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ABSTRACT: In this paper we determine the number of transitive p-groups of degree p3

KEYWORDS: number, transitive, degree, exponent, isomorphism.

1.1 INTRODUCTION

From our previous result in [2], we can easily deduce that for n > 7, there are, up to isomorphism, 2 non
— abelian transitive p — groups of degree p°, exponent p*and order p " while for n = 4, 5 and 6, we have up to
isomorphism, one such group.

l. RESULTS
1.2 Proposition: For each odd prime p, there are, up to isomorphism, 5 transitive p — groups of degree p® and
order p°. 3 of these are abelian and of the remaining 2 non — abelian groups, 1 is of exponent p® and 1 is of
exponent p.

Proof: Since each of these groups is transitive, we must have:

la®] =p% |G| =1, Va eQwith| Q| =p?,

thus G is regular and two cases arise: (i) G abelian and (ii) G non — abelian.

If G is abelian, then as G is of degree p*, we have the following possibilities: either

Gz=C,orG=C, xC,orG=C,xC xC,
If G is non — abelian, then as G is a p — group of order p, it contains a normal p — subgroup H of order p? which
must be abelian, and so either H = szor H= Cp X Cp . Thus G = < a, b >, where a G is such that

a”=1beG—(a),b’=1b"abe(a)

or G=G"=<a, b, c> wherea, b, c G are such that

a’=1 b?=1 ceG-<a, b>, c’=1 c'ac, c'bceG-<a,b, c>, crac=a, c'bc=b. This
completes the proof.

1.3 Proposition
For each odd prime p, there are, up to isomorphism, 5 non — abelian transitive p — groups of degree p* and
exponent p.

Proof: Let G be a non — abelian transitive p — group of degree p* and exponent p. Then by [2] we must have
|Gl=p", n=3,4,5.

If|G|=p® thenby [2], G= G, =<a, b, c > wherea, b e G are such that

a’=1 b°=1 ceG-<a, b> c’=1 c'ac, c'bceG-<a,b, c> clac=a, cbczb.

If| G | = p*, then G contains a normal p — subgroup H of order p? which is either abelian in which case H = C, x
C,xCpandsoG=G,=<a,b,c,d> wherea, b, c € G are such that

aP=1b"=1cP=1 d e G—(a)yx(b)x(c), d? =1, d "ad, d 'bd, d'cd e (a)x(b) x(c),
d'ad #a, d'bd #b, d'cd #c.

or non — abelian in which case H = G, so that G = G; < G4, d >, where d € G - G; is such that dP=1,G, <G,
If| G | = p°, then G contains a normal p — subgroup H of order p*. Suppose H is non — abelian, then by the case
| G | = p* above, either H = G, or H = G;. These yield the following possibilities for G: either G = < G,, e >,
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wheree e G-G,eP=1,G,<G,or G=<G,, f> wheref e G-G; fP=1, G; < G. If H were abelian, we
would have

H=CoxCyxCpyxChorH=<a>x<b>x<c>x<d>wherea®?=1,b"=1c"=1,
dP=1.ButC(@=<a> C(b)=<b> C(c)=<c> and C(d) =< d >, so that
<a>x<b>x<c>x<d>=C(a) n C(b) n C(c) » C(d), and hence
IHI=p*=l<a>x<b>x<c>x<d>|=|C() N C(b) nC(c) nC(d)]< | Cc@)|=p, which is impossible.
Thus H is not abelian.

1.4 Proposition : For each odd prime p, there are, up to isomorphism, (2 p (p +1) — 7) non — abelian transitive p
— groups of degree p® and exponent p.

Proof: Since G is transitive of degree p®, two cases arise: either G contains exactly one generator of order p* and
the remaining generators are each of order p (by [1]) or G contains no generator of order p? but 3 generators
each of order p® and other generators each of order p. By [2], such a group G exists only forn=4,5, . . .,
p(p+1)+1, with | G|=p "and ( by our opening remark in 1.1 above), foreachn=7,8, ..., p(p+1)+1, we have
two non — isomorphic such groups. Thus their total number is 2[ p (p+1)+1-6]. And for eachn =4, 5, 6, there
is, up to isomorphism, one such group. So that the total number of non — abelian transitive p — groups of degree
p® and exponent p® is 2[ p (p+1)+1-6] +3 = 2p(p+1)-7

1.5 Remark: (i) For the case p = 2, we have, up to isomorphism, 6 non — abelian transitive 2 — groups of degree
23 = 8 and exponent 2° = 8, by [1]. (ii) From Proposition1.2 we deduce that there are, up to isomorphism, 2 non
— abelian transitive p — groups of degree p* and exponent p: one containing the unique abelian transitive p —
group C, x C, x C, as a normal subgroup and the other containing the unique non — abelian transitive p — group
of exponent p mentioned in the Lemma. But by [2], for any such a group G, the rank r (G) = 3, 4 or 5. Of
interest to us is the case r (G) = 5. By [1], if G’ is a transitive p — group of degree p* and rank 6 containing G as a
normal subgroup, then G’ must be of exponent p®>. Consequently, we obtain two new non — isomorphic non —
abelianztransitive p — groups of degree p°, exponent p? and order p® which are not generated by any generators of
order p*.

Applying the same argument above to our result in[2], we get two new non — isomorphic non — abelian
transitive p — groups of degree p®, exponent p? and order p’ (obtained from G’ ) with one isomorphic to the
unique non — abelian transitive p — groups of degree p°, exponent p? and order p’ generated by a generator of
order p? . An important implication of the above is that there is no non — abelian transitive p — group G of degree
p®, exponent p and rank (G) with 6 < rank (G) < p (p+1).

1.6 Proposition : For each odd prime p, there are, up to isomorphism, (p (p +1) + 2) non — abelian transitive p —
groups of degree p* and exponent p*.

Proof: If G is a non — abelian transitive p — groups of degree p* and exponent p?, then either G is generated by a
generator of order p> or not. In the first case, by Remark1.5, for each

n=3,4,...,p(p+1)+1 with |G|=p", there is, up to isomorphism, one such group. Hence their total number is
p (p+1)+1-2=p (p+1)-1.

In the second case, by Remark1.5., we must have | G| = p® or| G| = p. In the first case,

we have 2 non — isomorphic non — abelian such groups (by Remark1.5(ii)) and in the second case, we have 1
such group, up to isomorphism. Hence in all, we have

p (p+1)-1+2+1=p (p+1) + 2 such groups./.

1.7 Remark : For the case p = 2, we have, up to isomorphism, 10 non — abelian transitive 2 — groups of degree
23 = 8 and exponent 2% = 4, by [1].
For non — abelian transitive p — groups of degree p°, we have:

1.8 Theorem : For each odd prime p, there are, up to isomorphism, 3(p (p + 1) + 1) different transitive p —
groups of degree p®. Three of these are abelian. Of the 3p (p + 1) non — abelian groups, we have that 2p (p + 1)
— 7 are of exponent p*, p (p + 1) + 2 are of exponent p? and the remaining 5 are of exponent p.

Proof : By Proposition1.4., the number of non — abelian transitive p — groups of degree p® and exponent p® is
(2p(p+1)-7),

And by Proposition1.6, the number non — abelian transitive p — groups of degree p* and exponent p?is p (p + 1)
+2,
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By [1]., the number of non — abelian transitive p — groups of degree p* and exponent p is 5 while by
Propositionl.2, there are three abelian such groups. Adding these numbers together we get the result.

1.9 Remark: For the case p = 2, we have, up to isomorphism, 19 transitive 2 — groups of degree 2° = 8 by [1].
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