International Journal of Mathematics and Statistics Invention (IJMSI)
E-ISSN: 2321 — 4767 P-ISSN: 2321 - 4759
www.ijmsi.org Volume 3 Issue 6 || September. 2015 || PP-24-32

A Two-Stage Approach for Estimation of Prevalence of Human
Diseases

*Rahul Gupta and Neha Jain
Department of Statistics
University of Jammu
Jammu, J and k, India

ABSTRACT In this paper , for the estimation of P, the prevalence of a disease ,results of a study made have
been presented and applied to simulated as well as actual data using a Two-Stage approach. Properties of the
proposed procedure are also studied to know the significance and importance of the procedures under
symmetrized relative squared estimation error appropriate for prevalence of a diseases close to 0 and the
aggregate cost of selecting observations. Asymptotic characteristics for the risk and the moments are studied for
the two stage sampling procedure.
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I. INTRODUCTION
The estimation of prevalence of a disease at a certain point of time and/or location has always been a
challenging task for researchers. Many studies have and are being carried out to improve on the available
methods to estimate the prevalence of a disease. For planning, coordination, and evaluation of control activities,
it is essential to process and obtain reliable disease prevalence estimates at any time or place in this fast
changing world.

Il. THE SET UP OF THE PROBLEM
Let X;.X;,...be a sequence of independent and identically distributed (i.i.d.) random variables representing
sampling units who are selected for studying certain disease in a population with  P(X;=1) = p, representing
presence of a disease and P(X=0) = q, representing absence of the disease. Then 0<p<1, p+g=1.
Given a sample of size n, one wishes to estimate p, by the sample mean g, = S”Krﬂwhere S5, = XL, X; subject
to the loss function

Pn—0

pq

Ly = A5y 4 en (2.2.1)

where A = 0 is a known weight and ¢ = 0 is the known cost per observation. Note that loss is modelled as the

sum of a multiple of the symmetrised relative squared estimation error approximate when p close to 0 and the
aggregate cost of observations. The case where A = 1 has been considered by Robbins and Siegmund [1]. Cabilo
and Robbins [2] and Cabilo [3], among others. Baran and Magiera[4]have also studied and proposed an
estimation procedure for p under Linex loss function. For any value of A, Liu[5] under loss function (2.2.1) has
proposed a two stage and a Bayesian procedure for estimation of p and this paper has been prepared along his
lines with added applications to study of disease prevalence.

For fixed n and p, the risk for (2.2.1) is
E_nu'r!:l = A{“F"':?:]_l +cn
which is minimised by using the optimal fixed sample size
17
Ny = My {]"_?:] & {H.Hr{gpq:]:] -
(2.2.2) The corresponding optimal risk for fixed sample size is

E,(Ln,) = 2emg (2.2.3)
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Since p is unknown, the required sample size ng is indeed unknown, and there is no fixed sample size rule that
will achieve the risk E {Lﬂu] . In the case of A=1, Robbins and Siegmund [1] proposed a purely sequential
procedure for the problem of approximating the optimal risk Ep{Lnu}. The stopping rule for the proposed
procedure is

N=inf{n= 1|n = (ep,gn) "1, (2.2.4)

where g, =1-—p,. , Robbins and Siegmund [1] showed that for any fixed O<p<l, as ¢ -0,
E,(Ly)

Ey(Nfng Y5 = 1 for k = 1,2,... and /e
Py

} — 1, so that the procedure (2.2.4) is asymptotically as

good as the optimal fixed sample size rule ng

The plan of this paper is as follows. Section 2.3 propose a two-stage sampling and point estimation procedure
and then states the main result of this concerning its asymptotic properties. Section 2.3.1 presents some results
of the moderate sample size performance of the procedure using the Monte-Carlo method and study prevalence
of certain diseases affecting children in age group of 0 to 6 in Jammu District, J and K State.

Il. ATWO-STAGE PROCEDURE AND ITS PROPERTIES
The two- stage procedure is constructed as follows. Let m be a positive integer and we start the
experiment with a sample of size m, say X, w... ... &y, . Based on the sample, let

Ny = ()" (g + m 1) (2.3.1)

where ¥ = 0 is a given constant. Note that the tuning of the term m™F in (2.3.1) is essential so that N, becomes
finite with probability 1. Sample size is defined as

M = max{m,[N,]* + D},
(2.3.2)

where D = Iryey, —pvyy IS the indicator of {U = Ny — [V;]7},[x]™ stands for the largest integer smaller than x,

and U is uniformly distributed on (0, 1) and independent of X; , X5, ..... Note that (2.3.2) is a randomised stopping
rule first introduced by Woodroofe [6]and, M= m, if N; = m and M = [N,]™+ D otherwise. When M=m, we do
not take any more samples in the second stage. If however, M = m, then we obtain more M — m observations,
say, K 110 0000 &py0 Finally, we estimate p by py and the corresponding loss is Ly As usual, the regret of the
two-stage procedure (2.3.2) is defined as @ = Ez (L) — E {Lnu}.

In the rest of this paper , we assume that the pilot sample size m is chosen such that
1/,
m=[2(4¢) 17+ 1. (233)

Using (2.2.2), m is always less than ny + 1 since pg =< 1{‘4 for all pe(0.,1), but they have the same order of
magnitude. This is why we need only two sampling operations.

Before providing the main results we present some Lemmas.

Lemma 2.3.1; For 0 < § = lfz,dgfim Am s = Upm —pl = 8% Then there exists a ng = 0 such that as

mo— @,
P(&, ) = 0(e~mns), (2.3.4)
where A, ; stands for the complement of A s.

Proof . Using the Chernoff bound for a binomial random variable, it follows that
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P = p+8) =P, + X + = . +Xp = m(p +86)]
= expl-mlp + 8t + mpt + %] (2.3.5)
forall0 = £ = 1.
In particular, taking tzﬁfz, the right hand side of (2.3.5) is less than or equal to exp(-mmng) where
g = }’2;‘:} = 0.
A similar argument works for estimating the probability that g, = p — &.
Putting the two results together yields
P(Apz) < 2axp(—mns)

for some n; = 0. This completes the proof.

Lemma2.3.2: Let g(x) be a real function such that its second derivative, g'(x), is continuous at p. Then, for
small & = 0, we have as m — =,

E, [a(pn) s, ;] = 8®) + pgs’ @)/(2m) + o(m™Y) (2.3.6)
In particular for every real number s,

-1
E, [ )L, ] = (pg)® (1 + T8 2E0) | -ty (2.3.7)

2

Proof: By Taylor’s theorem,
0Pm) = 9@) + 9@ Gom — ) + 38" (5, (o — )2

where £ is some random variable between p and . Then, it follows that

B, (9G] = 6@ PUAma) + 5 DB, [ — )]+ o B E), (2:38)

where Z,, = mg" (2, )(mm — p)*Ls, . Asm — w,using (2.3.4) the first term of the right hand side in (2.3.8) is

g(p) + o(m™%) and the second term is a(m~1} ,so from (2.3.8) we shall complete the proof of (2.3.6) by
showing that £, (Z,,) = pgg (p) + o(1) as m — =. Note that Z,, convergs in distribution to pgg (p) yi where
yidenotes a chi square random variable with 1 degree of freedom, hence it suffices to show that [T s is
uniformly integrable.

Observe that, for small & = 0,
E,(Z3) = B*E,[m*(p,, — p)*], (2.3.9)

where B is a bound for |g ()| on A z. It follows that {Zy}m=1 is uniformly integrable since the right hand side
in (2.3.9) is bounded. This completes the proof.

The main results in this section are given in the following theorems, which separate # # 1/2 and p=1/2.
Theorem2.3.L. If p = /5, = 1/, and (2.3.3) holds, then as m — =, we have

1. For every positive integer Kk,
E,Mp ) =1+

klh+Dipq) t-akik+y  Ripg~t
Em Tm¥F

+o(m™) (2.3.10)
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In particular,

=37 =17 =37
E, (M) — ny = *P0=2E0 2 _ BD_2yni¥ 4 o(1) (2.3.11)

and the variance of M is

VM) =)~z — 222 o)
2. The regret of the two -stage procedure (2.3.2) is given by
w= c[[”‘“ + ) L 22—~ 6+ o(0) (2.3.12)
Proof: For (2.3.10 ) using (2.3.2)
Ey (%) = B, {(IN.J" + D)*Ipgspa } + By (M Tipg )
=E, [N, + B)™] + Ep{[m* — (N + B )¥Ipy=m ]}, (2.3.13)

where By, = [N, 1" — N, + D. Since p # 1;’2, it follows that there exists a & = 0 such that [M=m] ¢ 4, ; for all
large values of m. Thus , using (2.3.4) and (2.3.1), (2.3.13) becomes

E,(M") = f:b(ffc) Ey(N:* 78"y + 0(1)

[k—13;

k .2 ki -"IE
= {AJ{C} ! E, [{F"m'?m +m~)" 'IE] + k{ﬂf'rﬂ'} E, [{F"m'?m +m™)

—(k—10y

g, ]+ omY).

(2.3.14)
Now from (2.3.4) for some & = 0, (2.3.7) with s=—k/2, and Taylor’s theorem, we get
E —yy—F/a =E [ -y -k.f'z; ] Drm-—t
o |(BmGm + M) =By (P +m7T) 2 || H0(mTT)
kg _ — L+ ¢ _
=E, [(omam)” 2a, |~ (o m 7 Ey [mam) 2L ]+ 0m)
_ —F:_l.-'2 e+ D (p -4k (k+0) _ klpg—t 1
=(pg) 2[14 — 2]+ 0m) (2.3.15)
Using (2.3.14) and (2.3.15), (2.3.10) follows if we show that
o =lk-11y
E [Bmam +m™) 2By] =0(1),
— k- 1_1
and so it suffices to show that (Bmgm +m ") 'z gnd Bm are asymptotically uncorrelated because

E,(Bm) = 0. This is easily accomplished since, using (2.3.15),

— L= ﬂ

Cﬂvz((mem +m™F J /2 Bm)

—l—117
<V [mam+m ™) 2]V
=0(1).

This completes the proof of (2.3.10).

For (2.3.12), using (2.2.1) and (2.2.3)
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P — P’
E,(Ly) — E,(L,_) = 4E, ) I (M) — 2¢n,

PJE — My +E_ﬂ{*ﬂ'ﬂ — 1]

=c[(4/c)E, (P2

(2.3.16)

Conditioning on Fy, the o — field generated by U, Xy, v uuu. Xy, gives

(4/QE, (22) = - [k, [(22) 17,

clpgl? ﬂ[

_ 4 [[sm—mpflz+[}-€—m:|pq'
T olppE TP M2

]

_ 4 mt (g —p)? —mﬂq‘] A [ 1 ]
" clpg)? "[ (Mg + Bm)? cog P Lo+ 8m +o(1)

= [+11 +0(1), say . (2.3.17)

The fourth equality holds by making use of (2.3.4) since there exists a & = 0 such that [M=m]c A, ¢ for all
large values of m. To evaluate the first term I in (2.3.17), we write

A m? (g —p)i—mpg A _ _
= i B [T 4 S B (I (o — ) — mpal [N, + B) ™% — NE71)
=1, + I say. (2.3.18)

It follows from (2.3.1) and (2.3.3) that

B 2Ny + By

-4
__ 2 _ z _ g~ P
Iy = r:(‘pq]” 'E_ﬂ{[m {pm P] mpq] Niz{Ni +ﬂm]2

(2+87* By (Bl +m 1) "2
(esi 3T O

— E,{[m(py — p)*-pq] B

[1':14;"'2
Since,

(2487 B} (Bl +mF) /2

VI I:j.+J'3'ﬂ.,_3|.r1'1:]2 I 1 =0()and E:ﬂ[m(pm —p)* —pqgl* =001},

It follows that

z4+N7t Bl +M T2 .
(a+ J?[:'J; i_ijz —— are asymptotically uncorrelated. Thus,
+BmMNy

[m{p'm - sz'pq] Bm and
Iy = 0(1), (2.3.19)
because E, {[m(py, — £)*-pq] Be Xy, vs X} = 0. Using (2.3.1), the first term in (2.3.18) becomes

m?(py, — p)* —mpq
c(‘pq]z E n,?

= (pq) *E {[m* (py, — p)* — mpq] (B gm + m™7)}

=m? (pg) _E-Eiﬂ[(?m'?mipm -pll-m+1 (2.3.20)

Since P qm (B —p)%is a polynomial in gy, it can be shown , by finding the moments of a binomial
distribution with parameters m and p, that
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Ey[(pm am(pm — p)*] = (pg)*/m + (—Tp* + 14p* —8p® +p)/m?* + (6p* — 12p° + Tp* — p)/m*.
This, together with (2.3.20), gives
I=[pgt-611-m"Y. (2.3.21)

To evaluate the second term in (2.3.17), we write

A 1

==k ()+ 2B [V, + B) ™ N7, (2.3.22)

cpg P OMNy
An argument similar to (2.3.19) shows that

2B [Ny + B) ™ NI = @) By B (e + M) + BT Y 4]

cpq
=0(1) (2.3.23)

It follows from (2.3.22),(2.3.23) and (2.3.15) with k=-1 that

A

Il = =E, (vii) +o(1)

cpq
- V-2E -y ey 1
—'”D':?"? 1 Prngmt+m") Am g +o(1)

=y —(pg) " '2/16 + (pg)~2m*¥ /4 + o(1) . (2.3.24)
Putting (2.3.16), (2.3.17),(2.3.18),(2.3.19), (2.3.21), (2.3.24) and (2.3.11) together, we get

ElLy) —E(Ly,) = c[I+ 10— ny + E,(M) — ny + 0(1)]
= C[(pq] 'g.*"z,.-’a + (pg)t — (pq]_l-’;z J2 - 5] + o(c)

Thus, (2.3.12) follows and completes the proof.

Theorem 2.3.2. If p = lfz and (2.3.3) holds, then as A/t — == through multiples of 1/4, we have

1. For every positive integer k
145 +om™if ¥ =1

E (M =11+ iomt [, (22 - 2) Gdax + OmtiiF v =1 (2.3.25)

1+olmifo<r=1

where glx) = (lfw%] exp {_xz,"rzj-
In particular
1+ oiif ¥ >1

E,(M) —m={? (3#* -2) G ax + 00 if Y =1 (2.3.26)

|xl=2
o):if0<Y <1
and V(M)=0(m)
2. The regret of the two- stage procedure (2.3.2) is given by
—2c +olchif ¥ =1

w=q e fna(—5x% — x* — )¢ dx + 0():if ¥ =1 (2.3.27)
oled:if0 =¥ =1
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Proof : Let A, be defined as in the proof of Theorem 2.3.1. Then, since m=2(A4/c) 2 and Ny = m if and only
il — Yy 1 = m /2,50

E,(M*) = Ey(m* Iy, et ) + Ep (LN + B Uiy, )
= mf + E,[N,*—mF)Ig ]+ o(m*%), (2.3.28)
17 ¢ -
where Sy = {[pm - fz} =m “’}. It follows from (2.3.1 )and (2.3.3) and Taylor’s theorem that
E,[N,* —mF)Ip ]
_ufcj“fz o D2 [P +m T — 471 I T4+ o(m* )

=2km* TP () + (1/2)km™ = Ep [4m(py, — 1/2)%15_] + o(mF-1), (2.3.29)

Since p= %, it follows from vonBahr’s [7] extension of the central limit theorem and Markov’s inequality that
for j=0,1,2,....

@i +od) ify =1
E,[4m(pn —1/2)%5 ] = { [z x50 (dx +0() if y =1 (2.3.30)
o(m~1-¥) if0 <y =<1

Using (2.3.30) with j=0,1,2, (2.3.29) becomes
E,[N,* —mF)l, ]

(1/2)km ! + olm*-1) ify =1
=4 et [, G 2% — Do eddx + olm* 1) if y =1 (2.3.31)
olm* 1) if D<y<1

Putting (2.3.28) and (2.3.31) together, we get (2.3.25).

For (2.3.27), using (2.3.16) with p=1/2,
1 2
ELy) — E(Ly,) = c[4m’E, (pr — ) —m + E,(0) — m] (2.3.32)
From the third inequality in (2.3.17)
1 M (P — —‘uz ™4
4B, (b~ 2) = 42— + i, (2)

= I+l say. (2.3.33)

It follows from (2.3.22) and (2.3.1) that

|= 4m?E, [ (s _} m] +4m25_ﬂ{[m= (Pm —ﬂz —%] (N2 —m*]:ﬁm}+ o(1)

=4m*~TE, [4m (2m —3) 2 :ﬁm] — 4m* Y P(B,) — E, [1 6m? (py, — §)4 :ﬁm] + (1)

Now, using (2.3.30) with j=0,1,2, we get
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-2 +0(1) ify =1
1=4 fy2a Gt —x* — e (Ddr + oW if ¥ = 1 (2.3.34)
o1} if0<y<1

To evaluate 11, it follows from (2.3.26) and Taylor,s theorem that

=m?{m=t + B [(N7* —m~lg [} +0(1)}
= m+2m*TP(g,) - 2 E, [+m (2 - 3) : fsm] +0(1),

which, together with (2.3.30) for j=0,1, gives

m—$+u{1:| ify=1
1= m + [, - 23 pbddx +o1) ify =1 (2.3.35)
m+o(l) if0<cy<1

Combining (2.3.32),(2.3.33), (2.3.34) ,(2.3.35) and (2.3.26), we get (2.3.27) and completing the proof.

1IV. MODERATE SAMPLE SIZE PERFORMANCE
In this section we conducted a series of Monte Carlo trials to examine the moderate sample size performance of
the two-stage procedure (2.3.2). To this end, we specified
ny = 25,50,100,150,200,230,,500,1000,p = 0.01, 0.02,0.05,0.1,0.15 and 0.5 under the loss function (2.2.1)
with c=1, and then considered the values of ¥ = 0.75,1,1.25,1.5.2 for the two-stage procedure (2.3.2). note that
for the given values of ng, p and c, the weight A and the starting sample size m can be computed from (2.2.2)
and (2.3.2). Simulation results are presented in Tables 1 and 2.

Each simulation based upon 10000 repetitions. Tables 1 and 2 display results for p =0.02,0.15 and of
¥ = 0.75.1.0 and 1.5. for each row of the tables, we computed the mean p;; and the standard deviation £, of

the 10000 simulated values of w4, the corresponding mean #f and standard error 3 of §f, and the estimated
— ) . 1y . -
regret & of . we also give the asymptotic values of E, (M), s, = [V(MJ] 2 and e obtained after omitting the

remainder terms from (2.3.11) and (2.3.12).
Table 1

Moderate Sample Size Performance of Two- Stage Procedure for Acute Gastro Enteritis data with p=0.028
( Data Collected from Hospitals of Jammu District)

¥ ng . P Sy AT (B, (D ) Zne C=ne )

=5 =] O 0=Z80 00540 S311 (32 7113 0O A63(26 014y 35
S0 17 OO0=Z81 L EES ZZ 093 (24 3323 T 546 (35 7522 8.1
100 53 OO0=Z=E1 00226 53 F04(5 275) 6 64640 813 4430 (5
150 S0 O O0=Z82 00173 S0 25340 6663 11 812(61 3153 3825 (5

7= o0 &6 0O DZ7o 00146 1ZE 12Z8(80.0Z5) 17 524(70. 33463
=50 S o0Z2E1 00130 168 540(120 6663 I3 05478 000y S5 55 (5>
S00 165 O.0ZE0 00085 382 A55(339.169) S0.715(111 385) 5 T8Z (>
1000 330 O.0ZE0 00057 4001 7(S01.410) S5 T2Z7(157 5232 174 (>
=5 =] o027 0 RVEE-33 11 SE6(2.040) 1 AE3(26.014) 1408 (>
S0 17 O.0ZE0 00306 S0 O0ZZ(33.045) 5 241(35 7520 Z5.
100 53 00277 00105 TS OS0(E3 040y 16 8551(40 8133 162
150 50 00280 00151 124 A45(155.040) 51.054(61 3153 Z2 5

1.0 o0 66 OO0=278 Co127 176 215(185 040 A5 B51(70 4463 172
=50 23 O0=282 O0o111 22E 048(253.040) G003 1( 8 0D0) XT3
S00 165 00279 00076 482 O53(485 040 100 806111 383 =04
1000 530 00279 00053 SE3 SUO(OES 040 165 069(157 5233 aas
== =] O 0281 O 0398 15 044(45 160 A ASZ(26 014y
S0 17 00282 0. 0z4s 53 862(75 2Z5) 19 Z82(35 7522
100 55 00280 00163 156 006(120 0563 T3 261(40 8150
150 S0 00279 00310 215 o40(180 855% 142 854(61 53157

1.5 =00 66 00280 00115 81 OZ4(231 875) 00 O66(70 44
250 S 00280 00102 340 820(282 6173 65 A38(78 000y
so0 165 00279 00071 S66 82A(534 304) 330 308(111 385)
1000 530 00z 9 00050 1041 305(1035 6643 38 608(157 5233

e Results of 10000 simulations with ¢ = 1.
e Quantities in brackets are asymptotic values based on (2.2.9) and (2.2.10).
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Table 2

Moderate Sample Size Performance of Two- Stage Procedure for Anaemia Data with p=0.0067
( Data Collected from Hospitals of Jammu District)

¥ ng m P e B(E, (M) ENTEn & ()
25 5 0.00628 00353 3(-32434) O(B2872) BO(368 36)
50 o 0.00669 0.0268 0 27(408.3) 0446(111.18) 126 77(368.36)
100 17 000602 00173 23.12(495.78) 1.436(152.80) 240.66 (368.36)
150 25 00069 00131 30.8(-54042) 2.604(185.350) 220 72 (368.36)
i3 200 33 0.0067 0.0107 38 4(-5364.43) 417(21280) 326.66 (368 36)
250 41 0.0065 0.00% T8 O6(-373.9) 583(23731) 570.06 (368.36)
500 g2 00066 00058 1928 4(-5346.4) 17.80(335.60) 53635 (368.36)
1000 164 00066 00036 491 9{-308.6) 4T4.62(368.36) 36131 (368.36)
25 5 0.0068 00370 30(-9624) O(B2ZE27) BO(368 36)
50 ] 0.0062 0022 12.04(-71.24) 085(111.185) 120 33(36836)
100 1 00065 00139 32.63(-21.24) 3.011(152.8009) 13603 (368.36)
150 25 00068 00108 S5835(28.75) 6.648(185308) 129 85 (368.36)
1.0 200 33 0.0066 00087 88 217(78.731) 112935(212.903) 12310 (368 36)
250 41 00067 00075 120.857(128.751) 17411{237.310) 110.76 (368 36)
500 g2 00067 00046 317 449(3T8.751) 61 396(335.60) 4650 (368.36)
1000 164 00066 000302 TETADI(ETE.T51) 194 186(474.62) 1.93 (368.36)
25 5 0.0067 0031 6.75(13829) 0300(82872) 4628 (36836)
50 o 00065 0018 20 5365(235.736) 2474(111.185) 3563 (36836)
100 17 00068 00105 64 259(327.54) 11.702(152.809) 1505 (368.36)
150 25 00068 00077 124 7E(307.132) 22 84(185308) 1.44 (368.36)
1.5 200 33 0.0067 0.0063 196 491(455.06) 56.012(212.903) 277 (368 36)
250 41 00066 00053 278.63(517.313) 01318(237.31) 2TT.B1(368.36)
500 g2 00066 00035 TE1O005(TBE3T) 388.54(3535.60) 336 82 (36836)
1000 164 00066 00024 1812.053(1303.2) 1362.83(474.62) 100.74 (368 36)
e Results of 10000 simulations with ¢ = 1.
e Quantities in brackets are asymptotic values based on (2.2.9) and (2.2.10).

The results shown in Tables 1 and 2 indicate that the two-stage procedure (2.3.2) tends to oversample if
¥ = land oversample if ¥ = 1. for p in the range 0.15 -0.5, varying ¥ from 0.75 to 1.5 leads to no appreciable
change in risk. When p is reduced to 0.02, however ¥ = 0.75 and ¥ =1.5 shows a slightly increased risk when the
optimal sample size, . is less than or equal to 500. This is due to a tendency toward poor estimate for Ny when

m is relatively small. In this situation, ¥ = 1 is a reasonable choice for practical implementation.

V. CONCLUSION
The proposed two-stage methodology is better than the existing sequential or three stage procedures, especially
when time and/or cost are important factor designs in point estimation of prevalence of diseases affecting
human beings in our society besides in case fixed sample size procedures fail because of their dependence on
nuisance parameters this method is the only way by which some type of robust estimates are possible
.Moreover this proposed method can be applied widely in different areas globally to synthesise available
information and provide better estimates of prevalence of diseases affecting human population.
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