pW)g(PpX, $Z)] (6.3)
(=g +2b) [9(9Y, $2)g (PX, W) — g (X, $Z)g (Y, W)
Let {e, €5, ..., €,_1, €} be a local orthonormal basis of vector fields in M.
As {¢p(e), p(ey), ..., p(e,_1), &} is also a local orthonormal basis, if we put X = W = e; in (6.3) and sum up
with respect to i, then we have
n—1
a ) (R BVIHZ, ()

i=1
n—1
= ) [5@Y, 6D g( e, de)) — S(be), dDg(#Y, $(e0)
i=1
+5(8(e), $(e))g(@Y,62) = S(4Y, 9(eD)9 (b (e, 92)]
+= (== +2b) Z 97, $229(d(e), $(e)) — g(B(eD, #Dg(#Y, $(e))].  (6.4)

It can be easily verify that

"i 9(R(@(e), ¢Y)PZ, p(e) = S(PY, $Z) + g(¢Y, $2), (6.5)
=
ni S(pY, p(e))g(d(e), dZ) = S(¢Y, p2), (6.6)
=
ni S(p(e,ple) =7+ (n—1D(a? - p), 67)
=
nz_l 9(ped,dp(e)) =n—1, (6.8)
=
"i 9(p(e), 92 g(¢Y, d(e)) = g(PY, dp2). (6.9)

Using (6.5) to (6.9) ini(=61.4), we get
S, z)=Mg(¥,Z) + Nn(Y)n(2),
Where
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Mzw( a1+2b)+(n—1)(a2—p)+r—a,

n
B r(n—2)

n

(nil +2b) +r+ (a?-p)[(n—1)(1 - b) — anl.

Hence the proof
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