Some New Class of Continuous Functions in Topological Spaces

Pious Missier S¹, Siluvai A ^{2*} and Sucila E ³

¹Head and Associate Professor (Rtd), Department of Mathematics,
Don Bosco College of Arts and Science, Keela Eral, Thoothukudi-628908,

(Affiliated to Manonmaniam Sundaranar University, Abishekapatti - 627 012, Tirunelveli), Tamilnadu, India.

2* Research Scholar, (Reg.No-18131282091015), Department of Mathematics

G. Venkataswamy Naidu College, Kovilpatti, Thoothukudi - 628502,

(Affiliated to Manonmaniam Sundaranar University, Abishekapatti - 627 012, Tirunelveli), Tamilnadu, India.
³ Associate Professor, Department of Mathematics, G.Venkataswamy Naidu College, (Affiliated to Manonmaniam Sundaranar University, Abishekapatti-627 012, Tirunelveli.) Kovilpatti, Thoothukudi 628502,
Tamilnadu, India.

Abstract: The purpose of this paper is to introduce and study new class of continuous functionsnamely $\widehat{S_P}^*$ continuous function, $\widehat{S_P}^*$ irresolute function. Additionally some properties of these functions are investigated. **AMS Subject Classification**: 54A05

Key words: $\widehat{S_P}^*$ - closed sets, $\widehat{S_P}^*$ - open sets, $\widehat{S_P}^*$ - continuous function, $\widehat{S_P}^*$ - irresolute function.

Date of Submission: 10-08-2025 Date of acceptance: 23-08-2025

I. Introduction

One of the important and basic concepts in topology and several branches of mathematics which have been researched by many authors is the continuity functions. N.Levine [9] introduced the concept of semi open P.Battacharya and B.K.Lahiri [1] introduced the concept of semi generalized closed sets in 1987. Continuing this research work in 1991, P.Sundaram et al [18] introduced semi generalized continuous functions and semi generalized irresolute functions in topological spaces J.ArulJesti et al [17] has introduced and studied S_g^* -closed sets, S_g^* -open sets, S_g^* -continuous function, S_g^* - irresolute function. S.PiousMissier and SiluvaiA[16] have introduced the concept of $\widehat{S_P}^*$ -open sets, $\widehat{S_P}^*$ - closed sets and studied their properties in topological spaces. Extending this work, we introduced a new continuous functions called, $\widehat{S_P}^*$ continuous function, $\widehat{S_P}^*$ -irresolute functions in topological spaces.

II. Preliminaries

Throughout this paper, X, Y and Z always denote topological spaces (X, τ) , (Y, σ) and (Z, η) on which no separation axioms are assumed, unless explicitly stated.

Definition 2.1[18] Let A be a subset of a topological space (X, τ) . Then

- (a) A is called a semi-generalized star open set (briefly S_g^* -open) if there is an open set U in X such that $U \subseteq A \subseteq Scl^*(U)$.
- (a) A is called a semi–generalized star closed set (briefly S_g^* -closed) if its complement is a semi-generalized star open set in (X, τ) .

Definition 2.2 [16] A subset A of a topological space (X,τ) is called a $\widehat{S_P}^*$ -open set, if here is an open set U such that $U \subseteq A \subseteq PCl^*(U)$. The collection of all $\widehat{S_P}^*$ -open sets in (X,τ) is denoted by $\widehat{S_P}^*O(X,\tau)$ or $\widehat{S_P}^*O(X)$. **Theorem 2.3** [16] Arbitrary union of $\widehat{S_P}^*$ -open sets is $\widehat{S_P}^*$ -open

Definition 2.4[16] A subset A of a Space X is called $\widehat{S_P}^*$ -closed set if its complement $(X \setminus A)$ is $\widehat{S_P}^*$ -open in X. The class of all $\widehat{S_P}^*$ closed sets in (X, τ) is denoted by $\widehat{S_P}^* \subseteq (X, \tau)$ or simply $\widehat{S_P}^*$ is a collection of X in (X, τ)

19 | Page

Theorem. 2.5[16]:

(i) Every open set is a $\widehat{S_P}^*$ -open set and Every closed set is $\widehat{S_P}^*$ -closed.

- (ii) Every α -open set in X is a $\widehat{S_P}^*$ open set and Every α -closedset is $\widehat{S_P}^*$ closed.
- (iii) Every semi α -open set in X is a $\widehat{S_P}^*$ open set.
- (iv) Every $semi^*$ -open set is $\widehat{S_P}^*$ -open and Every $semi^*$ -closed set is $\widehat{S_P}^*$ -closed.
- (v) Every S_q^* -open set is a $\widehat{S_P}^*$ -open set and Every S_q^* -closed set is $\widehat{S_P}^*$ -closed.

Theorem 2.6 [16] If A is a subset of a topological space X, the following statements are equivalent

- (i) $A \text{ is } \widehat{S_P}^* \text{closed}$
- (ii) There is a pre-closed F in X such that $PInt^*(F) \subseteq A \subseteq F$
- (iii) $PInt^*(Cl(A)) \subseteq A$
- (iv) $PInt^*(Cl(A)) = PInt^*(A)$
- (v) $PInt^*(A \cup Cl(A)) = PInt^*(A)$

Theorem 2.7 [16] If A is any subset of a topological space X,A is $\widehat{S_P}^*$ -closed if and only if $\widehat{S_P}^*Cl(A) = A$.

Theorem 2.8 [16] If A is a subset of a topological space (X, τ) , then $PCl^*(Int(A)) = PCl^*(A)$

Theorem 2.9 [15] Let $f: X \to Y$ be a function. Then

- (i) $Int^*(PCl(f^{-1}(F))) = Int^*(f^{-1}(F))$ for every closed set F in Y
- (ii) $PCl^*(Int(f^{-1}(V))) = PCl^*(f^{-1}(V))$ for every open set V in Y.

Theorem 2.10 [15] Let $f:(X,\tau) \to (Y,\sigma)$ be a function. Then the following are equivalent

- (i) f is contra $\widehat{S_P}^*$ irresolute
- (ii) $f^{-1}(F)$ is $\widehat{S_P}^*$ open in X for each $\widehat{S_P}^*$ closed set F in Y.

III. $\widehat{S_P}^*$ ContinuousFunctions

In this section, we define $\widehat{S_P}^*$ -continuous functions and study their properties. We find characterizations for these functions and discuss the relationship with other similar functions.

Definition 3.1 A function $f: X \to Y$ is said to be $\widehat{S_P}^*$ -continuous if $f^{-1}(V)$ is $\widehat{S_P}^*$ -open in X for every open set V in Y.

Definition 3.2 A function $f: X \to Y$ is said to be $\widehat{S_P}^*$ -continuous at a point x in X if for each open set V in Y containing f(x), there is $\widehat{S_P}^*$ -open set U in X such that $x \in U$ and $f(U) \subset V$.

Theorem 3.3 Let $f: X \to Y$ be a function. Then the following are equivalent.

- (iii) f is $\widehat{S_P}^*$ -continuous
- (iv) f is $\widehat{S_P}^*$ -continuous at each point x in X
- (v) $f^{-1}(F)$ is $\widehat{S_P}^*$ -closed in X for every closed F in Y
- (vi) $f(\widehat{S_P}^*Cl(A) \subseteq Cl(f(A))$ for every subset A of X.
- (vii) $\widehat{S_P}^*Cl(f^{-1}(B)) \subseteq f^{-1}(Cl(B))$ for every subset B of Y.
- (viii) $f^{-1}(Int(B)) \subseteq \widehat{S_P}^*Int(f^{-1}(B))$ for every subset B of Y
- (ix) $Int^*(PCl(f^{-1}(F))) = Int^*(f^{-1}(F))$ for every closed set F in Y
- (x) $PCl^*(Int(f^{-1}(V))) = PCl^*(f^{-1}(V))$ for every open set V in Y.

Proof: (i) \to (ii) Let $f: X \to Y$ be $\widehat{S_P}^*$ -continuous. Let $x \in X$ and V be an open set in Y containing f(x). Then $x \in f^{-1}(V)$. Since f is $\widehat{S_P}^*$ -continuous, $U = f^{-1}(V)$ is $\widehat{S_P}^*$ -open set containing x such that $f(U) \subset V$. This proves (ii).

(ii) \to (i) Let $f: X \to Y$ be $\widehat{S_P}^*$ -continuous at each point of X. Let V be an open set in Y. Let $x \in f(V)$. Then V is an open set in Y containing f(x). By (ii), there is $\widehat{S_P}^*$ -open set U_x in X containing x such that $f(x) \in f(U_x) \subseteq V$. Therefore, $U_x \subseteq f^{-1}(V)$. Hence $f^{-1}(V) = U\{U_x : x \in f^{-1}(V)\}$. By theorem 2.3, $f^{-1}(V)$ is $\widehat{S_P}^*$ -open in X. Hence f is $\widehat{S_P}^*$ -continuous.

(ii) \to (iii) Let $f: X \to Y$ be $\widehat{S_P}^*$ -continuous. Let F be a closed set in Y. Then, $V = (X \setminus F)$ is open in Y. Then by $\widehat{S_P}^*$ -continuity of f, $f^{-1}(V) = f^{-1}(X \setminus F) = X \setminus f^{-1}(F)$ is $\widehat{S_P}^*$ -open in X. Hence $f^{-1}(F)$ is $\widehat{S_P}^*$ -closed in X.

20 | Page

- (iii) \to (iv) Let $A \subset X$. Let F be a closed set containing f(A). Then $f^{-1}(F)$ is a $\widehat{S_P}^*$ -closed set containing A and this implies $\widehat{S_P}^*Cl(A) \subseteq f^{-1}(F)$ and hence $f\left(\widehat{S_P}^*Cl(A)\right) \subseteq F$. Thus $f\left(\widehat{S_P}^*Cl(A)\right) \subseteq Cl(f(A))$
- (iv) \to (v) Let $B \subseteq Y$ and $A = f^{-1}(B) \subset X$. By (iv) $f\left(\widehat{S_P}^*Cl(A)\right) \subseteq Cl(f(A)) \subseteq Cl(B)$ which implies that $\widehat{S_P}^*Cl(A) \subseteq f^{-1}(Cl(B))$. Hence $\widehat{S_P}^*\left(Cl(f^{-1}(B))\right) \subseteq f^{-1}(Cl(B))$ for every subset B of Y.
- $(v) \to (vii)$ Let F be a closed set in Y. Then Cl(F) = F. Therefore, (v) implies $\widehat{S_P}^*Cl(f^{-1}(F)) \subseteq f^{-1}(Cl(F)) = f^{-1}(F)$. Since $f^{-1}(F) \subseteq \widehat{S_P}^*Cl(f^{-1}(F))$, we have $\widehat{S_P}^*Cl(f^{-1}(F)) = f^{-1}(F)$. Hence by Theorem 2.7 (ii), $f^{-1}(F)$ is $\widehat{S_P}^*$ -closed. Therefore, by Theorem 2.6, (iv), $PInt^*(Cl(f^{-1}(F))) = PInt^*(f^{-1}(F))$ for every closed set F in Y.
- $(v) \rightarrow (vi)$ The equivalence of (v) and (vi) can be proved by replacing B by $(X \setminus B)$ and taking complement on both sides and using topological results

$$\widehat{S_P}^*Cl(f^{-1}(X\backslash B)) \subseteq f^{-1}(Cl(X\backslash B))$$

$$\widehat{S_P}^*Cl(Y-f^{-1}(B)) \subseteq Cl(Y-f^{-1}(B))$$

$$\widehat{S_P}^*Int(f^{-1}(B)) \supseteq f^{-1}(Int(B))$$

Which implies $f^{-1}(Int(B)) \subseteq \widehat{S_P}^*Int(f^{-1}(B))$ for every closed set B in Y.

- (iii) \rightarrow (vii) Let F be a closed set in Y. Then by (iii), $f^{-1}(F)$ is $\widehat{S_P}^*$ -closed and hence by Theorem 2.6, (iv), $PInt^*\left(Cl(f^{-1}(F))\right) = PInt^*(f^{-1}(F))$
- $(vii) \rightarrow (viii)$ Let V be an open set in Y. Take $F = (X \setminus V)$. Then F is closed in Y. By assumption $PInt^*(Cl(f^{-1}(X \setminus V))) = PInt^*(f^{-1}(X \setminus V))$. Taking complements on both sides and using topological results we get $PCl^*(Int(f^{-1}(V))) = PCl^*(f^{-1}(V))$
- (viii) \rightarrow (i) Let V be any open set in Y. Then by assumption $PCl^*\left(Int(f^{-1}(V))\right) = PCl^*(f^{-1}(V))$. By definition, we get $f^{-1}(V)$ is $\widehat{S_P}^*$ -open for every open set V in Y. Therefore f is $\widehat{S_P}^*$ -continuous.

Theorem 3.4 Every $\widehat{S_P}^*$ -continuous function in a topological space (X, τ) is $semi^*$ -pre continuous. **Proof:** Let $f: X \to Y$ be $\widehat{S_P}^*$ -continuous. If V is an open set in Y, then $f^{-1}(V)$ is $\widehat{S_P}^*$ -open in X. Since every $\widehat{S_P}^*$ -open set is $semi^*$ -pre-open set, $f^{-1}(V)$ is $semi^*$ -pre-open in X. Therefore, f is $semi^*$ -pre- continuous.

Remark 3.5 Converse of the above theorem need not be true as seen from the following example.

Example 3.6 Let $X = \{a, b, c\} = Y$ and $\tau = \{X, \phi, \{a\}, \{b, c\} \text{ and } \sigma = \{Y, \phi, \{a\}, \{b, c\} \text{. Let } f: (X, \tau) \to (Y, \sigma) \text{ be defined by } f(a) = b, f(b) = c, f(c) = a. \text{ Clearly } f \text{ is not } \widehat{S_P}^*\text{-continuous, since } \{b, c\} \text{ is open in } (Y, \sigma) \text{ but } f^{-1}(\{b, c\}) = \{a, b\} \text{ which is not } \widehat{S_P}^*\text{-open set in } (X, \tau), \text{ however } f \text{ is } semi^*\text{-pre-continuous.}$

Theorem 3.7 Every $\widehat{S_P}^*$ -continuous function in a topological space is semi-pre-continuous. **Proof:** follows from theorem 3.4, since every $semi^*$ -pre-continuous is semi-pre-continuous.

Remark 3.8 Converse of the above theorem need not be true as can be seen from the following example.

Example 3.9 Let $X = \{a, b, c\} = Y$ and $\tau = \{X, \phi, \{a\}, \{b, c\} \text{ and } \sigma = \{Y, \phi, \{a\}, \{b, c\}. \text{ Let } f: (X, \tau) \to (Y, \sigma) \text{ be defined by } f(a) = b, f(b) = c, f(c) = a. \text{ Clearly } f \text{ is not } \widehat{S_P}^*\text{-continuous, since } \{b, c\} \text{ is open in } (Y, \sigma) \text{ but } f^{-1}(\{b, c\}) = \{a, b\} \text{ which is not } \widehat{S_P}^*\text{-open set in } (X, \tau), \text{ however } f \text{ is semi-pre-continuous.}$

Theorem 3.10 Every continuous function in a topological space is $\widehat{S_P}^*$ -continuous. **Proof:** Let $f: X \to Y$ be continuous. Let V be an open set in Y. Then $f^{-1}(V)$ is open in X. But every open set is $\widehat{S_P}^*$ -open. Therefore, $f^{-1}(V)$ is $\widehat{S_P}^*$ -open in X. Hence f is $\widehat{S_P}^*$ -continuous.

Remark 3.11 The converse of the above theorem need not be true as can be seen from the following example.

Example 3.12 Let $X = \{a, b, c, d\} = Y$ and $\tau = \{X, \phi, \{a, b\}, \{a, b, c\} = \sigma$. Let $f: (X, \tau) \to (Y, \sigma)$ be defined by f(a) = b, f(b) = b, f(c) = a, f(d) = c. Clearly f is not continuous, since $\{a, b, c\}$ is an open set of (Y, σ) but $f^{-1}(\{a, b, c\}) = \{d, a, b\}$ which is not open in (X, τ) , however f is $\widehat{S_P}^*$ -continuous.

Theorem 3.13 Every α -continuous functions in a topological space is $\widehat{S_P}^*$ -continuous

Proof: Let $f: X \to Y$ be α -continuous. Let V be open set in Y. Then $f^{-1}(V)$ is α -open in X. But every α -open is $\widehat{S_P}^*$ -open in X. Hence f is $\widehat{S_P}^*$ -continuous.

Remark 3.14 The converse of the above theorem need not be true as can be seen from the following example

Example 3.15 Let $X = \{a, b, c\} = Y$ and $\tau = \{X, \phi, \{a\}, \{b\}\} = \sigma$. Let $f: (X, \tau) \to (Y, \sigma)$. Clearly f is not α -continuous, since $\{a\}$ is an open set of (Y, σ) but $f^{-1}(a) = \{b, c\}$ which is not in α -continuous. However, f is $\widehat{S_P}^*$ -continuous.

Theorem 3.16 Every semi- α -continuous function in a topological space is a $\widehat{S_P}^*$ -continuous function.

Proof: Let $f: X \to Y$ be semi- α -continuous. Let V be open in Y. Then $f^{-1}(V)$ is semi- α -open in X. Then by theorem 2.5. (iii), $f^{-1}(V)$ is $\widehat{S_p}^*$ -open in X. Therefore, f is $\widehat{S_p}^*$ -continuous

Theorem 3.17 Every $semi^*g$ -continuous function in a topological space is a $\widehat{S_P}^*$ - continuous function.

Proof: Let $f: X \to Y$ be $semi^*g$ -continuous. Let V be open in Y. Then $f^{-1}(V)$ is $\widehat{S_P}^*$ -open in X. Therefore, f is $\widehat{S_P}^*$ -continuous.

Remark 3.18 The converse of the above theorem need not be true as can be seen in the following example.

Example 3.19 Let $X = \{a, b, c\} = Y$ and $\tau = \{X, \phi, \{a\}, \{b\}\} = \sigma$. Let $f: (X, \tau) \to (Y, \sigma)$. Clearly f is not $semi^*g$ -continuous, since $\{a\}$ is an open set of (Y, σ) but $f^{-1}(a) = \{b, c\}$ which is not $semi^*g$ -continuous. However, f is $\widehat{S_P}^*$ -continuous.

Theorem 3.20 Let $f: X \to Y$ be $\widehat{S_P}^*$ -continuous and $g: Y \to Z$ be continuous. Then the composite $g \circ f: X \to Z$ is $\widehat{S_P}^*$ -continuous.

Proof: Let Y be an open set in Z. Since g is continuous, $g^{-1}(V)$ is open in Y. Let $g^{-1}(V)$ is open in Y. Since f is $\widehat{S_P}^*$ -continuous, $f^{-1}(V)$ is $\widehat{S_P}^*$ in X. Now $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V)) = f^{-1}(V)$ which is $\widehat{S_P}^*$ -open in X. Hence $g \circ f$ is $\widehat{S_P}^*$ -continuous.

Remark 3.21 The composition of two $\widehat{S_P}^*$ -continuous functions need not be $\widehat{S_P}^*$ -continuous. Let $X = Y = Z = \{a, b, c\}$, $\tau = \sigma = \eta = \{X, \phi, \{a, b\}\}$ and let $f: (X, \tau) \to (Y, \sigma)$ be defined by f(a) = b, f(b) = c, f(c) = c, $g: (Y, \sigma) \to (Z, \eta)$ be defined by g(a) = a, g(b) = b, g(c) = c. Here f and g are $\widehat{S_P}^*$ -continuous.

IV. $\widehat{S_P}^*$ - Irresolute Functions

In this section, we define $\widehat{S_P}^*$ -irresolute function give characterization for this function and study their properties.

Definition 4.1 A function $f: X \to Y$ is said to be $\widehat{S_P}^*$ -irresolute at a point $x \in X$ if for each $\widehat{S_P}^*$ -open set V in Y containing f(x), there is a $\widehat{S_P}^*$ -open set U of X such that $x \in U$ and $f(U) \subseteq V$.

Definition 4.2 A function $f: X \to Y$ is said to be $\widehat{S_P}^*$ -irresolute if $f^{-1}(V)$ is $\widehat{S_P}^*$ -open in X for every $\widehat{S_P}^*$ -open set V in Y.

Definition 4.3 A function $f: X \to Y$ is said to be contra $\widehat{S_P}^*$ -irresolute if $f^{-1}(V)$ is $\widehat{S_P}^*$ - closed in X for every $\widehat{S_P}^*$ -open V in Y.

Definition 4.4 A function $f: X \to Y$ is said to be strongly $\widehat{S_P}^*$ -irresolute if $f^{-1}(V)$ is open in X for every $\widehat{S_P}^*$ -open set V in Y.

Definition 4.5 A function $f: X \to Y$ is said to be contra strongly $\widehat{S_P}^*$ -irresolute if $f^{-1}(V)$ is closed in X for every $\widehat{S_P}^*$ -open set V in Y.

Theorem 4.6

- Every $\widehat{S_P}^*$ -irresolute function is $\widehat{S_P}^*$ -continuous.
- Every contra $\widehat{S_P}^*$ -irresolute function is contra $\widehat{S_P}^*$ -continuous (ii)
- Every strongly $\widehat{S_P}^*$ -irresolute function is $\widehat{S_P}^*$ -irresolute and hence $\widehat{S_P}^*$ -continuous. (iii)
- Every contra strongly $\widehat{S_P}^*$ -irresolute function is contra $\widehat{S_P}^*$ -irresolute (iv)
- Every constant function is $\widehat{S_P}^*$ -irresolute

Proof: (i) Let $f: X \to Y$ be a $\widehat{S_P}^*$ -irresolute function. Let V be open in Y. By Theorem 2.5(i), V is $\widehat{S_P}^*$ -open. Since f is $\widehat{S_P}^*$ -irresolute, $f^{-1}(V)$ is $\widehat{S_P}^*$ -open in X. Therefore, f is $\widehat{S_P}^*$ -continuous.

- (ii) Let $f: X \to Y$ be a contra $\widehat{S_P}^*$ -irresolute function. Let V be opn in Y. By Theorem 2.5(i), V is $\widehat{S_P}^*$ open. Since f is contra $\widehat{S_P}^*$ -irresolute, $f^{-1}(V)$ is $\widehat{S_P}^*$ -closed in X. Therefore, f is contra $\widehat{S_P}^*$ -continuous. (iii) Let $f: X \to Y$ be a strongly $\widehat{S_P}^*$ -irresolute function. Let V be $\widehat{S_P}^*$ -open in Y. Since f is strongly
- $\widehat{S_P}^*$ -irresolute, $f^{-1}(V)$ is open in X. By Theorem 2.5(i), $f^{-1}(V)$ is open in X. Therefore, f is $\widehat{S_P}^*$ -irresolute and by (i), f is $\widehat{S_P}^*$ -continuous.
- (iv) Let $f: X \to Y$ be a contra strongly $\widehat{S_P}^*$ -irresolute function. Let V be $\widehat{S_P}^*$ -open in Y. Since f is contra strongly $\widehat{S_P}^*$ -irresolute, $f^{-1}(V)$ is closed in X. By Theorem 3.10, $f^{-1}(V)$ is $\widehat{S_P}^*$ -closed. Therefore, f is
- (v) Let $f: X \to Y$ be a constant function defined by $f(x) = y_0$ for all x in X, where y_0 is a fixed point in Y. If V is a $\widehat{S_P}^*$ -open set in Y. Then $f^{-1}(V) = X$ (or) ϕ according as $y_0 \in V$ or $y_0 \notin V$. Thus $f^{-1}(V)$ is $\widehat{S_P}^*$ open in *X*. Hence f is $\widehat{S_P}^*$ -irresolute.

Remark 4.7 The converse of the statements of the above theorem need not be true.

Example 4.8 Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a, b\}\}$. Define $f: (X, \tau) \to \{x, b\}$ (Y, σ) by f(a) = a, f(b) = c, and f(c) = b. Then f is $\widehat{S_P}^*$ -continuous but not strongly $\widehat{S_P}^*$ -continuous.

Theorem 4.9 Every contra $\widehat{S_P}^*$ -irresolute function is contra $\widehat{S_P}^*$ -continuous.

Proof: Let $f: X \to Y$ be a contra $\widehat{S_P}^*$ -irresolute function. Let V be an open set in Y. Since f is contra $\widehat{S_P}^*$ irresolute, $f^{-1}(V)$ is closed in X. Hence f is contra $\widehat{S_p}^*$ -irresolute, $f^{-1}(V)$ is closed in X. Hence, f is contra $\widehat{S_p}^*$ -continuous.

Remark 4.10 The converse of the above theorem is not true as shown in the following example.

Example 4.11 Let $X = Y = \{a, b, c, d\}$ and $\tau = \sigma = \{X, \phi, \{a\}, \{a, b, c\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be defined by f(a) = d, f(b) = c, f(c) = b, and f(d) = a. Here f is contra $\widehat{S_p}^*$ -continuous but not contra $\widehat{S_p}^*$ -irresolute.

Theorem 4.12 For a function $f: X \to Y$ the following statements are equivalent.

- f is contra $\widehat{S_P}^*$ -irresolute (i)
- (ii)
- The inverse image of each $\widehat{S_P}^*$ -closed set in Y is $\widehat{S_P}^*$ -open in X. For each $x \in X$ and each $\widehat{S_P}^*$ -closed set F in Y with $f(x) \in F$, there exists a $\widehat{S_P}^*$ -open set U in X such
- $PCl^*(int(f^{-1}(F))) = PCl^*(f^{-1}(F))$ for every $\widehat{S_P}^*$ -closed set F in Y.
- $PInt^*(Cl(f^{-1}(V))) = PInt^*(f^{-1}(V))$ for every $\widehat{S_P}^*$ -open set V in Y.

Proof: (i) \rightarrow (ii) Let F be a $\widehat{S_P}^*$ -closed in Y. Then $Y \setminus F$ is $\widehat{S_P}^*$ -open in Y. Since f is contraction $\widehat{S_P}^*$ -irresolute, $f^{-1}(Y \setminus F) = X \setminus f^{-1}(F)$ is $\widehat{S_P}^*$ -open in Y. Hence $f^{-1}(F)$ is $\widehat{S_P}^*$ -open in X. This proves (ii). (ii) \to (iii) Let F be a $\widehat{S_P}^*$ -closed in X. Then $U = f^{-1}(F)$ is a $\widehat{S_P}^*$ -open set in X. Then there exist $\widehat{S_P}^*$ -

- open U in X such that $x \in U$ and $f(U) \subseteq F$. This proves (iii)
- (iii) \rightarrow (iv) Let F be a $\widehat{S_P}^*$ -closed set in Y and $x \in f^{-1}(F)$, then $f(x) \in F$. By our assumption there exists a $\widehat{S_P}^*$ -open set U_x in X containing x such that $f(x) \in f(U_x) \subseteq F$ which implies that $x \in U_x \subseteq f^{-1}(F)$. This follows that $f^{-1}(F) = \bigcup \{U_x : x \in f^{-1}(F)\}$. By Theorem 2.3, $f^{-1}(F)$ is $\widehat{S_P}^*$ -open in X. By Theorem 2.6 (iv), $PCl^*(Int(f^{-1}(F))) = PCl^*(f^{-1}(F))$. This proves (iv)
- (iv) \rightarrow (v) Let V be a $\widehat{S_P}^*$ -open set in Y. Then $Y \setminus V$ is $\widehat{S_P}^*$ -closed in Y. By Assumption, $PCl^*(Int(f^{-1}(Y\setminus V))) = PCl^*(f^{-1}(Y\setminus V))$. Taking the complement, we get $PInt^*(Cl(f^{-1}(V))) = PCl^*(Int(f^{-1}(Y\setminus V)))$ $PInt^*(f^{-1}(V))$. This proves (v).

 $(v) \to (i)$ Let V be a $\widehat{S_P}^*$ -open set in Y. Then by assumption, $PInt^*\left(Cl(f^{-1}(V))\right) = PInt^*(f^{-1}(V))$. By Theorem $2.9, f^{-1}(V)$ is $\widehat{S_P}^*$ -closed in X. Hence f is contra $\widehat{S_P}^*$ -irresolute. This proves (i)

Theorem 4.13 Let $f: X \to Y$ be a function. Then the following statements are equivalent.

- (i) f is strongly $\widehat{S_P}^*$ -irresolute
- (ii) $f^{-1}(F)$ is closed in X for every $\widehat{S_P}^*$ -closed set F in Y.
- (iii) $f(Cl(A)) \subseteq \widehat{S_P}^*Cl(f(A))$ for every subset A of X.
- (iv) $Cl(f^{-1}(B)) \subseteq f^{-1}(\widehat{S_P}^*Cl(B))$ for every subset B of Y.
- (v) $f^{-1}(\widehat{S_P}^*Int(B)) \subseteq Int(f^{-1}(B))$ for every subset B of Y.

Proof: (i) \rightarrow (ii) Let F be a $\widehat{S_P}^*$ -closed set in Y. Then $V = Y \setminus F$ is $\widehat{S_P}^*$ -open in Y. Then by our assumption, $f^{-1}(V)$ is open in X. Hence, $f^{-1}(F) = X \setminus f^{-1}(V)$ is closed in X. This proves (ii).

- (ii) \to (i) Let V be a $\widehat{S_P}^*$ -open set in Y. Then $F = Y \setminus V$ is $\widehat{S_P}^*$ -closed. By (ii) $f^{-1}(F)$ is closed. Hence $f^{-1}(V) = X \setminus f^{-1}(F)$ is open in X. Therefore, f is strongly $\widehat{S_P}^*$ -irresolute.
- (ii) \to (iii) Let $A \subseteq X$. Let F be a $\widehat{S_P}^*$ -closed set containing f(A). Then by (ii), $f^{-1}(F)$ is a closed set containing A. This implies that $Cl(A) \subseteq f^{-1}(F)$ and hence $f(Cl(A)) \subseteq F$. Therefore $f(Cl(A)) \subseteq \widehat{S_P}^*Cl(f(A))$.
- (iii) \rightarrow (iv) Let $B \subseteq Y$ and let $A = f^{-1}(B)$. By assumption, $f(Cl(A)) \subseteq \widehat{S_P}^*Cl(f(A)) \subseteq \widehat{S_P}^*Cl(B)$. This implies that $Cl(A) \subseteq f^{-1}(\widehat{S_P}^*Cl(B))$. This proves (iv).
- (iv) \rightarrow (ii) Let F be $\widehat{S_p}^*$ -closed in Y. Then by Theorem 3.2.2 (ii) $\widehat{S_p}^*Cl(F) = F$. Therefore, (iv) implies $Cl(f^{-1}(A)) \subseteq f^{-1}(F)$. Hence $Cl(f^{-1}(F)) = f^{-1}(F)$. Therefore $f^{-1}(F)$ is closed. This proves (ii)
- $(iv) \rightarrow (v)$ The equivalence of (iv) and (v) follows from taking the complements and using results in topology.

Theorem 4.14 For a function $f: X \to Y$, the following statements are equivalent.

- (i) f is contra strongly $\widehat{S_P}^*$ -irresolute
- (ii) The inverse image of each $\widehat{S_P}^*$ -closed set in Y is open in X.
- (iii) For each $x \in X$ and each $\widehat{S_P}^*$ -closed set F in Y with $f(x) \in F$, there exists an open set U such that $x \in U$ and $f(U) \subseteq F$

Proof: (i) \rightarrow (ii) Let F be a $\widehat{S_P}^*$ -closed set in Y. Then $Y \setminus F$ is $\widehat{S_P}^*$ -open in Y. Since f is contra strongly $\widehat{S_P}^*$ -irresolute, $f^{-1}(F)$ is open in X. This proves (ii).

- (ii) \to (i) Let U be a $\widehat{S_P}^*$ -open set in Y. Then $Y \setminus U$ is $\widehat{S_P}^*$ -closed in Y. By assumption, $f^{-1}(Y \setminus U) = X \setminus f^{-1}(U)$ is open in X. Hence $f^{-1}(U)$ is closed in X.

 (ii) \to (iii) Let F be a $\widehat{S_P}^*$ -closed set in Y containing f(x). Then $U = f^{-1}(F)$ is open in X containing X
- (ii) \rightarrow (iii) Let F be a \widehat{S}_P -closed set in Y containing f(x). Then $U = f^{-1}(F)$ is open in X containing x such that $f(U) \subseteq F$
- (iii) \to (i) Let F be a $\widehat{S_P}^*$ -closed set in Y. Let $x \in f^{-1}(F)$. Then $f(x) \in F$. By assumption, there is an open set U_x in X containing x such that $f(x) \in f(U_x) \subseteq F$ which implies that $x \in U_x \subseteq f^{-1}(F)$. Hence, $f^{-1}(F)$ is open in X.

Theorem 4.15 Let $f: X \to Y$ be a $\widehat{S_P}^*$ -irresolute. Let $g: Y \to Z$ be $\widehat{S_P}^*$ -continuous. Then $g \circ f: X \to Z$ is $\widehat{S_P}^*$ -continuous.

Proof: Let W be an open set in Z. Then by $\widehat{S_P}^*$ -continuity of g, $g^{-1}(W)$ is $\widehat{S_P}^*$ -open in Y. Since f is $\widehat{S_P}^*$ -irresolute, $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$ is $\widehat{S_P}^*$ -open in X. Hence $g \circ f$ is $\widehat{S_P}^*$ -continuous.

Theorem 4.16 Let $f: X \to Y$ and $g: Y \to Z$ be $\widehat{S_P}^*$ -irresolute then $g \circ f: X \to Z$ is $\widehat{S_P}^*$ -irresolute. **Proof:** Let W be a $\widehat{S_P}^*$ -open set in Z. Since g is $\widehat{S_P}^*$ -irresolute $g^{-1}(W)$ is $\widehat{S_P}^*$ -open in Y. Since f is $\widehat{S_P}^*$ -irresolute, $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$ is $\widehat{S_P}^*$ -open in X. Hence $g \circ f$ is $\widehat{S_P}^*$ -irresolute.

Theorem 4.17 Let $f: X \to Y$ be $\widehat{S_P}^*$ -irresolute and $g: Y \to Z$ be contra $\widehat{S_P}^*$ -continuous. Then $g \circ f: X \to Z$ is contra $\widehat{S_P}^*$ -continuous.

Proof: Let W be an open set in Z. Since g is contra $\widehat{S_P}^*$ -continuous, $g^{-1}(W)$ is $\widehat{S_P}^*$ -closed in Y. Since f is $\widehat{S_P}^*$ -irresolute, then by Theorem 4.3.6 (ii), $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$ is $\widehat{S_P}^*$ -continuous

Theorem 4.18 Let $f: X \to Y$ be $\widehat{S_P}^*$ -irresolute and $g: Y \to Z$ is contra $\widehat{S_P}^*$ -irresolute. Then $g \circ f: X \to Z$ is contra $\widehat{S_P}^*$ -irresolute.

Proof: Let V be a $\widehat{S_P}^*$ -open set in Z. Since g is contra $\widehat{S_P}^*$ -irresolute, $g^{-1}(V)$ is $\widehat{S_P}^*$ -closed in Y. Since f is $\widehat{S_P}^*$ -irresolute $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is $\widehat{S_P}^*$ -closed in X. Hence, $g \circ f$ is contra $\widehat{S_P}^*$ -irresolute.

Theorem 4.19 Let $f: X \to Y$ be contra $\widehat{S_p}^*$ -irresolute and let $g: Y \to Z$ be $\widehat{S_p}^*$ -irresolute. Then $g \circ f: X \to Z$ is contra $\widehat{S_P}^*$ -irresolute.

Proof: Let V be $\widehat{S_P}^*$ -open set in Z. Since g is $\widehat{S_P}^*$ -irresolute, $g^{-1}(V)$ is $\widehat{S_P}^*$ -open in Y. Since f is contra $\widehat{S_P}^*$ -irresolute, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is $\widehat{S_P}^*$ -closed in X. Hence $g \circ f$ is contra $\widehat{S_P}^*$ -irresolute.

Theorem 4.20 Let $f: X \to Y$ be contra $\widehat{S_P}^*$ -irresolute. Let $g: Y \to Z$ be contra $\widehat{S_P}^*$ -irresolute then $g \circ f: X \to Z$ is $\widehat{S_P}^*$ -irresolute.

Proof: Let V be $\widehat{S_P}^*$ -open set in Z. Since g is contra $\widehat{S_P}^*$ -irresolute, $g^{-1}(V)$ is $\widehat{S_P}^*$ -closed in Y. Since f is contra $\widehat{S_P}^*$ -irresolute, by Theorem 4.3.1 (ii), $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is $\widehat{S_P}^*$ -open in X. Hence $g \circ f$ is $\widehat{S_P}^*$ irresolute.

REFERENCES

- Bhattacharyya, P. and Lahiri, B.K., Semi-generalized closed sets in Topology, Ind. Jr. Math., 29(1987), 375-382.
- [1]. [2]. Biswas, N., On Some Mappings in Topological Spaces, Bull. Calcutta Math. Soc., 61(1969), 127-135.
- Caldas M., Weak and Strong forms of irresolute maps, Internat. J. Math. & Math. Sci. 23(4) (2000) 253-259
- [4]. Chandrasekhara Rao K and Joseph K, "semi star generalized closed sets" Bulletin of Pure and Applied Sciences, 19E (2), (2000) .281-290.
- [5]. Dontchev, J. and Noiri, T., Contra-semicontinuous functions, Mathematica Pannonica, 10(2) (1999), 159-168.
- [6]. Dunham, W., A new closure operator for Non-T₁topologies, Kyungpook Math. J. 22 (1) (1982), 55-60.
- [7]. Levine, N., Strong continuity in topological spaces, Amer. Mat. Monthly 67(1960), 269
- [8]. Levine, N., Semi-open sets and Semi-continuity in topological spaces, Amer. Mat. Monthly 70(1)(1963), 36-41.
- Levine, N., Generalized Closed Sets in Topology, Rend. Circ. Mat. Palermo 19(2)(1970), 89-96.
- Noiri, T., A Generalization of Closed Mappings, Atti. Accad. Naz. Lince Rend. Cl. Sci. Fis. Mat. Natur., 8 (1973), 210-214
- PiousMissier, S. and Anbarasi Rodrigo, P., Some Notions of nearly open sets in Topological Spaces, International Journal of [11]. Mathematical Archive, 4(12), 2013, 12-18.
- Pious Missier S and Robert A, "A new Class of sets weaker than α open sets," International Journal of Mathematics and soft computing "vol.4, Issue 2,(2014),197-206.
- Pious Missier S and P. Anbarasi Rodrigo, Strongly α^* continuous functions in Topological [13]. Spaces. Mathematics, Volume 10, Issue 4 Ver.I (Jul-Aug) PP 55-60
- Pious Missier S and P.Anbarasi Rodrigo, Contra α^* continuous functions in Topological Spaces, International Journal of Modern Engineering Research , Vol 4, Iss.8, Aug 2014.
- Pious Missier S, Siluvai A, Between semi* α-closed sets and α*- closed sets in topological spaces, Journal of Computational [15]. Analysis and Applications, Vol 33, No.7,2024.
- Pious Missier S, Siluvai A and Gabriel Raja, A new class of star generalized open sets weaker than semi * α-open sets, International Journal of Food and Nutritional Sciences, vol.11,(12),2022.
- [17]. Pious Missier. S and Arul Jesti.J., Properties of Sg*-functions in topological spaces, Mathematical Sciences International Research Journal (IMRF), Vol.3, Issue.2, 2014, 911-915.
- [18]. Sundaram.P, Maki.H and Balachandran.K., Semi Generalized Continuous Maps and Semi $T_{\underline{1}}$ spaces, Bull.Fukuoka Univ.Ed., 40(1991), 33-40.