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A («)-Stable Order Ten Second Derivative Block Multistep
Method for Stiff Initial Value Problems
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ABSTRACT : In this paper, we developed a four step block generalized Adams type second derivative method
for the integration of stiff systems in ordinary differential equations. The block method is shown to be A-stable,
consistent and zero-stable. Numerical results by the block method reveal that the method is suitable for

the solution of stiff initial value problems.
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. INTRODUCTION
In this paper we are concerned with the numerical solution of the stiff initial value problem (1) using
the second derivative linear multistep.

y' (¥) = (X, y(x), ¥(X) =Y, (1)
on the finite interval | =[X,, Xy Jwhere y:[X,, X ]1—> R™ and f :[Xy, Xy ]xR™ — R™ is continuous
and differentiable. The second derivative k-step method takes the following form
k k k
2@ =02 By foy #7270 ©)
j= j= j=

where «;, B; and y; are parameters to be determined and g,,; = ' ;.Several authors have considered

the numerical solution of (1) by using the usual first derivative methods, for example, [1,2,3] considered the use
of the hybrid methods for the solution of (1) in order to overcome the Dahlguist second barrier theorem[4].
Many researchers have studied the second derivative and higher derivative methods because of the existence of
A-stable higher multi-derivative formulae as shown by [5, 6,7,8,9,10]. These methods unlike the usual first
derivative multistep methods which are not A-stable for orders higher than 2 are A-stable for higher orders.
Therefore higher derivative multistep formulae may be suitable for solving stiff equations [11].

In what follows, we shall construct four step block second derivative generalized Adams’ type method
through interpolation and collocation method of [12]. The continuous formulation of the method evaluated at
certain points give rise to four discrete schemes which constitute the second derivative block method for the
numerical solution of (1).

This paper is organized as follows: In section 2, the formulation of the block second derivative method
is considered. The convergence analysis and the plot of the region of absolute stability of the block method are
considered in section 3. Numerical examples are given in section 4 and results obtained are compared with
either the exact solutions or the Matlab ode23s in the case where the exact solution is not available and section 5
is about the conclusion of the work.

1. FORMULATION OF THE METHOD
The general form of the four step Generalized Adams’-type second derivative method is of the form

4 4
yn+2_yn+1 = hZﬁJ(X) fn+j +h2271(x)gnﬂ- (3)
j=0 j=0

where 3;(X) and y;(X) are the continuous coefficients of the method. We note that Y, ; is the numerical

approximation to the exact solution y(x,,,;). f..; = f(x,,;,Y(X,,;)), ] =012,3,4and
gn+j =f I(Xn+j ! y(xn+j)) :
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The solution of the initial value problem in (1) is assumed to be the polynomial

11 _
y(x)=> a;x’
=0

(4)

where a;are unknown coefficients to be determined. To construct the continuous formulation of our method,

the conditions imposed in [7] are used as follow;

[1] Equation (4) coincides with the exact solution at the point X,

[2] The interpolating function (4) satisfies (1) at the points X

01234

n+J'J_

[3] The second derivative of (4) coincides with the second derivative of the exact solution at the points

01234

Xn+j’ J =

These conditions result in the following set of 11 equations

y(xn+l) = yn+1 (5)
y'(xn+j) = fn+j1 J = 01112’3!4 (6)
y”(Xn+j) = gn+j! J = 01112a314 (7)

which is solved to obtained a;. Substituting the values of a; into (4) gives the continuous form of the method

as
4 4
y(X) = ai(x)yn+l + hZﬁJ (X) 1:rH—j + hzzyj (X)gn+j (8)
j=0 j=0
where
ocl(x) =1
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Thus evaluating (8) at & = {0,2h,3h,4h} we obtain the following block method represented in block matrix

finite difference form.
AY, =BY, ,+ hCFm + hZDlGm

where

(10)
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1000 0001
| -1100 0000
11010l %0000
-1001 0000

31207 81 1243 2237

90720 320 18144 725760

6887 47 1721 103

90720 320 90720 145152
269 269 11

2835 2835 0 5670
183 81 279 339
1120 320 1120 8960

The 4-dimensional vector Y,,Y,, ;, F,, and G, have collocation points specified as
Yo =Yoo Yoizs Yosas yn+4]T
Yt =[Yns: Yozs Yoar Vi ]T
Fo =[fos frz foia fn+4]T
G, =[gn+1’gn+2’gn+3’gn+4]T

I1l.  ANALYSIS OF THE METHOD
We present here the analysis of the block method in (10). Convergence which is an important property
required of all good linear multistep methods shall be investigated for the block method and the region of
absolute stability plotted.

Local truncation error : In the spirit of [13,14], the local truncation error associated with the block method
(10) is the linear difference operator

L[Y (x) : h] :i{ajv(x+ i) —hY' B, (x+ jh)—h2Y "y, (x+ jh) }a1)

We assume that Y (X) is sufficiently differentiable, and so the terms of (11) can be expanded as Taylor series
about X to give the expression

LLY (X) : h] = C,Z(X) + ChZ' () +...+ C,hZ @ (x) +... (12)
where
Kk
C, =29,
j=0
k . k
C = Z Ja; _Zﬂ,
j=1 j=0
k 5 k . k
C,=4> i*a; =D iBi- D7,
= j=1 j=0

k k k
Coma it —an 1A~ 217 =34
j= i=

j=1
The block method (10) is said to be of order p if 60 =Ci=..= Ep = 6, 6p+1 #0.
Epﬂ is called the error constant and the local truncation of the method is given as
'En+k = 6p+1h(p+l)y(p+l)xn +O(h(p+l)) (13)
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The block method (10) has order and error constant of p = (10,10,10,10)" and
Cri = GGr2tas0 31155500 1572700 5500 Fespectively. Since the block method (10) is of

order P=102>1, it is consistent [15].

Zero Stability of the Block method
The block method (10) is said to be zero stable provided the roots Rj , ] =1,..., k of the first characteristic

polynomial P(R) specified by

k
p(R) = det{z A(i)R'”} =0 (14)

i=0

satisfies‘Rj‘ <1, j=1,...,K.and for those roots with ‘Rj‘ =1, the multiplicity does not exceed 2.
Applying the usual test equations

' " 2
y'=y. y'=4y
to the block method (10) with z = Ay and solving the characteristic equation
det(r(4 —Cz—DI17) —B) =0
forr at z = 0 yields the following roots {0, 0, 0, 1}. The block method is therefore zero stable since the
absolute value of each of the roots is less than or equal to 1.

3.3 Convergence
The block method is convergent since it is both consistent and zero stable [15].

3.4 Region of Absolute Stability of new method

Solving characteristic equation det(r (4 — Cz — D12*) —B) =0 forr , we obtain the stability function as
R(Z) _ —3(357823@°-800763@° +280279845* +1454723035° +4627627200% +626330880+385786800p
251288 +87221487 -149522390° +985089480° —3788263965" +11156874732° —207630864022 +2314720800z 1157360400
(15)
The region of absolute stability of the block method is obtained by substituting det(r (4 — Cz — D12) — B)
and its derivative into a matlab code.

6
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N
\
/

Re(2)

Figurel: Region of Absolute Stability of the Block method (10)
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V. NUMERICAL EXPERIMENTS
In this section, we present some numerical results to compare the performance of our new method with
the analytic solution and with the Matlab ode solver ode23s where the analyticsolution is not available.

Example 1: Chemistry Problem Considered by [16]

y; =—0.013y, —1000y, Y., y,(0) =1,
y, =—2500Y,Y,, y,(0) =1,
y, =—0.013y, —1000y, y, — 2500Y, Y., y;(0) =0.

12

——ylnum
——y2um
y3 num
y1 ode23s
— - y2 ode23s
=+=e=+y3 0de23s

Solution(y)

02 ! | | L | | | | ! J
0 1 2 3 4 5 6 7 8 9 10

Time(t)

Figure 2: Solution curve for example 1 using the new block method (10)

Example 2: We consider another linear problem which is particularly referred to by some eminent authors [17,
18] as a troublesome problem for some existing methods. This is because some of the eigenvalues lying close to
the imaginary axis, a case where some stiff integrators are known to be inefficient.

(yi(x)] [-10 100 O 0 0 0 ()| [v.(0)] [1

yi(x)| |-100 -10 O 0 0 0 |y, |y.(0) 1

yieo| o0 -4 0 0 0 |y, |vO]_|1

yi() | |o 0 0 -1 0 0 v | |va(0O)| |1

yL (%) 0 0 0 0 —05 O ve(X) | | ys(0) 1

LYs(X)| [O 0 0 0 0 —0.1] ys ()| [Ys(O) | [1]
T —

Figure 2: Solution curve for example 2 using the new block method (10)
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Example 3: The third problem is a well-known classical system. It is a mildly stiff problem composed of two

first order equations,

yi()7] [998 1998 [y, [v,(0)] [1
Y4 (%) ‘[—999 —1999} ACIEAC) ‘H

and the exact solution is given by the sum of two decaying exponential components,

y; () =4e™* —3e %%

-1000x

y,(X)=—2e" +3e

The stiffness ratio is 1:1000. We solve the problem in the interval [0, 10].

——y1Num
——y2Num
——y1Exact
—+— y2 Exact

Solution(y)

2 1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9
Time(t)

Figure3: Solution curve for problem 3 using the new block method (10)

Tablel: Absolute Errors for Problem 3 using the new block method (10)

X Erroryl Error y2
20 7.64E-13 3.93E-13
40 1.95E-13 9.89E-14
60 5.55E-14 2.79E-14
80 6.44E-15 3.25E-15
100 1.29E-15 6.47E-16
Example 4
y,=-8y,+7Y,

ylz = 42y1 _43Y2
y.(0)=1, y,(0)=8,
y,(X) =26 —e™ ™, y,(x)=—2e +6e

0<x<10, h=01

-50x
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Table2: Absolute Errors for Problem 4 using the new block method (10)

X Erroryl Error y2
20 1.17E-15 1.17E-15
40 2.29E-16 2.29E-16
60 3.30E-17 3.30E-17
80 6.07E-18 6.07E-18

100 9.35E-19 9.35E-19

y1 num
y2 num

7+ —+— ylexact
——y2eexact

Solution(y)

I 4 i " " i I L
o 1 2 3 4 5 6 7 8 9 10
Time(t)

Figure4: Solution curve for problem 4 using the new block method (10)

V. CONCLUSION
The construction of a block three step multistep method for the solution of stiff initial value problems is

considered. Some numerical properties of the block method were investigated and the method is shown to be of
uniform order p = 10, consistent and zero-stable and with good region of absolute stability. We have also
demonstrated the accuracy of our block method on some linear and non linear stiff system. The numerical
results show that our method competes favourably well with the Matlab ode solver ode23s.
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