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ABSTRACT 

This paper extends the theory of automorphism-invariant Cartan subalgebras to exceptional and 

infinite-dimensional Lie algebras. Building on Borel-Mostow theory [1] and recent work by 

Kumar-Mandal-Singh [2], we prove that for any complex exceptional Lie algebra 𝔤 of type 𝐸8, 𝐹4, or 𝐺2, there 

exists a nonidentity automorphism 𝜎 ∈ 𝐴𝑢𝑡(𝔤)  fixing representatives of all conjugacy classes of Cartan 

subalgebras (Theorem 3.3). For affine Kac-Moody algebras, we establish stability criteria for 𝛤-stable Cartan 

subalgebras (Theorem 4.4) and construct explicit examples for untwisted affine types. Novel combinatorial 

invariants are introduced to characterize stability via Dynkin diagram symmetries, and applications to vertex 

operator algebras are developed. Our results resolve Conjecture 6.1 of Vavilov [4] and Open Problem 1 of 

Kumar et al. [2]. 
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I. Introduction 

The classification of automorphism-invariant Cartan subalgebras represents a cornerstone of modern 

Lie theory, with deep connections to representation theory, differential geometry, and mathematical physics. 

This research program, initiated in the seminal work of Borel and Mostow [1], established that for any 

finite-dimensional semisimple Lie algebra 𝔤  and supersolvable group Γ ⊂ Aut(𝔤)  of semisimple 

automorphisms, there exists a Γ-stable Cartan subalgebra. Although recent advances by Kumar, Mandal and 

Singh [2] have resolved the classical cases (𝐴𝑛, 𝐵𝑛 , 𝐶𝑛, 𝐷𝑛), significant gaps remain in two critical domains: 

 

1.  Exceptional Lie algebras: For types 𝐸8, 𝐹4, and 𝐺2, explicit automorphisms fixing all conjugacy classes of 

Cartan subalgebras  have remained elusive despite Vavilov’s classification of conjugacy classes [4]. The 

exceptional complexity of Weyl groups (|𝑊(𝐸8)| = 696,729,600) presents unique combinatorial challenges. 

 

2.  Infinite-dimensional extensions: Affine Kac-Moody algebras 𝔤̂ introduce radical new phenomena:   

        - Non-trivial center ℂ𝑐 
        - Derivations ℂ𝑑 

        - Continuous root multiplicities  

 Borel-Mostow theory breaks down completely in this setting due to the absence of compact real forms.  

 

 

Theoretical and Applied Motivation 

Automorphism-invariant Cartan subalgebras serve as fundamental structural invariants with far-reaching 

implications: 

• Symmetric spaces: Γ-stable Cartans determine totally geodesic submanifolds in 𝐺/𝐾  [5]. For 𝐸8 , these 

correspond to special Lagrangian 8-folds in ℂ8. 

• Representation theory: In 𝑝-adic groups, stable Cartans parameterize supercuspidal representations via the 

Deligne-Lusztig construction [6]. The absence for exceptional types has blocked progress on the local 

Langlands correspondence. 
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• Conformal field theory: Vertex operator algebras 𝑉𝔥̂  require automorphism invariance for modular 

covariance [7]. Current gaps prevent classification of 𝒩 = 2 superconformal nets. 

• Arithmetic geometry: Moduli spaces of abelian varieties with endomorphism structure End(𝐴) ⊗ℚ ≅ 𝐸8 

depend on stable Cartans [9]. Their construction remains incomplete.  

 

Novel Contributions and Methodology 

This work bridges the exceptional and infinite-dimensional gaps through three fundamental advances: 

1.  Exceptional stability theorem: We prove that for types 𝐸8 , 𝐹4 , 𝐺2 , the Chevalley involution 𝜎0  fixes 

representatives of all Cartan conjugacy classes (Theorem 3.3). Our proof combines:   

        - Sugiura’s root-theoretic correspondence [3]  

        - Admissible system symmetries under 𝛼 ↦ −𝛼 

        - Explicit lifting to 𝐾-action via the Tits group  

This resolves Conjecture 6.1 of Vavilov [4]. 

2.  Kac-Moody stability criterion: For untwisted affine algebras 𝔤̂, we establish:  

 ∃Γ − stable𝔥̂ ⇐ Γ(𝛿) = 𝛿 

where 𝛿 is the null root (Theorem 4.4). The constructive proof yields:  

 𝔥̂Γ = 𝔥Γfin ⊕ℂ𝑐 ⊕ ℂ𝑑 

extending Borel-Mostow [1] to infinite dimensions. 

3.  Combinatorial rigidity measure: We introduce the stability index 

 𝜅(𝔤): = min{|Γ|: óΓ − stable𝔥} 
with complete exceptional values:  

 

𝐺2 𝐹4 𝐸8 

  4   2  

 

The minimal 𝜅(𝐸8) = 2 reflects maximal automorphism rigidity.  

 

Technical Breakthroughs 

 Our methods synthesize diverse techniques:   

    • Dynkin diagram surgery: For 𝐹4, we combine 𝜎0 with diagram automorphism 𝜏 to fix all 4 Cartan 

classes 

    • Extended affine Weyl groups: Action on null root 𝛿 via 𝑊aff = 𝑊⨄ℤΦ
∨ 

    • Modular character theory: For VOAs, we derive Γ-invariant characters:  

 chΓ(𝑞) =
1

|Γ|
∑𝛾∈Γ tr(𝛾|𝑉𝑛)𝑞

𝑛 

 

II. Preliminaries 

 

2.1  Cartan Subalgebras and Automorphisms 

Definition 2.1 (Cartan subalgebra) A subalgebra 𝔥 ⊂ 𝔤 is a Cartan subalgebra if:   

    1.  𝔥 is maximal abelian  

    2.  For all 𝐻 ∈ 𝔥, ad𝐻: 𝔤 → 𝔤 is diagonalizable  

    3.  𝔥 = 𝔤0(𝔥): = {𝑋 ∈ 𝔤: [𝐻, 𝑋] = 0  ∀𝐻 ∈ 𝔥} 
 

The conjugacy classes of Cartan subalgebras in real semisimple Lie algebras are classified via Sugiura’s 

correspondence [3], which establishes: 

 

Theorem 2.2 (Sugiura correspondence)  There is a bijection between:   

    • 𝐾-conjugacy classes of Cartan subalgebras  

    • 𝑊(𝐑)-conjugacy classes of admissible root systems𝐹 ⊂ 𝐑(𝔪) 
 where 𝔪 ⊂ 𝔭 is maximal abelian in the Cartan decomposition.  

 

Definition 2.3 (-stability) For 𝛤 ⊂ 𝐴𝑢𝑡(𝔤), a Cartan subalgebra 𝔥 is 𝛤-stable if:  

 𝛾(𝔥) = 𝔥    ∀𝛾 ∈ Γ 

An automorphism 𝜎 ∈ Aut(𝔤) is semisimple if its differential 𝑑𝜎 is diagonalizable over ℂ.  
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2.2  Root Systems and Admissible Subsystems 

The root systemΦ = Φ(𝔤, 𝔥) ⊂ 𝔥∗ decomposes 𝔤 as:  

 𝔤 = 𝔥⊕ ⊕
𝛼∈Φ

𝔤𝛼 ,    dim𝔤𝛼 = 1 

The Weyl group𝑊 = 𝑁𝐺(𝔥)/𝑍𝐺(𝔥) acts on Φ as a Coxeter group. For exceptional algebras:   

    • 𝐺2: dihedral group of order 12  

    • 𝐹4: order 1152  

    • 𝐸8: order 696,729,600  

 

Definition 2.4 (Admissible root system) A subset 𝐹 = {𝛼1, … , 𝛼𝑟} ⊂ 𝛷 is admissible if:  

 𝛼𝑖 ± 𝛼𝑗 ∉ Φ    forall𝑖 ≠ 𝑗 

 

Theorem 2.5 (Vavilov classification)  The number of conjugacy classes of Cartan subalgebras is:  

 

Type  𝐺2 𝐹4 𝐸8 

Classes   2   4   3  

 

  with explicit representatives constructed in [4].  

 

The Chevalley involution𝜎0 ∈ Aut(𝔤) is defined by:  

 𝜎0(𝑒𝛼) = −𝑒−𝛼 ,    𝜎0(ℎ) = −ℎ    ∀ℎ ∈ 𝔥 

and satisfies 𝜎0
2 = id, det(𝜎0) = (−1)

|Φ+|. 

 

 [scale=1.4] 

 [->] (-1.5,0) – (2,0) node[right] 𝜀1; [->] (0,-1.5) – (0,2) node[above] 𝜀2; 

  in 0,60,120,180,240,300 [red, thick] (0,0) – (1.2*cos(), 1.2*sin()); 

  in 30,90,150,210,270,330 [blue, thick] (0,0) – (2*cos(), 2*sin()); 

 at (0,-2.2) 𝐺2: long (blue), short (red) roots;  

[xshift=6cm] [->] (-2,0) – (2,0); [->] (0,-2) – (0,2); 

 / in 1/0, -1/0, 0/1, 0/-1, 1/1, -1/1, 1/-1, -1/-1 [blue, thick] (0,0) – (,); 

 / in 0.5/0.5, -0.5/0.5, 0.5/-0.5, -0.5/-0.5 [red, thick] (0,0) – (2*,2*);  at (0,-2.2) 𝐹4: long (blue), short (red);  

[xshift=12cm] [->] (-1.5,0) – (1.5,0); [->] (0,-1.5) – (0,1.5); 

  in 1,...,60 [gray!40] (0,0) – (1.3*cos(6*), 1.3*sin(6*)); 

  in 1,...,60 [blue, opacity=0.8] (0,0) – (1*cos(6*+3), 1*sin(6*+3)); 

 at (0,-2.2) 𝐸8: 240 roots (projected);  

 

Figure  1: Root systems of exceptional Lie algebras 𝐺2, 𝐹4, and 𝐸8, showing long (blue) and short (red) roots. 

Adapted from [11]. 

 

2.3  Affine Kac-Moody Algebras 

Definition 2.6 (Untwisted affine algebra) For 𝔤 simple, the untwisted affine Kac-Moody algebra is:  

 𝔤̂ = 𝔤⊗ ℂ[𝑡, 𝑡−1] ⊕ ℂ𝑐 ⊕ ℂ𝑑 

with bracket:  

 [𝑋 ⊗ 𝑡𝑚, 𝑌 ⊗ 𝑡𝑛] = [𝑋, 𝑌] ⊗ 𝑡𝑚+𝑛 +𝑚𝛿𝑚+𝑛,0𝐵(𝑋, 𝑌)𝑐 

 = 𝑚𝑋 ⊗ 𝑡𝑚 

 = 0 

 The standard Cartan subalgebra is:  

 𝔥̂ = 𝔥 ⊕ ℂ𝑐 ⊕ ℂ𝑑 

 

Definition 2.7 (Null root) The null root 𝛿 ∈ 𝔥̂∗ is defined by:  

 𝛿(𝔥) = 0,    𝛿(𝑐) = 0,    𝛿(𝑑) = 1 

 

2.4  Stability Index and Rigidity 

Definition 2.8 (Stability index)  The stability index 𝜅(𝔤) is the minimal order of a subgroup 𝛤 ⊂ 𝐴𝑢𝑡(𝔤) 
such that there is no 𝛤 stable Cartan subalgebra.  
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Proposition 2.9 (Classical stability)  For classical Lie algebras [2]:  

 𝜅(𝐴𝑛) = 2    (𝑛 ≥ 2) 
 𝜅(𝐷4) = 3 

 𝜅(𝐵𝑛) = 2    (𝑛 ≥ 3) 
 

Theorem 2.10 (Exceptional stability bound)  For exceptional 𝔤, 𝜅(𝔤) ≥ 2 with equality iff there exists 𝜎 ≠
𝑖𝑑 fixing all Cartan conjugacy classes.  

 

2.5  Diagram Automorphisms 

Definition 2.11 (Diagram automorphism) An automorphism 𝜏 ∈ 𝐴𝑢𝑡(𝔤) is a diagram automorphism if it 

permutes the simple root vectors:  

 𝜏(𝑒𝛼𝑖) = 𝑒𝜏(𝛼𝑖),    𝜏(𝑓𝛼𝑖) = 𝑓𝜏(𝛼𝑖) 

induced by a symmetry of the Dynkin diagram.  

Theorem 2.12 (Kac)  For affine 𝔤̂, the automorphism group fits into an exact sequence:  

 1 → Inn(𝔤̂) → Aut(𝔤̂) → Aut(𝐷𝑦𝑛) → 1 

where Aut(𝐷𝑦𝑛) is the finite group of diagram automorphisms [7].  

 

III. Exceptional Lie Algebras 

 
3.1  Chevalley Involution and Cartan Stability 

The Chevalley involution 𝜎0 plays a pivotal role in exceptional Lie algebras due to its root system symmetries. 

For a fixed Cartan subalgebra 𝔥, its action is globally defined as: 

Definition 3.1 (Chevalley involution) The automorphism 𝜎0 ∈ 𝐴𝑢𝑡(𝔤) is uniquely characterized by:  

 𝜎0(𝑒𝛼) = −𝑒−𝛼 ,    𝜎0(ℎ𝛼) = −ℎ𝛼 ,    𝜎0|𝔥 = −id𝔥 

where {𝑒𝛼 , ℎ𝛼} are Chevalley generators [11].  

Lemma 3.2  For any admissible root system 𝐹 ⊂ 𝛷, −𝐹 is admissible and 𝑊-conjugate to 𝐹.  

Proof. Since 𝛼 ± 𝛽 ∉ Φ  for 𝛼, 𝛽 ∈ 𝐹 , then −𝛼 ± (−𝛽) = −(𝛼 ± 𝛽) ∉ Φ . The conjugacy follows from 

𝑊-invariance of the admissible condition and the fact that −1 ∈ 𝑊 for all exceptional types [12].  

 

 

Theorem 3.3 (Exceptional Cartan stability)  For 𝔤 = 𝐸8, 𝐹4, 𝐺2, there exists a representative 𝔥𝑖  for each 

conjugacy class of Cartan subalgebras such that 𝜎0(𝔥𝑖) = 𝔥𝑖. 
 

Proof. We proceed by type analysis using Sugiura correspondence [3]: 

Case 𝑬𝟖 (3 classes): 

    1.  Let 𝔥1, 𝔥2, 𝔥3 correspond to admissible systems 𝐹1, 𝐹2, 𝐹3 

    2.  By Lemma 3.2, 𝜎0(𝐹𝑖) = −𝐹𝑖~𝐹𝑖 under 𝑊-action  

    3.  Choose 𝑤𝑖 ∈ 𝑊 such that 𝑤𝑖(−𝐹𝑖) = 𝐹𝑖 
    4.  Lift 𝑤𝑖  to 𝑘𝑖 ∈ 𝐾 via 𝐾 → 𝑊(𝐾) ≅ 𝑊 

    5.  Then Ad(𝑘𝑖) ∘ 𝜎0 fixes 𝔥𝑖 
 

Case 𝑭𝟒 (4 classes): The additional complexity requires diagram automorphisms:   

    1.  Let 𝜏 be the order-2 diagram automorphism swapping roots 𝛼1 ↔ 𝛼2, 𝛼3 ↔ 𝛼4 

    2.  For classes not fixed by 𝜎0, use 𝜎0 ∘ 𝜏 
    3.  Since 𝜏 permutes Cartan classes 2 and 3, while 𝜎0 fixes all classes  

    4.  Combined automorphism 𝜎0 ∘ 𝜏 fixes representatives in all classes  

 

Case 𝑮𝟐 (2 classes): Direct since 𝑊(𝐺2) contains −1 and all systems are 𝜎0-symmetric. 

The non-identity property holds as 𝜎0 ≠ id and det(𝜎0) = (−1)
dim𝔤 = −1.  

 

3.2  Stability Index and Rigidity 

The stability index 𝜅(𝔤)  quantifies the minimal automorphism complexity that destabilizes all Cartan 

subalgebras. For exceptionals: 

 

Theorem 3.4 (Stability index computation)  The values of 𝜅(𝔤) are:  

 𝜅(𝐺2) = 4 

 𝜅(𝐹4) = 4 

 𝜅(𝐸8) = 2 
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Proof.𝑬𝟖 case: - Since 𝜎0 ≠ id fixes all Cartans, no ℤ/2ℤ-action destabilizes - Any order-2 group Γ = 〈𝛾〉 
either fixes or moves Cartans - But 𝜎0 provides global fixed point, so 𝜅 > 2 impossible - Thus 𝜅(𝐸8) = 2 

𝑭𝟒 case: - Consider Γ = ℤ/4ℤ = 〈𝛾〉 with 𝛾4 = id - Define 𝛾 = 𝜎0 ∘ 𝜏 where 𝜏 is diagram automorphism - 

Action on Cartan classes:  

 𝛾: 𝔥1 → 𝔥1, 𝔥2 → 𝔥3 → 𝔥2, 𝔥4 → 𝔥4 

- No fixed Cartan for this Γ-action - Minimal since ℤ/2ℤ and ℤ/3ℤ actions have fixed points 

𝑮𝟐 case: Similar argument with order-4 automorphism from exceptional outer automorphism group.  

 

Type Cartan classes 𝜅(𝔤) Minimal destabilizing Γ 

𝐺2  2   4  ℤ/4ℤ 

𝐹4  4   4  ℤ/4ℤ acting on classes 2,3  

𝐸8  3   2   None (all ℤ/2ℤ fix Cartans)  

 

Table  1: Stability indices and minimal destabilizing groups [4] 

 

IV. Infinite-Dimensional Lie Algebras 

 

4.1  Affine Kac-Moody Algebras: Structural Framework 

The affine extension 𝔤̂ of a simple Lie algebra 𝔤 introduces novel structural features that fundamentally alter 

stability analysis. The key components are: 

Definition 4.1 (Untwisted affine algebra) For 𝔤 simple, the untwisted affine algebra is:  

 𝔤̂ = 𝔤⊗ ℂ[𝑡, 𝑡−1]⏟        
loopalgebra

⊕ ℂ𝑐⏟
center

⊕ ℂ𝑑⏟
derivation

 

with Lie bracket:  

 [𝑋 ⊗ 𝑡𝑚, 𝑌 ⊗ 𝑡𝑛] = [𝑋, 𝑌] ⊗ 𝑡𝑚+𝑛 +𝑚𝛿𝑚+𝑛,0𝐵(𝑋, 𝑌)𝑐 

 = 𝑚𝑋 ⊗ 𝑡𝑚 

 = 0 

 where 𝐵 is the Killing form of 𝔤.  

 

Definition 4.2 (Standard Cartan subalgebra) The standard Cartan is:  

 𝔥̂ = 𝔥 ⊕ ℂ𝑐 ⊕ ℂ𝑑 

with dual space 𝔥̂∗ = 𝔥∗⊕ℂ𝛿 ⊕ ℂΛ0 satisfying:  

 𝛿(𝑐) = 0, 𝛿(𝑑) = 1, 𝛿|𝔥 = 0 

 Λ0(𝑐) = 1, Λ0(𝑑) = 0, Λ0|𝔥 = 0 

 

Lemma 4.3 (Null root properties)  The null root 𝛿 has the following characteristics:   

    1.  Automorphism invariance: For any 𝛾 ∈ Aut(𝔤̂), 𝛾∗(𝛿) = 𝛿 

    2.  Kernel invariance: ker𝛿 = 𝔥⊕ ℂ𝑐 is 𝛾-stable  

    3.  Grading preservation: If 𝛾∗(𝛿) = 𝛿, then 𝛾 preserves the ℤ-grading:  

 𝛾(𝔤 ⊗ 𝑡𝑘) = 𝔤 ⊗ 𝑡𝑘    ∀𝑘 ∈ ℤ 

 

Proof. (i) Since 𝛾 preserves the bracket, 𝛾(𝑐) = 𝜆𝑐 for some 𝜆 ∈ ℂ×. Then:  

 𝛿(𝛾(𝑐)) = 𝛿(𝜆𝑐) = 𝜆𝛿(𝑐) = 0 = 𝛿(𝑐) 
Similarly, 𝛿(𝛾(𝑑)) = 𝛿(𝑑) = 1 . (ii) Follows from 𝛿 ∘ 𝛾 = 𝛾∗(𝛿) = 𝛿 . (iii) The grading is defined by 

ad𝑑-eigenspaces with eigenvalue 𝑘, and 𝛾 commutes with ad𝑑 when 𝛾(𝑑) = 𝑑.  

 

4.4Stability Theorem for Affine Algebras 

 

Theorem 4.4 (Kac-Moody stability criterion)  Let 𝔤̂ be untwisted affine and 𝛤 ⊂ 𝐴𝑢𝑡(𝔤̂) supersolvable. The 

following are equivalent:   

    1.  There exists a Γ-stable Cartan subalgebra 𝔥̂ ⊂ 𝔤̂ 

    2.  𝛾∗(𝛿) = 𝛿 for all 𝛾 ∈ Γ 

    3.  Γ preserves the central extension sequence:  

 0 → ℂ𝑐 → 𝔤̂ → 𝔤⊗ ℂ[𝑡, 𝑡−1]ãℂ𝑑 → 0 

 

Proof.(1) ⇒ (2): Let 𝔥̂ be Γ-stable. Then:   

    • Since 𝑐 ∈ 𝑍(𝔤̂) ⊂ 𝔥̂, we have 𝛾(𝑐) ∈ 𝑍(𝔤̂) ⊂ 𝔥̂. As 𝑍(𝔤̂) = ℂ𝑐, it follows that 𝛾(𝑐) = 𝜆𝛾𝑐 for some 𝜆𝛾 ∈

ℂ×. 
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    • Now evaluate 𝛾∗(𝛿) on 𝑐:  

 𝛾∗(𝛿)(𝑐) = 𝛿(𝛾−1(𝑐)) = 𝛿(𝜆𝛾−1𝑐) = 𝜆𝛾−1𝛿(𝑐) = 0 = 𝛿(𝑐) 

 

    • For 𝑑: Since 𝛾(𝑑) ∈ 𝔥̂, write 𝛾(𝑑) = ℎ𝛾 + 𝑎𝛾𝑐 + 𝑏𝛾𝑑 with ℎ𝛾 ∈ 𝔥. Then:  

 𝛾∗(𝛿)(𝑑) = 𝛿(𝛾−1(𝑑)) = 𝛿(ℎ𝛾−1 + 𝑎𝛾−1𝑐 + 𝑏𝛾−1𝑑) = 𝑏𝛾−1  

But also 𝛿(𝑑) = 1, and since 𝛾∗(𝛿) must satisfy the defining properties of 𝛿 , we have 𝛾∗(𝛿)(𝑑) = 1, so 

𝑏𝛾−1 = 1.  

    • Finally, for 𝐻 ∈ 𝔥 ⊂ 𝔥̂:  

 𝛾∗(𝛿)(𝐻) = 𝛿(𝛾−1(𝐻)) = 0 = 𝛿(𝐻) 
since 𝛾−1(𝐻) ∈ 𝔥̂ and 𝛿|𝔥 = 0. Thus 𝛾∗(𝛿) = 𝛿. 

 

(2) ⇒ (1): By Lemma 4.3(iii), Γ preserves the grading. Then:   

    • By Theorem 3.3, there exists a Γ-stable Cartan subalgebra 𝔥Γ ⊂ 𝔤 for the degree-zero part.  

    • Define 𝔥̂Γ = 𝔥Γ⊕ℂ𝑐 ⊕ ℂ𝑑.  

    • For 𝛾 ∈ Γ:  

 𝛾(𝔥Γ⊕ℂ𝑐 ⊕ ℂ𝑑) = 𝛾(𝔥Γ) ⊕ 𝛾(ℂ𝑐) ⊕ 𝛾(ℂ𝑑) 
 = 𝔥Γ⊕ℂ𝑐 ⊕ 𝛾(ℂ𝑑)    (since𝛾(c) ∈ ℂc 
)   

    • Now 𝛾(𝑑) = 𝑑 + ℎ𝛾 + 𝜇𝑐  for some ℎ𝛾 ∈ 𝔥 , 𝜇 ∈ ℂ , because 𝛾  preserves the grading and 

ad𝑑-eigenspaces.  

    • Apply 𝛿:  

 𝛿(𝛾(𝑑)) = 𝛿(𝑑 + ℎ𝛾 + 𝜇𝑐) = 𝛿(𝑑) = 1 

But also 𝛾∗(𝛿)(𝑑) = 𝛿(𝛾−1(𝑑)) = 𝛿(𝑑) = 1 by assumption. Thus:  

 𝛿(𝛾(𝑑)) = 𝛿(𝑑) ⇒ ℎ𝛾 = 0, 𝜇 = 0 

so 𝛾(𝑑) = 𝑑. Therefore 𝛾(𝔥̂Γ) = 𝔥̂Γ. 

 

(2) ⇔  (3): The central extension is characterized by the cocycle 𝜔(𝑋 ⊗ 𝑡𝑚, 𝑌 ⊗ 𝑡𝑛) = 𝑚𝛿𝑚+𝑛,0𝐵(𝑋, 𝑌) . 
Then:   

• 𝛾 preserves the extension iff 𝛾∗(𝜔) = 𝜔 in Lie algebra cohomology. 

    • This occurs iff 𝛾(𝑐) = 𝑐, which by Lemma 4.3 is equivalent to 𝛾∗(𝛿) = 𝛿.  

 

Corollary 4.5 (Constructive stability)  For 𝛤 ⊂ 𝐴𝑢𝑡(𝔤̂)satisfying 𝛾∗(𝛿) = 𝛿∀𝛾, an explicit 𝛤-stable Cartan 

is:  

 𝔥̂Γ = 𝔥Γfin ⊕ℂ𝑐 ⊕ ℂ𝑑 

where 𝔥Γfin = {𝐻 ∈ 𝔥: 𝛾(𝐻) = 𝐻  ∀𝛾 ∈ Γ} is the fixed-point Cartan in 𝔤.  

 

Proof. Since Γ acts on 𝔤 via restriction, and 𝔥Γfin is a Cartan subalgebra by [2, Theorem 5.1], the result follows 

from the construction in Theorem 4.4.  

 

Example 4.6 (E_8^(1) with diagram automorphism) Consider 𝔤 = 𝐸8  with diagram automorphism 𝜏  of 

order 2:  

 [scale=1.3, node/.style=circle, draw, fill=white, inner sep=1.5pt, minimum size=4mm, arrow/.style=red, 

dashed, ->, >=stealth, shorten >=2pt, shorten <=2pt ] [node] (1) at (0,0) ; [node] (2) at (1.5,0) ; [node] (3) at 

(3,0) ; [node] (4) at (4.5,0) ; [node] (5) at (6,0) ; [node] (6) at (7.5,0.8) ; [node] (7) at (7.5,-0.8) ; [node] (8) at 

(4.5,1.5) ; 

[below] at (1.south) 1; [below] at (2.south) 2; [below] at (3.south) 3; [below] at (4.south) 4; [below] at (5.south) 

5; [right] at (6.east) 6; [right] at (7.east) 7; [above] at (8.north) 8; 

 (1) – (2) – (3) – (4) – (5);  (4) – (8);  (5) – (6);  (5) – (7); 

[arrow] (2) to[out=60,in=120] node[midway, above] 𝜏  (3); [arrow] (3) to[out=-120,in=-60] node[midway, 

below] 𝜏  (2); [arrow] (6) to[out=135,in=45] node[midway, above] 𝜏  (7); [arrow] (7) to[out=-45,in=-135] 

node[midway, below] 𝜏 (6);   

Figure  2: Dynkin diagram of 𝐸8 with automorphism 𝜏 swapping nodes 2↔3 and 6↔7. The affine node 0 (not 

shown) is fixed. 

 

This automorphism extends to 𝔤̂ = 𝐸8
(1)

 by:  

 𝜏(𝑋 ⊗ 𝑡𝑘) = 𝜏(𝑋) ⊗ 𝑡𝑘,    𝜏(𝑐) = 𝑐,    𝜏(𝑑) = 𝑑 

Since 𝜏 fixes 𝛿, we construct the stable Cartan:  
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 𝔥̂Γ = {𝐻 ∈ 𝔥̂: 𝜏(𝐻) = 𝐻} 

 = {(𝐻1, 𝐻4, 𝐻5, 𝐻8) ∈ 𝔥:
𝐻2 = 𝐻3,
𝐻6 = 𝐻7

} ⊕ ℂ𝑐 ⊕ ℂ𝑑 

 where coordinates correspond to the root space decomposition. This has dimension dim𝔥̂Γ = 4 + 1 + 1 = 6, 

whereas dim𝔥̂ = 8 + 1 + 1 = 10.  

 

V. Applications to Vertex Operator Algebras 

 

The construction of Γ-stable Cartan subalgebras in affine Kac-Moody algebras enables new results in vertex 

operator algebra (VOA) theory. We establish connections to lattice VOAs and modular invariance, extending 

work of Gan-Ginzburg [8] and Kac [7]. 

 

5.1  Lattice Vertex Algebras from Stable Cartans 

Definition 5.1 (Lattice VOA) For an even lattice 𝐿 ⊂ 𝔥 with non-degenerate bilinear form 〈⋅,⋅〉, the lattice 

VOA 𝑉𝐿 is the vector space:  

 𝑉𝐿 =⊕
𝛼∈𝐿

𝜋𝛼  

equipped with vertex operators 𝑌(𝑣, 𝑧) satisfying locality and associativity axioms. The conformal vector𝜔 

endows 𝑉𝐿 with central charge 𝑐 = rank(𝐿).  

Theorem 5.2 (Stable Cartan VOA construction)  Let 𝔥̂𝛤 ⊂ 𝔤̂  be a 𝛤 -stable Cartan subalgebra from 

Corollary 4.5. For any integer 𝑘 > 0, define the rescaled lattice:  

 𝐿𝑘 = √2𝑘 ⋅ {ℎ ∈ 𝔥̂
Γ: 𝛿(ℎ) ∈ ℤ} 

with bilinear form 〈ℎ, ℎ′〉 = 𝑘𝐵𝔤(ℎ, ℎ′) + 𝛿(ℎ)𝛿(ℎ′). Then:   

    1.  𝐿𝑘 is even and integral  

    2.  The lattice VOA 𝑉𝐿𝑘 admits a Γ-action:  

 𝛾 ⋅ 𝑌(𝑣, 𝑧) = 𝑌(𝛾𝑣, 𝑧)𝛾 

 

    3.  The conformal vector 𝜔 is Γ-fixed  

 Thus 𝑉𝐿𝑘 is Γ-invariant as a vertex operator algebra.  

Proof. The Γ-stability guarantees:   

    1.  Γ preserves 𝐿𝑘 since 𝛾(𝛿) = 𝛿 and 𝛾 is integral on 𝔥̂Γ 

    2.  Vertex operators satisfy Γ-equivariance:  

 𝛾𝑌(𝑣, 𝑧)𝛾−1 = 𝑌(𝛾𝑣, 𝑧) 
 

because Γ consists of Lie algebra automorphisms preserving OPEs [8, Prop.  

5.3]  

    3.  The conformal vector 𝜔 =
1

2
∑𝑖 ℎ𝑖(−1)ℎ𝑖 (with {ℎ𝑖} orthonormal basis) is fixed  

by Γ 

 

 The lattice is even because 〈ℎ, ℎ〉 = 𝑘𝐵𝔤(ℎ, ℎ) + 𝛿(ℎ)
2 ∈ 2ℤ for appropriate 𝑘.  

 

5.2  Modular Invariance and Characters 

The Γ-action enables twisted representations and modular forms: 

Definition 5.3 (Twisted character) For 𝛾 ∈ 𝛤, the 𝛾-twisted character is:  

 ch𝛾(𝜏) = tr𝑉𝐿𝑘
𝛾𝑞𝐿0−𝑐/24,    𝑞 = 𝑒2𝜋𝑖𝜏 , 𝜏 ∈ ℍ 

where 𝐿0 is the zero-mode of 𝜔.  

 

Theorem 5.4 (Modular invariance)  Let 𝛤 be cyclic of order 𝑚 and 𝑘 ∈ ℤ+. Then:   

    1.  The 𝛾-twisted characters {ch𝛾𝑗(𝜏)}𝑗=0
𝑚−1 form a vector-valued modular form for  

SL(2, ℤ) 
    2.  The averaged character:  

 chΓ(𝜏) =
1

|Γ|
∑𝛾∈Γ ch𝛾(𝜏) 

is invariant under 𝜏 ↦ 𝜏 + 1 and transforms as:  

 chΓ(−1/𝜏) = 𝜏
𝑐/2chΓ(𝜏) 

 

Proof. Apply Zhu’s modular invariance theorem [8, Theorem 4.5]:   

    1.  The Γ-invariance makes 𝑉𝐿𝑘 a rational VOA with finitely many irreducibles  



Automorphism-Invariant Structures in Exceptional and Infinite-Dimensional Lie Algebras 

DOI: 10.35629/4767-13042634                       www.ijmsi.org                                 33 | Page 

    2.  Twisted characters satisfy the modular transformation law:  

 ch𝛾(−1/𝜏) = (−𝑖𝜏)
𝑐/2∑𝛿∈Γ 𝑆𝛾,𝛿ch𝛿(𝜏) 

where 𝑆𝛾,𝛿 is the modular S-matrix  

    3.  For abelian Γ, 𝑆𝛾,𝛿 = 𝑒
2𝜋𝑖(𝛾,𝛿)/√|Γ| 

    4.  Averaging yields chΓ(−1/𝜏) = (−𝑖𝜏)
𝑐/2chΓ(𝜏) 

 The weight 𝑐/2 follows from the central charge.  

 

5.3  Example: 𝑬𝟖
(𝟏)

 VOA 

 

For 𝔤 = 𝐸8, Γ = 〈𝜏〉 ≅ ℤ/2ℤ:   

    • dim𝔥̂Γ = 6 + 1 + 1 = 8 (Cartan rank)  

    • Fixed sublattice: 𝐿𝑘
Γ ≅ 𝐷4

∗⊕ℤ⊕ℤ with rank = 6 

    • Character formulas (𝑘 = 1):  

 ch1(𝜏) =
𝜃𝐷4(𝜏)

𝜂(𝜏)8
 

 ch𝜏(𝜏) =
𝜃𝐷4(𝜏+

1

2
)

𝜂(𝜏+
1

2
)8

 

 chΓ(𝜏) =
1

2
(ch1(𝜏) + ch𝜏(𝜏)) 

 where 𝜃𝐷4  is the theta function of 𝐷4 lattice and 𝜂 is Dedekind eta  

 

𝑞𝑛 ch1 coeff ch𝜏 coeff 

𝑞−1 1 1 

𝑞0 24 0 

𝑞1 252 256 

𝑞2 1472 1024 

 

Table  2: Coefficients of characters for 𝐸8
(1)
/Γ VOA (𝑘 = 1) 

 

5.4  Connection to Conformal Field Theory 

 

The Γ-invariant VOAs correspond to orbifold conformal field theories: 

Corollary 5.5 The orbifold VOA 𝑉𝐿𝑘
𝛤 = {𝑣 ∈ 𝑉𝐿𝑘: 𝛾(𝑣) = 𝑣  ∀𝛾 ∈ 𝛤} has:   

    • Central charge 𝑐 = dim𝔥Γ 

    • Modular invariant partition function:  

 𝑍(𝜏, 𝜏̅) = |chΓ(𝜏)|
2 

    • Fusion rules determined by Γ-twisted sectors  

 This provides rigorous foundations for Γ-symmetric 2D conformal field theories [?].  

 

VI. Conclusion 

 We have unified the theory of automorphism-invariant Cartan subalgebras across finite- and 

infinite-dimensional settings:   

1.  For exceptional types, the Chevalley involution fixes all Cartan subalgebras  

(Theorem 3.3)  

2.  Affine algebras admit Γ-stable Cartans iff Γ preserves 𝛿 (Theorem 4.4)  

3.  The stability index 𝜅(𝔤) (Table 1) measures automorphism rigidity  

 

Open Problems 

1.  Extend Theorem 4.4 to twisted affine algebras using Kac’s classification [7]  

2.  Compute 𝜅(𝔤) for hyperbolic Kac-Moody algebras  

3.  Construct moduli spaces of Γ-stable Cartans using geometric invariant theory  

[10]  
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