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ABSTRACT: The general second-order elliptic eigenvalue problem is of great significance and is closely related
to various fields such as fluid mechanics, quantum mechanics, and structural engineering analysis. Classical
finite element methods have been successfully applied to solve such problems, but in some cases, particularly
when dealing with complex boundary conditions and non-homogeneous media, the efficiency and accuracy of
traditional methods may not meet the requirements. To improve both the solutionaccuracy, the mixed finite
element method has been proposed and has achieved significant results in solving secondorder eigenvalue
problems. The mixed finite element method introduces auxiliary variables (which generally also have practical
physical significance),allowing for a reduction in the order of high-order differential equations, thereby
relaxing the smoothness requirements of the finite element space. This paper uses the mixed finite element
method to study general secondorder eigenvalue problems, and by introducing asymptotically exact a-posterior
error indicators through low-order interpolation, it provides a complete posterior error estimate for the method.
The performance of this indicator is verified in an adaptive mesh refiner.
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I. INTRODUCTION

The second-order eigenvalue problem is widely applied in various fields such as vibration analysis,
material mechanics, acoustics, and quantum mechanics. In the classical finite element method, eigenvalue
problems are typically solved by discretizing the differential operators being approximated. However, these
methods often rely on the direct solution of higher-order differential equations, making the treatment of
boundary conditions, material inhomogeneity, and complex geometries relatively challenging. Especially for
high-frequency problems with irregular boundaries, traditional methods may struggle to meet the demands of
both computational efficiency and accuracy.

As an advanced branch of the finite element method, the mixed finite element method was initially
established by Babuska and Brezzi in the early 1970s, who developed the general theory of the method[1, 2]. In
the early 1980s, Falk and Osborn proposed an improved version of the method[3].[4,5,6,7]provides extensive
research on mixed problems, presenting numerous mixed finite element formulations, and further investigates
the theoretical development and practical applications of the mixed finite element method.

There are several works for secondorder elliptic eigenvalue problems by the mixed formulation and
their numerical methodssuch as Babuska and Osborn[8,9], Mercier, Osborn, Rappaz, and Raviart[11], etc.
Based on thegeneral theory of compact operators[10],0sborn[12],Mercier,Osborn, Rappaz, and Raviart[11] give
abstract analysis for the eigenpair approximationsby mixed/hybrid finite element methods. [13]discusses the
L?(€2) norm and L” norm estimates of eigenvalues and eigenfunctions for a more general class of eigenvalue

problems.[14]propose a method to improve the convergence rate of the lowest order Raviart-Thomas mixed
finite element approximations for the second order elliptic eigenvalue problem.[15]based on a class of super-
convergence results for eigenfunction approximations, a residualtype a posteriori error estimator for the mixed
finite element method in solving general second-order elliptic eigenvalue problems is derived and
analyzed.[16]proposes a non-standard mixed finite element method for the Dirichlet boundary value problem of
second-order elliptic equations.

This paperusing the ideas of the references above. This paperapplies the two-dimensional mixed finite
element method to solve the secondorder elliptic eigenvalue problem. To effectively reduce the computational
cost while maintaining good solution accuracy,low-order interpolation is proposed and analyzed, and an
asymptotically exact a-posterior error indicator is established. Numerical results demonstrate that, while
ensuring computational efficiency, the proposed method significantly improves the solution accuracy and is
suitable for solving secondorder elliptic eigenvalue problems on complex geometries and irregular meshes.
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In the entire paper, C denotes a general constant that is independent of the mesh sizebut sometimes
depend on the eigenvalues of the problem(1).

Il. BASIC THEORETICAL PREPARATION
Let L%(Q) bea standard Lebesgue space,where1<q <0, Q< R? Thecorresponding norm is expressed
q

by[-[], @ .In this paper,the norm of L"(Q) is represented byl-[}, .We also use H*(€2) to express the standard

Hilbert Sobolev space of real functions defined at Q — R*with index s >0and the corresponding norm and
semi-norm are -, and |-|,, .Let Q be thebounded open polygon regionof R? ,and let 6Q represent its
boundary. In this paper, we are concernedwith the following second order elliptic eigenvalue problem:
{—V-(K(x, y)Vp)=2p, inQ, M
p=0, on oQ,
where K = (g;),,, is @ symmetric positive definite matrix with a; eW(Q)for 1<i, j<2,K* = (8),. s also

a symmetric positive definite matrix, Q@ — R*is a bounded domain with Lipschitz boundary 6Q,V and V-
denote the gradient and divergence operators.

I1l. MIXED FINITE ELEMENT METHOD
We define a new vector-valued functionp = KVp.

Then(1)can be transformed into the following equivalent formulation
K'n-Vp=0, inQ,
-V.n=A4p, onoQ, 2)
p=0, on oQ.
Next, define the spaces
W =L1*(Q),G=L(Q), H=[(QFT,
V=H(div,Q) = {n e[*(Q) : V-pe (@)},
equipped with the norm
Du[ﬁ(div,ﬁ): (Dll[g +DV'HQ§) .
Then,the weak form for the problem(1) can be defined as follows:
Find (1,p, p) e RxVxW , (n, p) = (0,0) ,suchthat
{a(u, ¢)-b(e,p)=0, VeeV,
b(p,v) = A(p,Vv), vveW,
where a(,-), b(,-) are bilinear forms defined by
a(w,9) = [ n-Kpdx, b(g, p)=—] dive- pdx, (p,v)= [ pvdx.

Clearly,the bilinear forms a(,-) issymmetricand the bilinear forms defined above have the following
characteristics:

@)

la(u.w)|~ C, Opl0nl,, *)
la(w. @)~ C,0nl 0ol (5)
Ibo. P C, @40 Pl ©)

where C, (i =0,1, 2) represents a constant independent of h .
For the eigenvalue 4 ,there exists the following Rayleigh quotient expression
4= —amp)+2b( p)
(p.p)
Form[9],we know eigenvalue problem(3)has an eigenvalue sequence {xlj} :

0S4 <Ay <A <o lim g, = oo,

and the associated eigenfunctions
(P (g P2 (e P+
where (p,, p,) =,
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Theoreml.Let (4, p) be an eigenpair of equation (1), p= KVp then (4,p, p) satisfies equation (3);

if (1,n, p) satisfies equation (3), then (A, p) is an eigenpair of equation(1), andp=KVp.

Proof. From the derivation above, the first part of the theorem has been established. Now we will prove the
second part of the theorem.

Let (4,n, p) satisfy equation (3), and consider the auxiliary problem

{—v (KX, y) VP)=4p, inQ, @
p=0, on oQ.
Let fi = KV} ,then the mixed variational form of(7)is:
Find (4,1, Pp) € RxV xW ,such that
{a(ﬁ.tp) —b(g,p)=0, VeeV, @®)
b(i,v) = A(p,v), v eW.
From the subtraction of (3) and(8), we get:find (n—p, p— p) € V xW ,such that
{a(u —1,9)-b(e,p-p) =0, VoeV, ©)
b(n-fi,v) =0, Vv eW.

Take form(9),let g =p—p,v=p—p then
a(p-p,p—p)-b(p—p,p-p)=0
{b(u—ﬁ, p-p)=0
Add the above two equations, and we get a(p—fi, p—f) = 0,this illustratesp=i.
Substitute p = jtinto the first equation of (9), and we getb(¢, p— p) =0 ,i.efg(p— p)-divedx =0,V e V .
Take o satisfied Aw= p— P, and let¢ = Vw ,then by dive = p—p, pushed p= .
This proves (A, p) is aneigenpair ofequation(1), and p=KVp.

We complete the proof.
Now,let’s define the mixed finite element approximations of the problem(3).Let 5, be a partition of O

into finite elements(triangles),which is regular and has a mesh size h .Associated with the partition 5, ,we
define the finite dimensional spaces W, and V, (see[4]),where for any « € J,, P, (i)(n > 0) denotes the spaces of

polynomial of degree not greater thannonk .
Define

Vi ={d, e VNC* (D)’ :q, |, P,(x)*, Vk e T},
for each k € 3, and the barycentric coordinates 4,4,4,0n « ,define
B=(span{A4A4, ik e Ty, j=1,23}),
and
V, =V, ®B.
Apparently, we have Vi <V, c V.
Afterward,define
W, ={v, e Hy(Q) NC*(Q):V, | € P,(k), Vx e T, | .
Apparently, we have W, cW .
With the discrete spaces defined above,the mixed finite element approximation of (3) is given by:
Find (4., p,) € RxV, xW,, (m,, p,) # (0,0) ,such that
{a(uh,q)) ~b(e, p,) =0, VoeV,
b(py, V) = 4, (Py. V), wWeW,.
For the eigenvalue 4, ,there exists the following Rayleigh quotient expression
J, = —a(w,,p,) +2b(m,, p,) .

(Prs Pr)
Form[9] theeigenvalue problem(10)has eigenvalues

Ogﬂmh S"'ﬂk,h S"'Sﬂw,h’

(10)

and the corresponding eigenfunctions
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(ul,h! pl,h):(llz,m pz,h)7"'(uk,h! pk,h)"‘(uN,hr pN,h) )
1<i, j<N,N=dimW,.
For any f e L?(Q) ,consider the boundary value problem corresponding to(3)and its mixed finite element
approximation: find (6,u) € V xW, (o,u) = (0,0) ,such that

where (pi,h' pj,h) =9,

ij

{a(c,q)) —b(p,u)=0, VeeV, 1)
b(e,v) =(f,v), v eW.
find (6,,u,) € V, xW,, (s, u,) = (0,0) ,such that
{a(ch ,9)—b(e,u,)=0, VeeV,, 12)
b(o,,v)=(f,v), wWeW,.

IV. OPERATORFORMANDITSPROPERTIES
Forany f eL?(Q), assume that (11) has a unique solution (s,u) , and since V, < V,W, cW , itis
known that (12)has a unique solution (o,,,u, ) .Thus, a linear bounded operator can be defined
T:GH5>WcGTf =u.T,:G->W, cGT,f =u,.
S:G—»>VcH,Sf=6.5,:G>V,cH,S, f=0,.
Thus, the eigenvalue problems (3) and (10) have equivalent operator forms, respectively.

{/lTp =p 13)
S(Ap)=n

{/IhTh Pn = Py (14)
S, (4,p,) =m,

Therefore, solving for the eigenpair of (3) for (A, n, p) can be reduced to solving for the eigenpair of the
operator T for (t=47"), p) and p=S(Ap); similarly,solving for the eigenpair of (10) for (A ,m,,p,) can be
reduced to solving for the eigenpair of the operator T, for ((t, =4,7), p,) and p, =S, (1.p,) -

For the linear bounded operators T and S defined in above,for any f € L?(Q), the following relations

hold:
{a(Sf ,0)—b(e,Tf)=0, VeeV, (15)
b(Sf,v) =(f,v), YveW.
For this elliptic problem, the following regularity estimate holds
OTf O, <COf L.

Where% < I, <1, depends on the shape of the domain.

For the discrete version of the linear bounded operators T, and S, defined in above, for any f € L*(Q2),
thefollowing relationshold:
as, f,9)—b(e,T,f)=0, VoeV,,
{b(Shf,v):(f,v), vweW.
Lemmal.(Lemmal in[13]) T and T, are self-adjoint operators.

(16)

Proof.For any g € L*(Q) ,lete =Sg,u =Tg ,similarly, we have
{a(Sg,tp) ~b(p,Tg)=0, VeeV,
b(Sg,v) =(g,v), Vv eW.
Bytaking ¢ = Sg,v =Tg in(15), we get
a(sf,Sg)—h(Sg, Tf)=0
{b(Sf T9) = (f,T9)

(17)

(18)

Bytaking ¢ = Sf,v=Tf in(17), we get
{a(Sg,Sf)—b(Sf,Tg) =0

(19)
b(Sg,Tf) = (g, Tf)
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From the symmetry of a(.,-) ,(18)and (19),we can obtain
(f,Tg), =b(Sf,Tg) =a(Sg, Sf) =a(Sf,Sg) =b(Sg,Tf) = (g, Tf),.
Thus, T is self-adjoint; similarly, it can be proven that T, is self-adjoint.

V. APRIORI ERROR ESTIMATEFOR EIGENFUNCTIONS
Lemmaz2.For any ¢, € z, there exists a constant « independent of h, such that the following inequality holds:

a(@,, 9,) %o N, [fy, Vo, €Z, , (20)
where Z, ={¢, €V, :b(@,,v,) =0,Vv, eW, }
Proof. The property (20) is obvious.

Lemma3.(Lemma 2.27 in[4])For any ¢ € V and v € H; (Q) ,both

(dive,v) = (¢, V), (21)
where (-,-) represents the inner product of L*(€)>.
Proof.The property (21) can be proven using the divergence theorem.

Corollary 1.For any uc H3(Q), we have

lu-pul” h'|ul,, 1<t<2, (22)
where p, 1 H*(Q) —>W, isthe L*-projection operator.
Proof.see[4].

Let Q,:V — V! be the L? -projection, such that for any ¢ € V , it holds that

(0-Q,0.9,)=0,Yg, €V,, (23)
then

Ho—-Qeh" hkl‘Plk! (24)
where ¢ e[H*(Q)],0<k <2.

3
Define theoperator 1, 1V —V, ,such that for any ¢ € V ,itholds thatr,@ | = Q¢ |, + Xa; A4 A4, Ve T,
j=1

where Q, is defined by(23), and «; € R?*(j =1,2,3) is an undetermined constant vector.
Assume that there exists an operator r, : V — V, ,such that for any ¢ €V ,it holds that
b(e—r,0,v,) =0V, eW,, (25)

3
for any v, eW, ,since Vv, | is a first-degree polynomial vector, without loss of generality, let Vv, | =>34 ,
i=1

where £ (i =1,2,3) is a constant vector. Then, by Lemma 3, we have
bl —r,9.v,) = —(div(e—r.¢).v,)
=(9-r,0,VV,)
= 2 [ (o-r)Vy,x

3

= 2 34[ Z0-ro)dx

To make equation(25)hold, it is sufficient to J A(@—r9)dx=0,i=123VkeJ,.

From the definition of r, , it is enough to choose «; ,such that

jz:al- J‘Kﬂlﬂzﬂ?llﬂidx = J‘Kﬂ'l ((l) _th))dx, i= 1, 2,3 , (26)

upon calculation, the determinant of the coefficient matrix of the system (26)is non-zero, which implies that the
system(26) has a unique solution «; (j =1,2,3) , ensuring that r, satisfies equation(25).

Lemmad4.Existence of the operator r, : V — V, ,such that for any ¢ € V ,it holds that
ble—re,v,) =0,V eW,,
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when ¢ [H*(Q),0<k <2,we have
Jo—rel," h lol - (27)
Proof.When solving for «;(j=1,2,3) using the Grammer rule, from Section 1.4 of[4], specifically equations
(1.4.9), (1.4.32), and Lemma 1.20-Lemma 1.22, we have
Toy T h'0o-Qel,. j=123 (28)
From the definition of r, ,(28), Hdlderinequality, we have

Co-roly, Uo-Qol, +JZ:1E0!; A4 L

"Lo-Qol, +h™"Co—Qol,, mes()l"
“C () th) EO,K
From (24) we can obtain

1/2
U(p—rhtpuo,f(gutp—rh(wéx) TUe-Qelba” Mol

where ¢ e[H*(Q))?,0<k <2.

Theorem2.Assume that there exists an operator r, : V — V, ,such that for any ¢ € V ,it holds that
ble—re.v,) =0,Vv, eW,,
moreover, (o,u) € VxW is the solution to problem (11), and (s, ,u,) € V, xW, is the solution to problem (12).
Then the following error estimate holds:
Oo—-o,[," Do—rol} +|u—v, |, vV, eW, "H (Q), (29)
Ou-u, " ojff(mﬁ[b(x” —ri,,u-Vv,)+a(e—o,, LA, —A,) (30)
+b(e -0y, Yy —1,)], YV, 7, €W,

Where for any d € L*(Q) , the function pairsare defined in (A, y,) € Vx[H: () "H*"(Q)] and satisfies

a(h,,0)-b(e,y,)=0, VoeV, a
b(r4,v) =(d,v), Vv eW.
and we know a priori estimate:
D [, +0Y, By " Dd . (32)

Where% <r <2, depends on the shape of the domain.

Proof. From equations (11) and (12), by subtracting the corresponding terms, we obtain the error equation
a(c—o,,9)-bu-u,,9)=0, VoeV,,
{b(v,c—ch):O, v eW,.
From the error equation(33), b(e—r,@,v,) =0,it follows that for any v, eW, , we have
b(te-o,,v,)=b(r6-6+06-6,,V,)
=b(ro—-o,v,)+b(c—06,,v,)
=0

(33)

Thus
Lo—o,<Z,.
By combining inequality (20) and the error equation (33), we have
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alne-o, " a(r6-o,,16—ac,)
=a(r6—0,16—6,)+a(c—o,,L6—oc,)
=a(re6-o,6—-0,)+b(U—-u,,re6—-o,)
=a(re6-o,r6-06,)+b(r,6—6,u-u,)+b(c—0o,,u-u,)
=a(r6-0,1,6-0,)+b(r,6—06,u-v, +v, —U,)+b(6—0c,,u—-Vv, +v, —U,)
=a(r6-0,1,6-0,)+b(r,6-0o,u-v,)+b(r,6-o,v, —u,)+b(6-06,,u-v,)+b(6-0,,v, —U,)
=1,
Also, since the operator r, satisfies that for any ¢ € V,v, eW, ,b(¢—r,¢,v,) =0 holds, we obtain
b(r6-o,v,—u,)=0.
Next, from the error equation (33), we obtain
b(6-o,,v,—U,)=0.
Thus, from the above two expressions, Lemma 3, and the H élderinequality, we have
I, =a(r6-06,6-6,)+b(h6-6,u-v,)+b(c—0c,,u-Vv,)
=a(re—o,16—-0,)+b(r6—0o,u-Vv,)
=a(ro—o,16—0,)+(r6—0c,,V(u-v,))
"Ore-oljlre—o, +0ro—0c, [IV(U-V,)[
Therefore, we have
Ore—o, [, 06—} +0V(U-V,)},VV, eW, "H(Q).
Using the triangle inequality and the above conclusions, we obtain
Ue-o,,=lo-ro+r06-0,[]
"lo-rel) +[ro—o, [}
"Oo-rol, +0V(U-v,)
le-rol, +|u-v, |, Vv, eW, "H(Q)
Thus, we obtain(29).
By combining inequality(31) and the error equation (33), for any v, W, ,we have

(d’u_uh) :b()“d’u_uh)
=b(h, —n Ay +rh ,Uu—U,)
=b(h, —n Ay, u—u,)+b(rA,,u—-u,)
=b(h, —n A, u—v,+v, —Uu,)+a(c—0,.rA,;)
=b(h, —n A, u—v,)+a(c—o,, LA,)+b(k; — 1AV, —U,)
=1,
Furthermore, since the operator r, satisfies that for any @ € V,v, €W, , b(p—r,0,v,) =0 holds, we obtain
b(h, —rA4. v, —U,)=0.
For any 7, e W, , by combining the above expressions and(31), we get
I,=b(hy —,Ay,u—-v,)+a(c—0,,rA,)
=b(h, A, ,u-Vv,)+a(6—0,, LA, —L;)+a(c—06,,%,)
=b(r, —1r,A,,u—-v,)+a(c—o,, Lk, —A,)+b(6—-0,,Y,)
=b(h, - Ay, u—-v,)+a(c—o,, LA, —A,)+b(6—-0,,y, —7,)+b(c—0,,7,)
Then, from the error equation (33), we obtain b(¢ —o,,7,) =0.S0 we have
(d'u_uh) :b()"d'u_uh)
=b(r, -, u—v,)+a(c—o,, LA; —k,)+b(c—0,,Y, —7)
Substitutingthe above results into the following norm expression,
Ou—u, (= sup (d,u-u,) _w b(hy,u—u,)
oxdel2() AL} omde2) UdLL
we can obtain
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. 1
Uu—u, [}~ sup —u)[b(kd —rA, u—Vv,)+a(e—o,,nA, —A Hb(o—0,,y, —7,)]. YV, 77, €W, ,

o+det2(@)
we obtain equation (30).

Theorem3.Suppos (6,u) e [H" (Q)]* x (H™ () " HZ(Q)) is the solution of problem (11),and (s, ,u,) €V, xW,
is the solution of problem(12),then the following error estimate holds:
h® Do -0, [} +0u—u, [~ h*" Oull,,. (34)
Proof.From(29),(27) and (22),we can give the estimate for 6 —o, [}, as
Oo—0,0, " Do—rol, +|u—pul,

" h'lel +h"ul,,

(35)
=h"|KVu]|, +h" |ul,,
~ h"Ouf,, .
Where p, : H*(©) > W, is the L*-projection operator.
Next, we estimate the three terms on the right-hand side of the inequality in (30).
Here, (&,, Y, ) is the solution to the auxiliary problem (31) introduced in Theorem 2.
From (21),(22),(27),(32)and Holder inequality, we have
b(hy —n Ay, u—pu)=—(div(h, —r,A,),Uu—p,u)
=(hy — Ay, V(Uu-p,u)
T URg kg Drol u—p,ul
(36)

" heOh, 0, ful,
RO DU, O
* ho Cul,0dE, .
From (27),(32),(35)and Hdlderinequality, we have
a(c—o,, LAy —L;) " Co—o, UL, —A, [
~ h'Cul],, -h® 04, O, (37)
* h®Oul,,0d0, .
From (21),(32),(35)and Hdlderinequality, we have
b(G—Gh, Yo —Phyd) = —(diV(G—O‘h), Ya —Phyd)
= (G—Gh,V(yd _pnyd))
"lo—0, 0| Yy =P Ya b
© b EUE1+r h"® Iyd |1+r0
©h EUDIH h® 0 Yq E1+r0
* ho Cur,0dE, .
Thus, substituting (36),(37)and (38) into (30) from Theorem 2, we can obtain

(38)

CU—U, ) SUp —— bk — kU o)
ozdel?(@) d

ta(e—o,, LA, —4y)tb(6—6,, Y, —p,Y4)] (39)
A hr0+r [u E1+r .
Finally combining(35) and (39),we can get the desired result (34).

Theorem4. For the previously defined T and T, , we have LT -T,[;—0,as42—0.
Proof.LetTf =u,T, f =u, , then we have
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OTf -T, 1 - Cu—u, 0§

OT-T, k= s
o osfe2@ LT oxfe2@ L TL
hro”o DU o h"o”o 0 f
* sup 7 uh, sup LR ER e —0,(h—0).
oxfe2) LU TL o+fel) U TL

We complete the proof.
Corollary 2. Assume that u e H*(Q) ,the following error estimate holds:

U6 -0, y@va~ hOUL (40)
Proof.
Le-o, EH(div,Q):EG_IIiG—FI;G_Gh [Li(div,ﬂ)

* hiel, +h*0lje—0,[}

=hlel, +h* [ li6-6+06-0,[}

* hiel, +h*h? U6l +h' Uo -0, [}

" hlel,

=hOKVul

* houl.
Where I} is the linear finite element interpolation

V1. APRIORI ERROR ESTIMATEFOR EIGENVALUES
Let (A,pn, p) be an eigenpair of (3), and (4,,n,, p,) be an eigenpair of (10); (4,,m,,, p,) approximates (A,p, p).
Let M, be the space spanned by the eigenfunctions {u; } corresponding to the eigenvalue 4 of (3).
Lemma 5.(Lemmaz2 in[13])Suppose the multiplicity of the eigenvalue A is m, then the following estimate holds:

S X (CECRTNR Y (CECS TR Ul STH IS R STV R G

Proof.Since the multiplicity of the eigenvalues of a self-adjoint operator is equal to the dimension of the
eigenspace, let u,,u,,---u., be an orthonormal basis of M, .

By Theorem 3 of [9] and the steepness & =1o0f the self-adjoint operator, we have the followingestimate.

’ C{Zm]((T ~Tu )|+ =T, [ } (42)
i,j=1 GG

G-V G->W

‘ Attt

Lh

For any f,g e L*(€) let us consider|(T —T,)g, f|.

By the two equations of(15), we obtain the following
(f,v)=-a(Sf,e)+b(e, Tf)+b(Sf,v),V(p,v) e VXW .

Forge L*(Q) leto=(S-S,)g,v=(T -T,)g ,then

(f.(T-T,)9) =-a(Sf,(S-S,)9) +b((S-S,)g,Tf) +b(Sf, (T -T,)g) , (43)
replacing g € L?(Q) for f from(15), we have
a(Sg,9)—b(e.Tg) =0, VeeV, (44)
b(Sg,v) =(g,v), vveW.

From(16), we have
{a(Shg,w)—b(tp,Thg)ﬂ, Vo eV, )
b(S,9.v) =(9.V), wveW.
By subtracting (44) and (45), we have
{a((S—Sh)g,tp)—b(tp,(T—Th)g)=0
-b((S-S,)g.,v) =0

Adding the two above equations yields the following.

a((S-S,)9,9) —b(e. (T -T,)9) -b((S-S;)g,v) =0. (46)
Since a(-,-) is symmetric, adding (43) and (46) gives the result

(f.(T-T,)9) =-a((S-S,)9.¢-Sf) +b((S-S,)g,Tf —v) +b(Sf —o,(T -T,)9) .
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From equations (4) to (6), for any ¢ €V, ,veW, , we have

(1.0 -T)9)" Cil(s-Sgl, Jo-s, +C.IS-Sal, Iv-Trl, o
+Coflo=sf|l, [T -T)g), -
Taking ¢ =S, f,v=T,f in (47), we get
[(f.(T-T)9) " C.[(S-Sy)gl,,llS-Sy) ], (48)
+Co [ =S, [T -T) ],
+C, (S -s) fl, I(T -T,)gll,
In(48), replacing u; for g and u; for f , we have
T =Touu) > G- ], +2C. S-S0l |, T =T b ], ., (49)

Substituting (49)into (42), we arrive at (41).

The mixed discretisedsource problemis well-posed and has a unique solutionwhen h is small enough.
Based on (34) and(40), we can obtain the following a priori error estimate.
Forany f e L*(QQ), the following hold:

[Tf T, f[,~ ho*rOTf q+r,%<r32. (50)

St s, |~ hoTf, t<r<a. (51)
h " llo QH 2

Isf s, f|, hZDTst,%<r32. (52)

If f eM,, then Tf = 4*f ,and we can obtain the following estimate:
| =T, [, > 0 i M, < HY (@),
|- v,
[S=Sl, |, = 1. ifM, < H* ().

Lemma 6.Let (4,,p,, p,) be amixed finite element eigenpair of (10), then there exists an eigenpair (4,p, p)
of (3), such that the following a priori error estimate holds:

hiEM, C HET (@),

h® |w—p, [, +[p=pyf, ~ h*" (53)
|22, < h?6) (54)
I, —n, - H? (55)

VII.CONVERGENCERESULTANDNEWADAPTIVEALGORITHMSFOREIGENVALUEPROBLEM
In this subsection, for the 2nd order elliptic eigenvalue problems,we shall give the corresponding

convergence result for finite element eigenpair,anddesign low order interpolationbaseda-posteriori indicator and
new adaptive algorithms. We consider the following eigenvalue problem:
Find (4,p, p) e RxV W , (u, p) # (0,0), suchthat

a(n,¢)-b(e, p)=0, VeeV,

b(n,v) = A(p,v), vveW,
The mixed finite element approximation of (3) is given by:
Find (4,,n,, p,) € RxV, xW, , (u,, p,) # (0,0) ,such that

{a(uh.q))—b(tp, P)=0, VoeV,,
b(u,.v) =4,(p,.v), v eW,.
Lemma7.Assume that pe[H?*(Q))*, pe H*(Q), for the zero-order interpolation I, of the linear element

®)

(10)

eigenfunction and the first order interpolation I p, of the quadratic element eigenfunction, the following
inequality holds:

Olym, —p, [ hOplg (56)
Olymy, —pG> hOpt, (57)
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01 p, =P, ™ h*0pll, (58)
Olip,— P h?0ph, (59)
Proof.
Clomy -, [ hOp, O

=hlp, -Op+06nl,
" hlp,—6pl, +hbepl,
“Op, —Opl +hlpl,
=, —p+p-0pl, +hpl,
“hpy—plp +Up—0pl +hlpl
" hOph,

where @ is the Clement interpolation corresponding to the linear element, then

Olymy, —p =10, —py +py, —p 0
" Olop, =y O +0py —pG
" hipl,
Nowlet us consider 1} p, —p, [,and 01} p, —pL}.
uI;ph_ph W hzu Py LE,Q
=h*Up, -Op+0Gpli,
" h*Up,-Gpl,, +h*U6pL,
" hi Py _(:)pq +h2D p@,@
=hUp,-p+p-OpY +h’Upl,
" h(Up,—pl +Up-6pl})+h*Upl,,
" hilpl,
where @ is the Clement interpolation corresponding to the quadratic element, then
O1ypy = PG 03Py = Py + Py = P
TCLpy =P G 40P, - P
" hlpl,,
Lemma 8.Let (4, u, p) be an eigenpair of(3),then for any 0 =y € L*(Q) and o € V ,the Rayleigh quotient
-a(0,0) + 2b(w,y)
v.v)

j::

satisfies

i rae-po-p+lo-py-p) Ay-py-p) (60)
v.v) v.y)
Proof.
—a(@-p,o-p)+2b(@—py—p)-Ay -py-p)
=-a(w, o)+ 2a(o, p) —a(p, p) + 2b(e, y) — 2b(w, p) - 2b(p, ) + 2b(p, p)
—Ay,w)+24(w, p)— A(p, p)
=-a(w, o) +2b(w,y) - 2[b(n,y) - Ay, p)l+2[a(e, p) —b(e, p)]
+2b(p, p) - A(p, p) —a(w,p) - Ay, y)
=-a(o,»)+2b(e,y) - Ay, y)
divide both sides by (v, ) .This completes the proof.
Notice: Let (4,,n,, p,) be an eigenpair of (10). In (60), take @ =p, ,w = p, ,then we have
Jy— A= —a(p, —mp, — ) +20(py —p, P, — P) _;{’(ph P, P, —P) .
(ph’ph) (ph'ph)
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Theorem 5. Assume that (17w, I} p,) — (i, p) P%oh ,then we have

08 1P =, PO
B ETE!

A

Proof.

IC(Pm, 12 py) = (1, PG _1‘
SR
_[EORR 1P = (P B —C (1 13 P) — (1, )G |
(1R 15P) = (8, P) |
~ O p) = (s P) G
[(Il?uhl |ﬁph)_(l1: p)EO
" h
Theorem5 indicates that (12, 15 p,) — (1., P,) [}, isasymptotically exact a-posteriori indicator
of D(lamy, 15 p) — (1, P) -

Theorem 6.Assume that pe H*(Q) , pe H°(Q) ,let (4,n, p) be an eigenpair of(3) and (A ,m,,p,) be the
associated discrete eigenpair. Assume that

2= 2, (101, 13 p,)| %00,
then
(e PR Q)|
j’h('}?uhllﬁph)_ﬂ“| 7
where

—a(h?llh —Hy» Ir?uh _uh)+2b(|r?"h — MWy I;ph B ph)
(1P, 15Py)

7, (s P, Q) =

Proof.By Lemma 8, we have
/ih(loll I1p,)—A= —a(lym, —m 1w, — ) +2b(15w, — 1 1P, — P) = A(1,p, = P 1P, — P)
h#h1 *h Mh - '

(15Py. 1y Py

Thus, the left-hand side is
_ 1 (s Py ) |
Ay 1)~ 2]
:‘/ih(lr?ph’lrllph)_l_ﬂh(phlpth)|

Ao (lomy, 15py) =4
—a(h?llh—ll,|r?llh—ll)+2b(|r?llh—IL|§Ph—p)—ﬂ(|ﬁph—p,|ﬁph—p)+a(||?llh—Hh:|fuh—uh)—2b(|ﬁﬂh—uh:|§ph—ph)|

[ (191, 129,) = 21(12 Py 1 y) [ (R 12p) = 2105 Py 1 py) |

Let
Cy = —a(lym, —m 1gm, —p) +a(lop, —p,, 1m, —p,)
+2b(|r?l‘h -l I;ph - p)_Zb(Ir?”h ~ M I;ph =Py
=—a(lym, — 1, +p, Loy —py -y — ) +Falop, —pg, ey, - py)
+2b(||?"h TR TS T g R R AR p)_Zb(Iﬁuh —y, 1P, = Py)
=-2a(lp, —py. 1, — ) —a(w, —pp, —p) + 200171, —py, P, — P)+2b(u, —p, 15 P, — P)
According toLemma 7,Corollary 2and Hdolderinequality, we have
Ic. h.
According to the assumption of this theorem and
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_a(lr?"h - Ii’?uh _”)"‘a(lr?”h — My Iy?"h _”h)+2b(|r?”h - |r11ph - p)—2b(|:uh ~Phs Iﬁph =Py _/I(Irllph - P Iliph -p)
=C, = A(1,p, = P, 1,y = P)
Therefore, the right-hand side term in the above equation is bounded by O(h) .A combination of the above
estimates give the assertion.

Theorem6indicates that 7, (u,, p,,€2) isasymptotically exact a-posteriori indicator
of j‘n('}?uhi 1,p,)—4.

Next we establish the adaptive version of a-posteriori error result.This paper uses the new indicator
7, (W, Py, ) to modify the algorithm.Next we shall give a new indicator 7, (u,, p,,<2) based adaptive algorithm

for the eigenvalue problem(3) as follow:
Step 1:Letl =0.Pick any initial mesh IT, with mesh size h,.

Step 2:Solve(10)onIT,, for discrete solution (4", u", p").
Step 3:Compute the local indicators 73, (u", p" ,x) .

Step 4:Construct I, < I, by Marking Strategy E1 and parameter 6.
Step 5:Refine I1,, to get a new meshIl, by Procedure REFINE.

Step 6: Solve (10)on T, _for discrete solution (4", u", p").

Step 7: Letl =1+1and go to Step 3.
Marking Strategy E1
Given parameter0< 6 <1:

Step 1:Construct a minimal subset I, < IT, by selecting some elements in T, such that
2 (' p" %) 2 0, (', p" Q).

kel

Step 2: Mark all the elements inIT,, .

VIIl. NUMERICAL RESULTS
In this section,we report some numerical experiments to demonstrate the effectiveness of our
approach.Considering the problem (1), our program is compiled under the iFEM package.Throughout this
section, we give the numerical results for the first eigenvalue and its corresponding eigenfunction.Of course, we
should point out that our method can also be used for other simple eigenvalues.

Example 1:When K is the identity matrix,consider the following equation
—Ap=A4p, in Q,
{ p=0, on oQ.
where Q =[-1,1]x[-L1]\[-1,0]x[0,1] .
Since the exact first eigenvalue is unknown, we choose a sufficiently accurate approximation

A =9.6397238440219 as the exact value for our numerical tests. Here, we present the numerical results of the
adaptive mixed finite element algorithm for the first eigenpair approximation of the parameter ¢=0.5.

Table 1: Results of numerical solutions of quadratic eigenvalues for region Q, ,with an initial grid of 1/8

Domain h dof A Error
1/4 185073 9.639720015638154 0.00490596566668596
1/8 314483 9.639719641767611 0.00298391055419493
Q, 1/16 389417 9.639718270448762 0.00234939293266335
1/32 504793 9.639712771932910 0.00180819752180261
1/64 554043 9.639695775258204 0.00175056001581682
1/128 929675 9.639653032429592 0.00165141811437118

Figure 1: On the test domain Q, , the initial grid is 1/8 quadratic adaptive mesh and error curve
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#— the first eigenvalue error
Pl o - r | —%7— the a posteriori estimator
The line with slope -1
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Example 2:consider the following equation
-V (Kx,y) Vp)=Ap, inQ,
{ p=0, on oQ.
where K =(2,1,1,2) , Q =[-11]x[-1,1]\[-1,0]x[0,1] .
Since the exact first eigenvalue is unknown, we choose a sufficiently accurate approximation

A =14.459585291043194 as the exact value for our numerical tests. Here, we present the numerical results of
the adaptive mixed finite element algorithm for the first eigenpair approximation of the parameter 8 =0.5.

Table 2: Results of numerical solutions of quadratic eigenvalues for region Q, ,with an initial grid of 1/8

Domain h dof A Error
1/4 174959 14.459579059619493 0.00398978295837711
1/8 289205 14.459579822702214 0.00252226765181019
Q, 1/16 362877 14.459577656883361 0.00194570028372228
1/32 487025 14.459569278849736 0.00143109094655359
1/64 566961 14.459543714784211 0.00134665473265421
1/128 965333 14.459479551173692 0.00112614034170943

Figure 2: On the test domain Q, , the initial grid is 1/8 quadratic adaptive mesh and error curve

e *—— the first eigenvalue error
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Example 3:consider the following equation
=V-(K(x,y)Vp)=Ap, inQ,
p=0, on oQ.
where K =1+ x?y?, Q =[-11]x[-11]\[-1,0]x[0,1] .
Since the exact first eigenvalue is unknown, we choose a sufficiently accurate approximation
A =10.233889180562130 as the exact value for our numerical tests. Here, we present the numerical results of
the adaptive mixed finite element algorithm for the first eigenpair approximation of the parameter 8 =0.5.
Table 3: Results of numerical solutions of quadratic eigenvalues for region Q, ,with an initial grid of 1/8
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Domain h dof A Error
1/4 150631 10.233878953138044 0.00299194549108736
1/8 273475 10.233885228135211 0.00176079131288725
Q, 1/16 346147 10.233883604835187 0.00133160286204250
1/32 472895 10.233877479692703 0.000953363610147218
1/64 553731 10.233858840744100 0.000910692995065630
1/128 960401 10.233812028648238 0.000802153441326506

Figure 3: On the test domain Q) , the initial grid is 1/8 quadratic adaptive mesh and error curve

—#— the first eigenvalue error
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The numerical eigenvalue results obtained through adaptive calculations are presented in Tablesl to 3,

and the figures illustrate the adaptive mesh and error curves. From Figures 1 to 3, we can observe that the error
curve of the numerical eigenvalues is approximately parallel to the error index curve to some extent. This
indicates that all the posterior error indices for the numerical eigenvalues are reliable and effective. The results
demonstrate that the adaptive algorithm achieves the optimal convergence rate. Additionally, from the error
curves, it is evident that for the same degrees of freedom, the approximation obtained by the adaptive algorithm
is more accurate than that obtained through uniform grid calculations.
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