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Abstract. Stochastic processes governed by a new fractional Brownian motion are thoroughly examined in this 

paper. Building on the foundational work of El-Borai and El-Nadi, we offer advanced analytical techniques to 

study these processes, which are distinguished by their memory effects and long-range interdependence. Our 

approach uses fractional stochastic calculus, fractional stochastic analysis, and fixed-point theorems to provide 

a solid mathematical basis to deal with these complicated systems.  

The study makes a substantial contribution to the subject by explicitly solving fractional stochastic differential 

equations, analyzing their statistical properties with characteristic and moment-generating functions, and 

proving the existence and uniqueness of solutions within this new framework.  
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I. Introduction 

Fractional calculus and stochastic analysis have grown in significance in applied and theoretical 

mathematics during the past few decades. It is now clear that many physical systems, financial models, and 

natural phenomena display memory effects or non-local interactions as our understanding of complex systems 

advances. Conventional tools for stochastic analysis are unable to capture these features. New Fractional 

Brownian motion (NfBm), which provides a potent model for systems with long-range dependencies, enters the 

picture here. Because of these dependencies, which imply that future values of a process are dependent on past 

values to differing degrees rather than being independent of them, NfBm is a particularly helpful tool in a 

variety of domains, including finance, engineering, and physics 

 

New Fractional Brownian motion is an advanced form of classical Brownian motion, where the 

system’s behavior is influenced not just by the current state but also by its historical states.  fractional Brownian 

motion bases a system's future evolution on both its current state and its previous states. Understanding systems 

with intricate memory dynamics, like turbulence, biological systems, and financial markets, is made easier by 

the study of this kind of motion. 

Fractional stochastic calculus, which enables the modeling and analysis of stochastic systems with 

long-range dependencies, is the result of the integration of fractional calculus into stochastic analysis. The 

mathematical tools needed to model non-local interactions and systems where the memory of previous states is 

essential are provided by fractional calculus. This is especially important for systems that are described by 

stochastic differential equations (SDEs), which control how dynamic systems behave when subjected to both 

random fluctuations and deterministic forces. Understanding how processes change over time, particularly when 

their future behavior is connected to their complete history rather than just their current state, depends on these 

equations. 

A fundamental component of stochastic analysis, stochastic differential equations are used to model systems that 

change because of randomness. Fractional derivatives, which add a memory effect that goes beyond the recent 

past, are what give fractional systems their complexity. Understanding phenomena in a variety of domains, 

including economics and the physical sciences, depends on solving these equations. We extend the classical 

calculus to model processes that display memory effects and historical dependence, which are observed in real-

world systems, by introducing fractional derivatives. 

The development of fractional stochastic analysis has been greatly aided by the work of El-Bori and El-

Nadi.to address stochastic processes with fractional components, they have created sophisticated approaches 

that offer profound insights into the mathematical foundations of these systems. Their work provided useful 
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tools for scientists and engineers working with complicated systems that display both randomness and memory 

effects, laying the groundwork for our knowledge of the existence and uniqueness of solutions to fractional 

stochastic differential equations. 

This study is divided into several key sections, each focusing on fundamental aspects of new fractional 

stochastic analysis: 

1. Introduction to New Fractional Brownian Motion and New Fractional Stochastic calculus: This section 

provides the necessary theoretical background to understand the mathematical framework of the new 

fractional Brownian motion and its significance in stochastic analysis. It introduces key concepts such as 

the Hurst exponent and the properties of the new fractional Brownian motion 

2. Fractional Stochastic Differential Equations: The second section focuses on the theory of fractional 

stochastic differential equations. It presents methods for solving these equations, along with an exploration 

of their statistical properties 

3. characteristic and moment-generating functions: In this sectionwe computed the characteristic and moment-

generating functions for the new fractional Brownian motion.  

Thecharacteristicfunctioniscrucial.Itprovidesinsightintothedistributionanddependencestructure of the new 

fractional Brownian motion, which is significant because it exhibits long-range dependence properties.The 

moment-generatingfunctionisalsoimportantbecauseitallowsustocomputemomentsoftheprocess,helpingin 

analyzing its behavior over time, which is critical in finance and signal processing applications 

4. Existence and Uniqueness Theorems for New Fractional Stochastic Processes: 

This section delves into the theoretical foundations of fractional stochasticprocesses, discussing the existence 

and uniqueness of solutions. It coversmathematical results and theorems that guarantee the well-defined 

nature ofsolutions within the framework of fractional stochastic analysis 

5. Applications of Fractional Brownian Motion: This section highlights the applications of fractional 

Brownian and how to solve different equations 

6. Future Directions and Conclusion 

 

Let (Ω, f, P) be a probability space. According to the previous results in [1]if a random variable 𝑋: Ω → (−∞, ∞)  

has a probability density function 𝑓 defined by  

𝑓(𝑋) = ∫
1

√2𝜋𝑡𝛼𝜃
𝜁𝛼(𝜃)𝑒

−(𝑥−𝑚)2

2𝑡𝛼𝜃
∞

0
𝑑𝜃                               (1) 

We say as in [1] that X has a fractional Gaussian (or fractional normal) distribution with mean m and variance 
𝑡𝛼

Γ(𝛼+1)
 , where 𝜁𝛼(𝜃) is the stable distribution density function and Γ(. ) is the gamma function see [2]. In this 

case, we write X is 𝑁𝛼(𝑚,
𝑡𝛼

Γ(α+1)
) 

Again, according to the previous results in [1], we call a real values stochastic process 𝑊𝛼(. ) a fractional 

Brownian motion if the following conditions are satisfied: 

i. 𝑊𝛼(0) = 0 

ii. 𝑊𝛼(𝑡) − 𝑊𝛼(𝑠) is 𝑁𝛼(0,
𝑡𝛼−𝑡𝑠

Γ(𝛼+1)
) for all 0 < 𝑠 < 𝑡 

iii. For all times 0 < 𝑡1 < ⋯ < 𝑡𝑛 the random variables 𝑊𝛼(𝑡1), 𝑊𝛼(𝑡2) − 𝑊𝛼(𝑡1), … … … … , 𝑊𝛼(𝑡𝑛) −
𝑊𝛼(𝑡𝑛−1) are independent,(with independent increments)  

Notice that  

𝐸(𝑊𝛼(𝑡)) = 0 , 𝐸(𝑊𝛼
2(𝑡)) =

𝑡𝛼

Γ(𝛼+1)
,𝐸(𝑊𝛼(𝑡)𝑊𝛼(𝑠)) =

𝑠𝛼

Γ(𝛼+1)
 , 𝑠 ≤ 𝑡  

where E(X) is the expectation of X 

Let ℒ2(0, 𝑇) be the space of all real-valued, progressively measurable stochastic presses G(.) such that 

𝐸 (∫ 𝐺2𝑑𝑡
𝑇

0
) < ∞ 

The fractional stochastic integral ∫ 𝐺 𝑑𝑊𝛼
𝑇

0
 is defined in [1] 

It’s proved that  

i. ∫ 𝑊𝛼  𝑑𝑊𝛼 =
𝑊𝛼

2(𝑇)

2
−

𝑇𝛼

2Γ(α+1)

𝑇

0
 

ii. 𝑑(𝑡𝑊𝛼) = 𝑡𝑑𝑊𝛼 + 𝑊𝛼𝑑𝑡 

iii. ∫ (𝑎𝐺 + 𝑏𝐻)𝑑𝑊𝛼 = 𝑎 ∫ 𝐺𝑑𝑊𝛼 + 𝑏 ∫ 𝐻
𝑇

0
𝑑𝑊𝛼

𝑇

0

𝑇

0
 

iv. 𝐸 (∫ 𝐺 𝑑𝑊𝛼
𝑇

0
) = 0 

v. 𝐸 (∫ 𝐺 𝑑𝑊𝛼 ∫ 𝐻 𝑑𝑊𝛼
𝑇

0

𝑇

0
) =

1

Γ(𝛼)
𝐸(∫ 𝑡𝛼−1𝐺𝐻𝑑𝑡

𝑇

0
) 

For all 𝐺, 𝐻 ∈ ℒ2(0, 𝑇) and all real numbers a, b 



On the construction of new stochastic fractional analysis  

DOI: 10.35629/4767-12061222                                www.ijmsi.org                                                           14 | Page 

II. New stochastic analysis 

Theorem 1. New Fractional stochastic calculus with Hermite polynomials  

Let ℎ1(𝑥, 𝑡 ), … … … … … … . , ℎ𝑛(𝑥, 𝑡) be the Hermite polynomials then, 

∫  
𝑡

0
ℎ𝑛(𝑊𝛼(𝑡),

𝑠𝛼

𝛤(𝛼+1)
)𝑑𝑊𝛼(𝑠) = ℎ𝑛+1(𝑊𝛼(𝑡),

𝑡𝛼

𝛤(𝛼+1)
)   (2) 

Which implies   

𝑑ℎ𝑛+1 (𝑊𝛼 ,
𝑡𝛼

𝛤(𝛼+1)
) = ℎ𝑛 (𝑊𝛼 ,

𝑡𝛼

𝛤(𝛼+1)
) 𝑑𝑊𝛼(𝑡)                                          (3) 

Thus, in the fractional stochastic calculus the expressionℎ𝑛(𝑊𝛼(𝑡),
𝑡𝛼

𝛤(𝛼+1)
)takes the role of

𝑡𝑛

𝑛!
 In theordinary 

calculus  

.Proof  

 

we begin by considering the function 𝑒−(𝑥−𝜆)2\2𝑡 and compute its n-th derivative with respect to  

𝑑𝑛

𝑑𝜆𝑛 [𝑒−(𝑥−𝜆)2\2𝑡]|𝜆=0 = (−1)𝑛𝑒
−𝑥2

2𝑡
𝑑𝑛

𝑑𝑥𝑛 (𝑒
−𝑥2

2𝑡 )                                       (4) 

Using the definition of Hermite polynomials, this simplifies to: 

dn

dλn [e−(x−λ)2\2t]|λ=0 = n! hn(x, t)(5) 

The exponential function 𝑒𝜆𝑥−
𝜆2𝑡

2  can be explained in terms of Hermite polynomials as  

eλx−
λ2t

2 = ∑  ∞
n=0 λnhn(x, t)(6) 

Using the expansion, we can represent 𝑌(𝑡) = 𝑒
𝜆𝑊𝛼(𝑡)−

𝜆2𝑡𝛼

2Γ(𝛼+1) as  

𝑌(𝑡) = ∑ 𝜆𝑛ℎ𝑛 (𝑊𝛼(𝑡),
𝑡𝛼

𝛤(𝛼+1)
)∞

𝑛=0 (7) 

To fractional stochastic differential equation 𝑑𝑌 = 𝜆 𝑑𝑊𝛼(𝑡) with the initial condition 𝑌(0) = 1 can be solved 

by substituting the series expression of 𝑌(𝑡) these yields  

∑  ∞
𝑛=0 𝜆𝑛ℎ𝑛 (𝑊𝛼(𝑡),

𝑡𝛼

𝛤(𝛼+1)
) = 1 + 𝜆 ∫  

𝑡

0
∑  ∞

𝑛=0 𝜆𝑛ℎ𝑛 (𝑊𝛼(𝑠),
𝑠𝛼

𝛤(𝛼+1)
) 𝑑𝑊𝛼(𝑠)                            (8) 

By matching coefficients of 𝜆𝑛on both sides, we obtain the recursive relation for Hermite polynomials  

∑  ∞
𝑛=0 𝜆𝑛ℎ𝑛(𝑊𝛼(𝑡),

𝑡𝛼

Γ(𝛼+1)
) = 1 + ∑  𝑡

0 𝜆𝑛 ∫  
𝑡

0
ℎ𝑛−1(𝑊𝛼(𝑠),

𝑠𝛼

Γ(𝛼+1)
)𝑑𝑊𝛼(𝑠)                                    (9) 

This completes the proof. see [3-6] 

 

Theorem 2. Let𝑊𝛼(𝑡) and 𝑊�̃�(𝑡) be independent one-dimensional fractional Brownian motions. Then, the 

stochastic differential of their products is given by: 

𝑑𝑊𝛼�̃�𝛼 = 𝑊𝛼𝑑�̃�𝛼 + �̃�𝛼𝑑𝑊𝛼 (10) 

Since 𝑤𝛼(𝑡) and 𝑤�̃�(𝑡) are independent, no correction term involving “dt” appears in the expression  

To proceed, define a new process X(t) as:  

𝑋(𝑡) =
�̃�𝛼+𝑊𝛼

√2
 (11) 

This process X(t) is a one-dimensional fractional Brownian motion because it is a linear combination of two 

independent fractional Brownian motions. The distribution of X(t) is 𝑁𝛼~(0,
𝑡𝛼

Γ(𝛼+1)
) which confirms that X(t) 

has the standard properties of a fractional Brownian motion  

Using fractional Itȏ Lemma, the differentials of 𝑋2, 𝑊𝛼
2 and 𝑊�̃�

2
are given by 

𝑑(𝑋2) = 2𝑋𝑑𝑋 +
𝑡𝛼−1

Γ(𝛼)
𝑑𝑡

𝑑𝑊𝛼
2 = 2𝑊𝛼𝑑𝑊𝛼 +

𝑡𝛼−1

Γ(𝛼)
𝑑𝑡

𝑑�̃�𝛼
2 = 2�̃�𝛼𝑑�̃�𝛼 +

𝑡𝛼−1

Γ(𝛼)
𝑑𝑡

 (12) 

Substituting these into the expression of 𝑑(𝑊�̃�) ,we get: 
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𝑑𝑊𝛼�̃�𝛼 = 𝑑𝑋2 −
1

2
𝑑𝑊𝛼

2 −
1

2
𝑑�̃�𝛼

2(13) 𝑑𝑊𝛼�̃�𝛼 = 2𝑋𝑑𝑋 +
𝑡𝛼−1

Γ(𝛼)
𝑑𝑡 − 𝑊𝛼𝑑𝑊𝛼 −

1

2

𝑡𝛼−1

Γ(𝛼)
𝑑𝑡 − �̃�𝛼𝑑�̃�𝛼 −

1

2

𝑡𝛼−1

Γ(𝛼)
𝑑𝑡

 (14) 

𝑑𝑊𝛼�̃�𝛼 = 2𝑋𝑑𝑋 − 𝑊𝛼𝑑𝑊𝛼 − �̃�𝛼𝑑�̃�𝛼 (15) 

𝑑𝑊𝛼�̃�𝛼 =
2

√2
[𝑊𝛼 + �̃�𝛼]𝑑[

𝑊𝛼+�̃�𝛼

2
] − 𝑊𝛼𝑑𝑊𝛼 − �̃�𝛼𝑑�̃�𝛼 (16) 

𝑑𝑊𝛼�̃�𝛼 = 𝑊𝛼𝑑𝑊𝛼 + 𝑊𝛼𝑑�̃�𝛼 + �̃�𝛼𝑑𝑊𝛼 + �̃�𝛼𝑑�̃�𝛼 − �̃�𝛼𝑑�̃�𝛼 − 𝑊𝛼𝑑𝑊𝛼  (17) 

 

It easy to see that then  

𝑑𝑊𝛼�̃�𝛼 = 𝑊𝛼𝑑�̃�𝛼 + �̃�𝛼𝑑𝑊𝛼 (18) 

See [7-11] 

2.1 New fractional stochastic calculus and Langevin’s Equation  

Integratingfractionalforcesintotheone-dimensionalscenariosuggestsapotentialadjustmenttothemathematical 

framework of motion in a Brownian system. 

 𝑋 = −𝛽𝑋+𝛾𝜖  (19) 

At an instance whereϵ(.) represents ’white noise’, β>0 symbolizes a friction coefficient andγis a coefficient of 

diffusion 

Rewriting this in terms of fractional stochastic differential equations, we have  

 𝑑𝑋 = −𝛽𝑋𝑑𝑡 + 𝛾𝑑𝑊𝛼(𝑡) (20) 

Which the initial condition   

𝑋(0) = 𝑋0 (21) 

The solution of the problem (20), (21) is given by  

𝑋(𝑡) = 𝑒−𝛽𝑡𝑋0 + 𝛾 ∫  
𝑡

0
𝑒−𝛽(𝑡−𝑠)𝑑𝑊𝛼(𝑠)(22) 

Where the term 𝑒−𝛽𝑡𝑋0 represents the deterministic decay of the initial velocity due to friction and the term 

𝛾 ∫  
𝑡

0
𝑒−𝛽(𝑡−𝑠)𝑑𝑊𝛼(𝑠)accounts for random fluctuations driven by noise  

The expected value of X(t) is  

 𝐸[𝑋(𝑡)] = 𝑒−𝛽𝑡𝐸[𝑋0] (23) 

This shows that the mean velocity decays exponentially to zero as time in-creases 

To compute the variance let us compute 𝐸[𝑋2(𝑡)] 

𝐸[𝑋2(𝑡)] = 𝐸[𝑒−2𝛽𝑡𝑋0
2 + 2𝑒−𝛽𝑡𝑋0𝛾 ∫  

𝑡

0
𝑒−𝛽(𝑡−𝑠)𝑑𝑊𝛼(𝑡) + 𝛾2(∫  

𝑡

0
𝑒−𝛽(𝑡−𝑠)𝑑𝑊𝛼(𝑠))2]   (24) 

𝐸[𝑋2(𝑡)] = 𝑒−2𝛽𝑡𝐸[𝑋0
2] +

𝛾2

Γ(𝛼)
∫  

𝑡

0
𝑒−2𝛽(𝑡−𝑠)𝑠𝛼−1𝑑𝑠 (25) 

The variance of X(t) is given by  

𝑣𝑎𝑟 [𝑋(𝑡)] = 𝑒−2𝛽𝑡𝑣𝑎𝑟(𝑋0) +
𝛾2

Γ(𝛼)
∫  

𝑡

0
𝑒−2𝛽(𝑡−𝑠)𝑠𝛼−1𝑑𝑠 (26) 

Here the first term 𝑒−2𝛽𝑡𝑣𝑎𝑟(𝑋0) represents the decaying contribution form the initial value. The second term 
𝛾2

Γ(𝛼)
∫  

𝑡

0
𝑒−2𝛽(𝑡−𝑠)𝑠𝛼−1𝑑𝑠 accounts for the steady-state fluctuation due to noise see [12-13] 

 

III. Characteristic and Moment generating function 

From the definition of the α-fractional Brownian motion 

We can write  

𝑝(𝜌 < 𝑊𝛼(𝑡) < 𝜔) = ∫  
𝜔

𝜌
∫  

∞

0

1

√2𝑡𝛼𝜋𝜃
𝜁𝛼(𝜃)𝑒

−𝑥2

2𝑡𝛼𝜃𝑑𝜃𝑑𝑥  (27) 

 

Then the characteristic function is provided by  
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𝐸[𝑒𝑖𝜆𝑊𝛼(𝑡)] = ∑  ∞
𝑘=0

(−𝑡𝛼𝜆2

2
)𝑘

Γ(𝛼𝑘+1)
      (28) 

Proof  

𝐸[𝑒𝑖𝜆𝑊𝛼(𝑡)] = ∫  
∞

−∞

∫  
∞

0

1

√2𝑡𝛼𝜋𝜃
𝑒𝑖𝜆𝜃𝜁𝛼(𝜃)𝑒

−𝑥2

2𝑡𝛼𝜃𝑑𝜃𝑑𝑥 

𝐸[𝑒𝑖𝜆𝑊𝛼(𝑡)] = ∫  

∞

0

∫  

∞

−∞

1

√2𝑡𝛼𝜋𝜃
𝑒𝑖𝜆𝜃𝜁𝛼(𝜃)𝑒

−𝑥2

2𝑡𝛼𝜃𝑑𝑥𝑑𝜃 

𝐸[𝑒𝑖𝜆𝑊𝛼(𝑡)] = ∫  
∞

0

𝑒
−𝜆2𝜃𝑡𝛼

2 𝜁𝛼(𝜃)𝑑𝜃 

Thus  

[𝑒𝑖𝜆𝑊𝛼(𝑡)] = ∑  ∞
𝑘=0

(−𝑡𝛼𝜆2

2
)𝑘

Γ(𝛼𝑘+1)
   (29) 

 

And the moment generating function is given by  

𝐸[𝑒𝜆𝑊𝛼(𝑡)] = ∑  ∞
𝑘=0

(𝑡𝛼𝜆2

2
)𝑘

Γ(𝛼𝑘+1)
 (30) 

See [14] 

IV. Existence and Uniqueness theorem 
We begin with a useful lemma  

Lemma3.Fractional Gronwall’s Lemma 

Let 𝜙 and 𝑓 be nonnegative, continuous functions defined for (0≤t≤T) and let 𝐶0 > 0 denote a constant. If  

𝜙(𝑡) ≤ 𝐶0 + 𝐶1 ∫  
𝑡

0
𝑠𝛼−1𝜙(𝑠)𝑑𝑠for all (0≤t≤T)      (31) 

Where 𝐶0 and 𝐶1 are positive, then 

𝜙(𝑡) ≤ 𝐶0𝑒𝐶1
𝑡𝛼

𝛼                                                        (32) 

Proof  

Define 

𝜓(𝑡) = 𝐶0 + 𝐶1 ∫  
𝑡

0
𝑠𝛼−1𝜙(𝑠)𝑑𝑠 ≥ 𝜙(𝑡)                                (33) 

Then  

𝜓′(𝑡) = 𝐶1𝑡𝛼−1𝜙(𝑡) ≤ 𝐶1𝑡𝛼−1𝜓                                     (34) 

And so  

𝑑

𝑑𝑡
[𝑒−

𝐶1𝑡𝛼

𝛼
𝜓] = 𝑒−

𝐶1𝑡𝛼

𝛼 𝜓′ − 𝑡𝛼−1𝐶1𝑒−
𝐶1𝑡𝛼

𝛼 𝜓                                              (35) 

𝑑

𝑑𝑡
[𝑒−

𝐶1𝑡𝛼

𝛼
𝜓] = 𝑒−

𝐶1𝑡𝛼

𝛼 [𝜓′ − 𝐶1𝑡𝛼−1𝜓]                                           (36) 

And thus 

𝜙(𝑡) ≤ 𝐶0𝑒
𝐶1𝑡𝛼

𝛼                         (37) 

4.1 Existence and uniqueness theorem  

Supposethat𝑉2: Rx [0, T]and𝑉1: Rx[0,T]areuninterruptedandmeettheupcomingrequirements1. |𝑉2(𝑥, 𝑡) −
𝑉2(�̃�, 𝑡)| ≤ 𝐿|𝑥 − �̃�|, |𝑉1(𝑥, 𝑡) − 𝑉1(�̃�, 𝑡)| ≤ 𝐿|𝑥 − �̃�| 
2. |𝑉2(𝑥, 𝑡)| ≤ 𝐿(1 + |𝑥|) ,|𝑉1(𝑥, 𝑡)| ≤ 𝐿(1 + |𝑥|) 

3.let 𝑋0be any ℝ𝑛-valued random variable such that  

𝐸[|𝑋0|2] < ∞ 
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~ 

4.And 𝑋0 is independent of 𝑊𝛼
∗(0) where 𝑊𝛼(0) is a given fractional Brownian motion  

following that here is a unique solution X ∈L2(0,T)of the fractional stochasticdifferential equation 

𝑋(𝑡) = 𝑋0 + ∫  
𝑡

𝑜
(𝑡 − 𝑠)𝛽−1𝑉2(𝑋, 𝑠)𝑑𝑠 + ∫  

𝑡

0
𝑉1(𝑋, 𝑠)𝑑𝑊𝛼(𝑠) (38) 

And  

𝑋(0) = 𝑋0                                                                                 (39) 

 

 

Remake (i) "unique" denotes that in case 𝑋, �̃� ∈L2(0,T)with continuous sample paths roughly surely, and either 

resolve the fractional stochastic differential equation then 

𝑃(𝑋(𝑡) = �̃�(𝑡)for all0 ≤ 𝑡 ≤ 𝑇) = 1 

 

(ii)hypotheses(1)statesthat𝑉2and𝑉1areuniformlylipschitzcontinualwithininthevariablex Notice also that 

hypothesis (2) follows from (1) 

 

Proof 1. uniqueness  

Suppose that X(t) and �̃�(𝑡) are the solutions as above, them 

𝑋(𝑡) − �̃�(𝑡) = ∫  
𝑡

0
(𝑡 − 𝑠)𝛽−1[𝑉2(𝑋, 𝑠) − 𝑉2(�̃�, 𝑠)]𝑑𝑠 + ∫  

𝑡

0
[𝑉1(𝑋, 𝑠)  − 𝑉1(�̃�, 𝑠)]𝑑𝑊𝛼(𝑠) (40) 

We can estimate  

𝐸[|𝑋(𝑡) − �̃�(𝑡)|2] ≤ 2𝐸(| ∫  
𝑡

0
(𝑡 − 𝑠)𝛽−1[𝑉2(𝑋, 𝑠) − 𝑉2(�̃�, 𝑠)]𝑑𝑠|2) + 2𝐸(| ∫  

𝑡

0
[𝑉1(𝑋, 𝑠) − 𝑉1(�̃�, 𝑠)]𝑑𝑊𝛼(𝑠)|2)

 (41) 

Here, we apply *Cauchy-Schwarz inequality * to estimate the first term as follows 

| ∫  
𝑡

0
(𝑡 − 𝑠)𝛽−1𝑉2(𝑠)𝑑𝑠|2 ≤ ∫  

𝑡

0
(𝑡 − 𝑠)2𝛽−2𝑑𝑠 ∫  

𝑡

0
𝑉2

2(𝑠)𝑑𝑠

≤
𝑡2𝛽−1

2𝛽−1
∫  

𝑡

0
𝑉2

2(𝑠)𝑑𝑠
 (42) 

 By assuming the Lipschitz condition on 1, we have  

𝐸(| ∫  
𝑡

0
 (𝑡 − 𝑠)𝛽−1𝑉2(𝑋, 𝑠) − 𝑉2(�̃�, 𝑠)𝑑𝑠|2) ≤ ∫  

𝑡

0
𝐿2𝑇 𝐸(𝑋(𝑠) − �̃�(𝑠))2𝑑𝑠  (43) 

So 

𝐸(| ∫  

𝑡

0

(𝑡 − 𝑠)𝛽−1[𝑉2(𝑋(𝑠), 𝑠) − 𝑉2(�̃�(𝑠), 𝑠)]𝑑𝑠|2) ≤ 𝐿2𝑇 ∫  

𝑡

0

(𝑡 − 𝑠)𝛼−1(𝑡 − 𝑠)1−𝛼𝐸(𝑋 − �̃�)2𝑑𝑠

≤ 𝐿2𝑇𝑡1−𝛼 ∫  

𝑡

0

(𝑡 − 𝑠)𝛼−1𝐸(𝑋(𝑠) − �̃�(𝑠))2𝑑𝑠

 

(44)  

For the fractional stochastic term  

𝐸(| ∫  
𝑡

0
𝑉1(𝑋(𝑠), 𝑠) − 𝑉1(�̃�(𝑠), 𝑠)𝑑𝑊𝛼(𝑠)|2) = 𝐸 ∫  

𝑡

0

𝑠𝛼−1

Γ(𝛼)
|𝑉1(𝑋, 𝑠) − 𝑉1(�̃�, 𝑠)|2𝑑𝑠 (45) 

Combining the above results, we have  

𝐸(|𝑋(𝑡) − �̃�(𝑡))|2 ≤ 𝐶 ∫  
𝑡

0
𝑠𝛼−1𝐸|𝑋(𝑠) − �̃�(𝑠)𝑑𝑠|2 (46) 

Where C is a constant depending on L and T 

By Fractional Gromwell’s lemma  

𝐸(|𝑋(𝑡) − �̃�(𝑡)|2) =0                                                     (47) 

Thus, X(t)=�̃�(𝑡)almost surely, which proves the uniqueness of the solution  

Proof 2. Existence  

To prove existence, we use an iterative scheme defined as: 

{
𝑋0(𝑡) = 𝑋0

𝑋𝑛+1(𝑡) = 𝑋0 + ∫  
𝑡

0
(𝑡 − 𝑠)𝛽−1𝑉2(𝑋𝑛(𝑠), 𝑠)𝑑𝑠 + ∫  

𝑡

0
𝑉1(𝑋𝑛(𝑠), 𝑠)𝑑𝑊𝛼(𝑠)  

 (48) 
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Define the mean squared error: 

𝑑𝑛(𝑡) = 𝐸(|𝑋𝑛+1 − 𝑋𝑛|2)                                (49)  

 

For n=0, we estimate 

𝑑0(𝑡) = 𝐸(|𝑋1(𝑡) − 𝑋0(𝑡)|2)                                             (50) 

= 𝐸[| ∫  
𝑡

0
(𝑡 − 𝑠)𝛽−1𝑉2(𝑋0(𝑠), 𝑠)𝑑𝑠 − ∫  

𝑡

0
𝑉1(𝑋0(𝑠), 𝑠)𝑑𝑊𝛼(𝑠)|2] (51) 

≤ 2𝐸[| ∫  
𝑡

0
(𝑡 − 𝑠)𝛽−1𝑉2(𝑋0(𝑠), 𝑠)𝑑𝑠|2] + 2𝐸[| ∫  

𝑡

0
𝑉1(𝑋0(𝑠), 𝑠)𝑑𝑊𝛼(𝑠)|2]      (52) 

≤ 2𝐸[∫  
𝑡

0
(𝑡 − 𝑠)2𝛽−2𝑑𝑠 ∫  

𝑡

0
𝑉2

2(𝑠, 𝑋0(𝑠))𝑑𝑠] + 2𝐸 ∫  
𝑡

0

𝑠𝛼−1

Γ(𝛼)
𝑉1

2(𝑠, 𝑋0(𝑠))𝑑𝑠 (53) 

≤ 2
𝑡𝛽−1

2𝛽−1
∫  

𝑡

0
𝐿2[1 + |𝑋0|]2𝑑𝑠 + 2𝐸[∫  

𝑡

0

𝑠𝛼−1

Γ(𝛼)
𝐿2[1 + |𝑋0|]2𝑑𝑠] (54) 

≤
𝑇2𝛽−1

2𝛽−1
∫  

𝑡

0
𝑠𝛼−1𝑠1−𝛼𝐿2[1 + |𝑋0|]2𝑑𝑠 + 𝐸 ∫  

𝑡

0

𝑠𝛼−1

Γ(𝛼)
𝐿2[1 + |𝑋0|2]𝑑𝑠 (55) 

Thus  

𝑑0(t) ≤ 𝑀
𝑡𝛼

Γ(𝛼)
 (56) 

For some constant M 

Next. It easy to see that  

𝐸[|𝑋2(𝑡) − 𝑋1(𝑡)|2] ≤ 

2
𝑡2𝛽−1

2𝛽−1
𝐸[∫  

𝑡

0
|𝑉2(𝑠, 𝑋1(𝑠)) − 𝑉2(𝑠, 𝑋0(𝑠))|2]𝑑𝑠 + 2𝐸 ∫  

𝑡

0
[𝑉1(𝑠, 𝑋1(𝑠)) − 𝑉1(𝑠, 𝑋0(𝑠))]2 𝑠𝛼−1

Γ(𝛼)
𝑑𝑠 (57) 

AccordingtotheLipschitzcondition(1), WecanfigureoutaconstantM>0asforinstance 

 

𝐸[|𝑋2(𝑡) − 𝑋1(𝑡)|2] ≤ 𝑀𝐸 ∫  
𝑡

0
|𝑋1(𝑠) − 𝑋0(𝑠)|2 𝑠𝛼−1

Γ(𝛼)
𝑑𝑠 (58) 

 

Thus  

𝐸[|𝑋2(𝑡) − 𝑋1(𝑡)|2] ≤
𝑀2𝑡2𝛼

2(Γ(𝛼+1))2 (59) 

 

By induction, we get the required result. 

According to the Martingale inequality 

 

[𝑚𝑎𝑥
0≤𝑡≤𝑇

 |𝑋(𝑠)|𝑝] ≤ (
𝑝

1−𝑝
)𝑝𝐸[|𝑋(𝑡)|𝑝] (60) 

 

We can write  

𝐸(𝑚𝑎𝑥
0≤𝑡≤𝑇

 |𝑋𝑛+1(𝑡) − 𝑋𝑛(𝑡)|2) ≤ 2
𝑇2𝛽−1

2𝛽−1
𝐿2 ∫  

𝑇

0
𝐸[|𝑋𝑛(𝑠) − 𝑋𝑛−1(𝑠)|2]𝑑𝑠 + 8𝐿2 ∫  

𝑇

0
𝐸|𝑋𝑛(𝑠) − 𝑋𝑛−1(𝑠)|2 𝑠𝛼−1

Γ(𝛼)
𝑑𝑠

≤
𝐶𝑀𝑛𝑇𝑛𝛼

𝑛!(Γ(𝛼+1))𝑛

   

 (61) 

By the claim above, where C is a constant  

Since  

 

𝑃( max
0≤𝑡≤𝑇

 |𝑋𝑛+1(𝑡) − 𝑋𝑛(𝑡)| ≤ 22𝑛𝐸[ max
0≤𝑡≤𝑇

 |𝑋𝑛+1(𝑡) − 𝑋𝑛(𝑡)|2]

≤
22𝑛𝐶𝑀𝑛𝑇𝑛𝛼

𝑛!(Γ(𝛼+1))𝑛

      (62) 
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And  

 

∑
22𝑛𝑀𝑛𝑇𝑛𝛼

𝑛!(𝛤(𝛼+1))
𝑛

∞
𝑛=1 < ∞ (63) 

Itfollowsthat,TheBorel-Contellilemmacouldbeemployed 

Thus  

 

𝑃[𝑚𝑎𝑥
0≤𝑡≤𝑇

 |𝑋𝑛+1(𝑡) − 𝑋𝑛(𝑡)| >
1

2𝑛 𝑖. 𝑜] = 0(64) 

(i.o “infinitely often”) 

Taking thisintoconsideration, for nearlyanyω∈Ω 

𝑋𝑛(𝑡) = 𝑋0(𝑡) + ∑  𝑛
𝑗=0 (𝑋𝑗+1(𝑡) − 𝑋𝑗(𝑡)) (65) 

Evenlyconvergesuniformlyon[0,T]toastochasticprocessX(t). 

CarryingoutofpassingtolimitsinthedefinitionofXn(.)isperformedtoprove  

𝑋(𝑡) = 𝑋0 + ∫  
𝑡

0
(𝑡 − 𝑠)𝛽−1𝑉2(𝑋, 𝑠)𝑑𝑠 + ∫  

𝑡

0
𝑉1(𝑋, 𝑠)𝑑𝑊𝛼(𝑠) (66) 

For 0 ≤ t ≤ T 

NowwearestillobligedtodemonstrateX(.)∈L2(0,t) 

A constantC>0couldbedetermined, suchthat 

𝐸|𝑋𝑛+1(𝑡)|2 ≤ 𝐶[𝐸|𝑋0|2 + 𝐶𝐸[| ∫  

𝑡

0

(𝑡 − 𝑠)𝛽−1𝑉2(𝑋𝑛(𝑠), 𝑠)𝑑𝑠|2] + 𝐶𝐸[| ∫  

𝑡

0

𝑉1(𝑋𝑛(𝑠), 𝑠)𝑑𝑊𝛼(𝑠)|2] 

(67) 

≤ 𝐶[𝐸|𝑋0|2 + 𝐶 ∫  
𝑡

0
(𝑡 − 𝑠)2𝛽−2𝑑𝑠 ∫  

𝑡

0
𝐸[𝑉2

2(𝑠, 𝑋𝑛(𝑠))]𝑑𝑠 + 𝐶 ∫  
𝑡

0
𝐸|𝑉1(𝑠, 𝑋𝑛(𝑠))|2 𝑠𝛼−1

Γ(𝛼)
𝑑𝑠 (68) 

≤ 𝐶[𝐸|𝑋0|2 +
𝐶𝑡2𝛽−1

2𝛽−1
𝑡1−𝛼 ∫  

𝑡

0
𝑠𝛼−1𝐿2[1 + 𝑋𝑛(𝑠)]2𝑑𝑠 + 𝐶𝐿2 ∫  

𝑡

0
[1 + 𝑋𝑛(𝑠)]2 𝑠𝛼−1

Γ(𝛼)
𝑑𝑠(69) 

Subsequently  

𝐸|𝑋𝑛+1(𝑡)|2 ≤ 𝐶[1 + 𝐸|𝑋0|2] + 𝐶 ∫  
𝑡

0
𝐸[|𝑋𝑛(𝑠)|2 𝑠𝛼−1

Γ(𝛼)
]𝑑𝑠 (70) 

ForsomeconstantC>0. 

So, by induction, we get 

𝐸|𝑋𝑛+1(𝑡)|2 ≤ 𝐶[1 + 𝐸|𝑋0|2]𝑒𝐶𝑡𝛼
 (71) 

 Let 𝑛⟶∞ 

𝐸[|𝑋𝑛(𝑡)|𝑛] ≤ 𝐶[1 + 𝐸|𝑋0|2]𝑒𝐶𝑡𝛼
 (72) 

And inthesamemanner 

𝑋 ∈ 𝐿2[0, 𝑇] 
  Thisconcludestheproofofthetheory. See [15-20] 

 

V. Some applications on the new fractional itȏ formula 

5.1 Solution of fractional stochastic differential equations  

Consider the following fractional stochastic differential equations  

{
𝑑𝑋 = 𝑞𝑋𝑑𝑊𝛼(𝑡)

𝑋(0) = 1
                                                     (73) 

where q is not representing a random variable but continuous function the unique solution to equation (76) is 

given by: 

𝑋(𝑡) = exp [
−1

2Γ(𝛼)
∫  

𝑡

0
𝑠𝛼−1𝑞2(𝑠)𝑑𝑠 + ∫  

𝑡

0
𝑞(𝑠)𝑑𝑊𝛼(𝑠)](74)  
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To verify the solution, define the fractional auxiliary function  

𝑌(𝑡) =
−1

2Γ(𝛼)
∫  

𝑡

0
𝑠𝛼−1𝑞2(𝑠)𝑑𝑠 + ∫  

𝑡

0
𝑞(𝑠)𝑑𝑊𝛼(𝑠) (75) 

It can be shown that Y(t) satisfies the fractional differential equation  

𝑑𝑌(𝑡) =
−𝑡𝛼−1

2Γ(𝛼)
𝑞2(𝑡)𝑑𝑡 + 𝑞(𝑡)𝑑𝑊𝛼(𝑡) (76) 

Using fractional Itȏ’s Lemma for the exponential function 𝑢(𝑥) = 𝑒𝑥  we get  

𝑑𝑢 = 𝑒𝑌𝑑𝑌 +
𝑡𝛼−1

2Γ(𝛼)
𝑞2(𝑡)𝑒𝑌𝑑𝑡 (77) 

Then  

𝑑𝑢 = 𝑒𝑌[
−𝑡𝛼−1

2Γ(𝛼)
𝑞2(𝑡)𝑑𝑡 + 𝑞(𝑡)𝑑𝑊𝛼(𝑡)] +

𝑡𝛼−1

2Γ(𝛼)
𝑞2(𝑡)𝑒𝑌𝑑𝑡 (78) 

Simplifying, this becomes   

𝑑𝑢 = 𝑒𝑌𝑑𝑡 

                                  𝑑𝑢 = 𝑒𝑌𝑞𝑑𝑊𝛼(𝑡) 

𝑑𝑢 = 𝑞𝑋𝑑𝑊𝛼(𝑡) (79) 

 

Thus, the proposed solution satisfies the fractional stochastics differential equation.see [21-24] 

 

5.2 Solving a fractional stochastic differential equation with logarithmic transformation 

We are given the fractional stochastic differential equation 

{
𝑑𝑋 = 𝑓(𝑡)𝑋(𝑡)𝑑𝑡 + 𝑞(𝑡)𝑋(𝑡)𝑑𝑊𝛼(𝑡)

𝑋(0) = 1
(80) 

We shall that the unique solution of this function is given by  

𝑋(𝑡) = 𝑒𝑥𝑝[∫  
𝑡

0
[𝑓(𝑠) −

𝑠𝛼−1

2Γ(𝛼)
𝑞2(𝑠)]𝑑𝑠 + ∫  

𝑡

0
 𝑞(𝑠)𝑑𝑊𝛼(𝑠)] (81) 

Proof  

 Set                

 𝑌(𝑡) = ∫ [𝑓(𝑠) −
𝑠𝛼

2Γ(𝛼)
𝑞2 ]𝑑𝑠

𝑡

0
+ ∫ 𝑞(𝑠)𝑑𝑊𝛼(𝑠)

𝑡

0
 (82) 

Using Fractional Itȏ’s lemma, we compute  

𝑑𝑌(𝑡) = [𝑓(𝑡) −
𝑡𝛼−1

2Γ(𝛼)
𝑞2(𝑡)]𝑑𝑡 + 𝑞(𝑡)𝑑𝑊𝛼(𝑡) (83) 

Set 𝑢 = 𝑒𝑌we get  

𝑑𝑢 =
∂𝑢

∂𝑌
𝑑𝑌 +

1

2
𝑞2 𝑡𝛼−1

Γ(𝛼)

∂2𝑢

∂2𝑌
𝑑𝑡    (84) 

𝑑𝑢 = 𝑒𝑌𝑑𝑌 +
1

2Γ(𝛼)
𝑞2𝑒𝑌𝑡𝛼−1𝑑𝑡 

 

The final solution is  

𝑑𝑢 = 𝑓(𝑢)𝑑𝑡 + 𝑞(𝑢)𝑑𝑊𝛼(𝑡) (85) 

Which the required solution see [25-27] 

 

5.3 Appling Fractional Itȏ’s formula to power functions  

Let 𝑋(𝑡) = 𝑊𝛼(𝑡) which 𝑊𝛼(𝑡)represents 𝛼-fractional Brownian motion and choose 𝑢(𝑥) = 𝑥𝑚 , where m is a 

constant. Using fractional Itȏ’s formula which defined as  

𝑑𝑢 =
∂𝑢

∂𝑡
𝑑𝑡 +

∂𝑢

∂𝑥
𝑑𝑋 +

1

2
𝐺2 𝑡𝛼−1

Γ(𝛼)

∂2𝑢

∂𝑥2 𝑑𝑡                                  (86) 

 

We get   
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𝑑𝑢 = 𝑚𝑋𝑚−1𝑑𝑥 +
1

2
𝑚(𝑚 − 1)𝑋𝑚−2 𝑡𝛼−1

Γ(𝛼)
𝑑𝑡 (87) 

Thus  

𝑑𝑊𝛼
𝑚(𝑡) = 𝑚𝑊𝛼

𝑚−1𝑑𝑊𝛼 +
1

2
𝑚(𝑚 − 1)

𝑡𝛼−1

Γ(𝛼)
𝑊𝛼

𝑚−2𝑑𝑡 (88) 

See [28-29] 

 

5.4 Applying fractional Itȏ formula with the exponential function  

 

Let 𝑋(𝑡) = 𝑊𝛼(𝑡) and choose 𝑢 = 𝑒𝑥𝑝[𝜆𝑤𝛼(𝑡) −
𝜆2

2

𝑡𝛼

Γ(𝛼+1)
] where 𝜆 is a constant  

Using the Fractional Itȏ formula, we compute  

𝑑𝑢 = −
𝜆2𝑡𝛼−1

2Γ(𝛼)
𝑒𝑥𝑝[𝜆𝑊𝛼(𝑡) −

𝜆2

2

𝑡𝛼

Γ(𝛼 + 1)
]𝑑𝑡 + 𝜆𝑒𝑥𝑝[𝜆𝑊𝛼(𝑡) −

𝜆2

2

𝑡𝛼

Γ(𝛼 + 1)
]𝑑𝑊𝛼(𝑡) +

1

2

𝜆2𝑡𝛼−1

Γ(𝛼)
𝑒𝑥𝑝[𝜆𝑊𝛼(𝑡) −

𝜆2

2

𝑡𝛼

Γ(𝛼 + 1)
]𝑑𝑡

 

(89) 

 Finally, we have 

                 𝑑𝑢 = 𝜆𝑒𝑥𝑝[𝜆𝑊𝛼(𝑡) −
𝜆2

2

𝑡𝛼

Γ(𝛼+1)
]𝑑𝑊𝛼(𝑡) (90) 

Then  

{
𝑑𝑢 = 𝜆𝑢𝑑𝑊𝛼(𝑡)

𝑢(0) = 1
 (91) 

Which means that in the new fractional stochastic calculus the expression 𝑢 = 𝑒𝑥𝑝[𝜆𝑊𝛼(𝑡) −
𝜆2

2

𝑡𝛼

Γ(𝛼+1)
] plays 

the role of 𝑒𝜆𝑡 in the ordinary calculus see [30-32] 

 

VI. Conclusion 
 

In this investigation, we have expanded the theoretical structure of stochastic analysis by exploring 

newaspects ofthe new fractional Brownian motion. We thoroughly examined the characteristic function and the 

moment generating function, which are essential for describing the distribution and moments of this process. 

Additionally, we established the conditionsneeded for the existence and uniqueness of solutions for this 

fractional Brownian motion 
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