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ABSTRACT: In this paper, some estimators are proposed for slope parameter of simple linear regression (SLR). 

These estimators are based on the quantiles of slopes obtained using various kinds of distances among predictor 

observations. The variances of the proposed estimators under various symmetric error distributions are 

obtained. The optimality of the quantile estimators is established by minimizing their variances. The 

performance of the estimators is evaluated. The estimators are extended to multiple responses for a single 

predictor variable. 
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I. INTRODUCTION 

Regression analysis serves as a fundamental tool in statistical modeling offering insights into 

relationships between variables through the estimation of parameters. One of the simplest forms in regression is 

SLR model. Let, 𝑌𝑖 , 𝑖 = 1,… , 𝑛 be the response variable with distributions 

𝑃(𝑌𝑖 ≤ 𝑦) = 𝐹𝑖(𝑦) = 𝐹(𝑦 − 𝛼 − 𝛽𝑥𝑖) = 𝐹(𝑒𝑖).                                           (1) 

Here, 𝐹(∙) is continuous cumulative distribution function (cdf), 𝑥1, 𝑥2, … , 𝑥𝑛 are known constants, 𝛼 and 𝛽 are 

the intercept and slope parameters respectively. The error, 𝑒𝑖 capturing deviations from the linear relationship 

are independent and identically distributed (iid) from continuous distribution with cdf  𝐹(𝑒𝑖) having zero mean 

and finite variance 𝜎2. 

The estimation of 𝛽 is crucial in SLR model by (1) for quantifying the rate of change in 𝑦 with respect 

to 𝑥 . The least squares (LS) method which provides best linear unbiased estimator (BLUE) is sensitive to 

outliers and non-normal data. Hence, robust estimation techniques have been developed in literature by focusing 

on estimators of slopes based on various measures of central tendency obtained using different types of 

distances viz. half ranges and quasi ranges among 𝑥𝑖𝑠 . Let 𝑥(𝑖)  be the 𝑖𝑡ℎ order statistic and 𝑦𝑖
∗  be the 

corresponding 𝑦 value. For 𝑛 = 2𝑚, the 𝑖𝑡ℎ half range is defined as  

ℎ𝑖 = (𝑥(𝑚+𝑖) − 𝑥(𝑖)),   𝑖 = 1, 2,⋯𝑚,                                                        (2) 

𝑖𝑡ℎ quasi range is defined as 

𝑞𝑖 = 𝑥(𝑛−𝑖) − 𝑥(𝑖+1) , 𝑖 = 1, 2,⋯𝑚 − 1                                                   (3) 

and 𝑞0 = 𝑥(𝑛) − 𝑥(1) is the range of 𝑛 observations. 

The complete method due to [3] assumes all 𝑥(𝑖)𝑠 are distinct and yields a robust estimator for 𝛽 based 

on the median of slopes 𝑏𝑖 =
𝑦𝑗
∗−𝑦𝑖

∗

𝑥(𝑗)−𝑥(𝑖)
, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 resulting in 

𝑛(𝑛−1)

2
 slopes. The incomplete method due to 

[3] is based on the median of slopes 𝑏𝑖 =
𝑦𝑚+𝑖
∗ −𝑦𝑖

∗

ℎ𝑖
 which make use of half ranges resulting in 

𝑛

2
 slopes. [8] 

extended Theil's complete method to cases where not all 𝑥(𝑖)𝑠  are distinct, leading to the well-known Theil-Sen 

estimator. [11] proposed an alternative estimator based on median of subset of slopes given by  

𝑏𝑖 =
𝑦𝑖+𝑚
∗ −𝑦𝑖

∗

𝑥(𝑖+𝑚)−𝑥(𝑖)
  and 𝑏𝑖+1 =

𝑦𝑖+𝑚+1
∗ −𝑦𝑖

∗

𝑥(𝑖+𝑚+1)−𝑥(𝑖)
 

for 𝑚 =
𝑛

2
 if 𝑛 is even and 𝑚 =

𝑛−1

2
 if 𝑛 is odd. [2] suggested an estimator based on location estimator due to [4] 

instead of median. [1] and [7] assuming equidistant 𝑥(𝑖)𝑠, utilized median and Hodges-Lehmann estimator in 

Theil's incomplete method and generalized the regression model with multiple responses at 𝑥(𝑖). [6] proposed an 

estimator for 𝛽 based on average of successive slopes 𝑏𝑖 =
𝑦𝑖−𝑦𝑖−1

𝑥𝑖−𝑥𝑖−1
, 𝑖 = 2, … , 𝑛. Subsequently, [5] proposed an 

estimator where the average was replaced by the median of successive slopes.  [12] proposed a class of 
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estimators based on weighted averages of slopes 𝑏𝑖 =
𝑦𝑚+𝑖
∗ −𝑦𝑚−𝑖+1

∗

𝑞𝑚−𝑖
 with weights 𝑖𝑘 and found its optimality at 

𝑘 = 2. 

In this paper, we propose the estimators based on quantiles of the slopes obtained from ℎ𝑖𝑠 and 𝑞𝑖𝑠. 
These estimators provide flexible and robust method for estimating the slope parameter and is a generalization 

of estimators based on median. They also capture a broader range of data characteristics and improve the 

performance of estimators under various distributions. 

The proposed estimators are given in section 2, their distributional properties are derived in section 3 

and section 4 contains optimization of quantile based slope estimators. The proposed estimators are illustrated 

through examples in section 5 and their extension in case of multiple responses are given in section 6. The 

conclusions are provided in section 7. 

 

II. PROPOSED QUANTILE BASED ESTIMATORS 

 In this section, we propose quantile based estimators. The usage of quantiles in the context of 

estimation of 𝛽, allows for flexibility in estimating 𝛽 by using various partition values of the distribution of the 

slopes. By considering different quantiles, we can develop estimators that are adaptable to different nature of 

data and error distribution leading to robust and efficient estimators. In regression modeling, when we encounter 

situations where the error distribution is not normal, the robust estimators become preferable. 

Quantiles are statistical measures that divide a data set or probability distribution into intervals with 

equal probabilities. The 𝑝𝑡ℎ  sample quantile is the value below which, a fraction 𝑝  of the data falls. The 

asymptotic distribution of 𝑝𝑡ℎ sample quantile, 𝜉𝑝 is given by 

𝑁 (𝜉𝑝,
𝑝(1−𝑝)

𝑛𝑓2(𝜉𝑝)
)                                                                               (4) 

where, 𝑓 is probability density function evaluated at 𝜉𝑝. 

We propose quantile based estimators from the sample slopes obtained through different kinds of 

distances. The slope 𝑏𝑖 can be generally expressed as  

𝑏𝑖 =
𝐷𝑦𝑖

∗

𝐷𝑥(𝑖)
 ,      𝑖 = 1, … ,𝑚                                                                   (5) 

where, 𝐷𝑥(𝑖)  represent either ℎ𝑖  or 𝑞𝑚−𝑖  of variable 𝑥  and 𝐷𝑦𝑖
∗  is difference of corresponding 𝑦  values. The 

proposed estimators of 𝛽 are given by 

�̂�𝑝 = 𝑝𝑡ℎ 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 𝑜𝑓 𝑏𝑖 = 𝑏(𝑟),   0 < 𝑝 < 1,                                              (6) 

𝑟 = {
𝑚𝑝                             , 𝑖𝑓 𝑚𝑝 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

[𝑚𝑝 + 1] 𝑜𝑟 [𝑚𝑝] + 1  , 𝑖𝑓 𝑚𝑝 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟
, 

where, [𝑡] is largest integer ≤ 𝑡. The specific choice of 𝑝 can be determined based on the desired properties of 

the estimator, such as minimizing the variance of �̂�𝑝 or the distribution 𝐹(∙). 

 

III. DISTRIBUTIONAL PROPERTIES OF �̂�𝒑 

In this section, we deal with the distributional properties of the proposed quantile based slope 

estimators. We obtain mean and variance of these estimators under different error distributions. 

Let                                                 𝑏𝑖 =
𝐷𝑦𝑖

∗

𝐷𝑥(𝑖)
= 𝛽 +

𝐷𝑒𝑖

𝐷𝑥(𝑖)
 

                                                                 = 𝛽 + 𝑢𝑖,                                                                           (7) 

where 𝑢𝑖 =
𝐷𝑒𝑖

𝐷𝑥(𝑖)
  is continuous random variable and symmetric around zero. Hence, it follows that, 𝐸(𝑏𝑖) =

𝛽 ∀ 𝑖 = 1,… ,𝑚 and 𝑏𝑖 is symmetric around 𝛽. Therefore, the proposed estimator which is any quantile of 𝑏𝑖, 
will be an unbiased estimator of 𝛽. Hence, 

√𝑚(�̂�𝑝 − 𝛽) → 𝑁 (0,
𝑝(1−𝑝)

𝑓2(𝜉𝑝)
)                                                               (8) 

where 𝑓(𝜉𝑝) is the density of 𝑏𝑖  evaluated at 𝜉𝑝. The distribution of 𝑏𝑖  is influenced by the distribution of 𝑢𝑖 

which is depending on distribution of 𝐷𝑒𝑖 . We derive the variances of �̂�𝑝 when 𝑒𝑖 has uniform, normal, Laplace 

and Cauchy distributions with mean zero and variance 𝜎2.  

 Uniform distribution 

When 𝑒𝑖~𝑈(−√3𝜎, √3𝜎), the probability density function of 𝑢𝑖 is given by 
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𝑓(𝑢𝑖) =

{
 
 

 
 
𝐷𝑥(𝑖)(𝐷𝑥(𝑖)𝑢𝑖+2√3𝜎)

12𝜎2
          ;  −

2√3𝜎

𝐷𝑥(𝑖)
< 𝑢𝑖 ≤ 0

𝐷𝑥(𝑖)(2√3𝜎−𝐷𝑥(𝑖)𝑢𝑖)

12𝜎2
       ;  0 < 𝑢𝑖 ≤

2√3𝜎

𝐷𝑥(𝑖)

                                           (9) 

and  𝑏𝑖~𝑇𝑟 (𝛽 −
2√3𝜎

𝐷𝑥(𝑖)
, 𝛽 +

2√3𝜎

𝐷𝑥(𝑖)
, 𝛽) which is symmetric around 𝛽. The density of 𝑏𝑖 is given by 

𝑓(𝑏𝑖) =

{
 
 

 
 𝐷𝑥(𝑖)

2 (𝑏𝑖−𝛽+
2√3𝜎

𝐷𝑥(𝑖)
)

12𝜎2
      ;  𝛽 −

2√3𝜎

𝐷𝑥(𝑖)
< 𝑏𝑖 ≤ 𝛽

𝐷𝑥(𝑖)
2 (−𝑏𝑖+𝛽+

2√3𝜎

𝐷𝑥(𝑖)
)

12𝜎2
     ; 𝛽 < 𝑏𝑖 ≤ 𝛽 +

2√3𝜎

𝐷𝑥(𝑖)

     .                                       (10) 

To obtain variance of  �̂�𝑝, 𝜉𝑝 is obtained by solving  𝐹𝑏𝑖(𝜉𝑝) = 𝑝, that is,  

𝐹𝑏𝑖(𝜉𝑝) =

{
  
 

  
 
∫

𝐷𝑥(𝑖)
2 (𝑏𝑖−𝛽+

2√3𝜎

𝐷𝑥(𝑖)
)

12𝜎2
 𝑑𝑏𝑖 = 𝑝

𝜉𝑃

𝛽−
2√3𝜎

𝐷𝑥(𝑖)

 ;  𝛽 −
2√3𝜎

𝐷𝑥(𝑖)
< 𝑏𝑖 ≤ 𝛽

1

2
+ ∫

𝐷𝑥(𝑖)
2 (−𝑏𝑖+𝛽+

2√3𝜎

𝐷𝑥(𝑖)
)

12𝜎2
𝑑𝑏𝑖 = 𝑝

𝜉𝑃
𝛽

    ; 𝛽 < 𝑏𝑖 ≤ 𝛽 +
2√3𝜎

𝐷𝑥(𝑖)
 

  .                     (11) 

Solving (11), we get 

𝜉𝑝 =

{
 

 𝛽 −
2√3𝜎

𝐷𝑥
+ √𝑝 (

24𝜎2

𝐷𝑥
2 )                 ; 𝛽 −

2√3𝜎

𝐷𝑥
< 𝑏𝑖 ≤ 𝛽

𝛽 +
2√3𝜎

𝐷𝑥
− √(1 − 𝑝) (

24𝜎2

𝐷𝑥
2 )      ;  𝛽 < 𝑏𝑖 ≤ 𝛽 +

2√3𝜎

𝐷𝑥

    

where, 𝐷𝑥 is ℎ𝑖 or 𝑞𝑚−𝑖 of the 𝑝𝑡ℎ quantile of 𝑏𝑖𝑠 and 𝑓2(𝜉𝑝) is given by 

𝑓2(𝜉𝑝) = {

𝑝 𝐷𝑥
2

6𝜎2
            ; 0 < 𝑝 ≤

1

2

(1−𝑝) 𝐷𝑥
2

6𝜎2
      ;  

1

2
< 𝑝 < 1

   .   

Using (8), on substituting 𝑓2(𝜉𝑝), the variance of �̂�𝑝 is given by 

𝑉(�̂�𝑝) = {

6(1−𝑝)𝜎2

𝑚𝐷𝑥
2        ;  0 < 𝑝 ≤

1

2
 

6𝑝𝜎2

𝑚𝐷𝑥
2              ;   

1

2
< 𝑝 < 1

    .                                                   (12) 

Proceeding on similar lines, we obtain 𝑉(�̂�𝑝) when 𝑒𝑖 has normal, Laplace and Cauchy distributions. 

 Normal distribution 

When 𝑒𝑖~𝑁(0, 𝜎
2), 𝑏𝑖~𝑁 (𝛽,

2𝜎2

𝐷𝑥(𝑖)
2 ) and 𝜉𝑝 = 𝛽 +

2𝜎

𝐷𝑥
 𝑒𝑟𝑓−1(2𝑝 − 1), where 𝑒𝑟𝑓(𝑥) is error function defined 

as 𝑒𝑟𝑓 (𝑥) =
2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

𝑥

0
.  

Hence,                                         𝑓2(𝜉𝑝) =
𝐷𝑥
2

4𝜋𝜎2
𝑒−(√2 𝑒𝑟𝑓

−1(2𝑝−1))
2

  

and                                               𝑉(�̂�𝑝) =
4𝑝(1−𝑝)𝜋𝜎2

𝑚𝐷𝑥
2𝑒
−(√2 𝑒𝑟𝑓−1(2𝑝−1))

2  .                                                                     (13) 

 Laplace distribution 

When 𝑒𝑖~𝐿 (0,
√2

𝜎
), then 𝑏𝑖 has pdf given by  

𝑓(𝑏𝑖) =
𝜎𝐷𝑥(𝑖)

4√2
(1 +

𝜎𝐷𝑥(𝑖)

√2
|𝑏𝑖 − 𝛽|) 𝑒

−
𝜎𝐷𝑥(𝑖)

√2
|𝑏𝑖−𝛽|;  −∞ < 𝑏𝑖 < ∞,𝜎 > 0 .           (14)  

Then, 

𝐹(𝜉𝑝) =

{
 
 

 
 1
4
(2 −

𝜎𝐷𝑥(𝑖)

√2
(𝜉𝑝 − 𝛽)) 𝑒

𝜎𝐷𝑥(𝑖)

√2
(𝜉𝑝−𝛽)           ;  𝑏𝑖 < 𝛽

1 −
1

4
(2 −

𝜎𝐷𝑥(𝑖)

√2
(𝜉𝑝 − 𝛽)) 𝑒

−
𝜎𝐷𝑥(𝑖)

√2
(𝜉𝑝−𝛽) ;  𝑏𝑖 > 𝛽

    .                         (15)       

As solving (15) directly for 𝜉𝑝 is complicated, we use Lambert W function discussed in [13]. It is denoted as 

𝑊(𝑧) which is used in solving equations of the form  𝑡𝑒𝑡 = 𝐶. The 𝜉𝑝 is given by 
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𝜉𝑝 =

{
 
 

 
 𝛽 +

√2(2+𝑊(
−4𝑝

𝑒2
))

𝜎𝐷𝑥
        ;  𝑏𝑖 < 𝛽

𝛽 +
√2(2−𝑊(

4(1−𝑝)

𝑒−2
))

𝜎𝐷𝑥
    ;  𝑏𝑖 < 𝛽

  .                                                        (16) 

Hence,  

𝑓2(𝜉𝑝) = {

𝜎2𝐷𝑥
2

32
(−1 −𝑊 (

−4𝑝

𝑒2
))

2

𝑒
4+2𝑊(

−4𝑝

𝑒2
)
                ; 0 < 𝑝 ≤

1

2

𝜎2𝐷𝑥
2

32
(3 −𝑊 (

4(1−𝑝)

𝑒−2
))

2

𝑒
4−2𝑊(

4(1−𝑝)

𝑒−2
)
            ;

1

2
< 𝑝 < 1

                       (17) 

and 

𝑉(�̂�𝑝) =

{
 
 

 
 

32𝑝(1−𝑝)

𝑚𝜎2𝐷𝑥
2(−1−𝑊(

−4𝑝

𝑒2
))
2
𝑒
4+2𝑊(

−4𝑝

𝑒2
)
                  ;  0 < 𝑝 ≤

1

2
 

32𝑝(1−𝑝)

𝑚𝜎2𝐷𝑥
2(3−𝑊(

4(1−𝑝)

𝑒−2
))

2

𝑒
4−2𝑊(

4(1−𝑝)

𝑒−2
)
             ;   

1

2
< 𝑝 < 1

  .                         (18) 

 Cauchy distribution 

When 𝑒𝑖~𝐶(0, 𝜆), 𝑏𝑖~𝐶 (𝛽,
2𝜆

𝐷𝑥(𝑖)
) and  𝜉𝑃 = 𝛽 +

2𝜆

𝐷𝑥
 tan (𝜋𝑝 −

𝜋

2
).  

Hence,                                                𝑓2(𝜉𝑝) =
𝐷𝑥
2

4𝜆2𝜋2(1+𝑡𝑎𝑛2(𝜋𝑝−
𝜋

2
))
2 

and                                                      𝑉(�̂�𝑝) =
4𝑝(1−𝑝)𝜆2𝜋2(1+𝑡𝑎𝑛2(𝜋𝑝−

𝜋

2
))
2

𝑚 𝐷𝑥
2    .                                                    (19) 

 

IV. OPTIMIZATION OF QUANTILE BASED SLOPE ESTIMATORS 

 In this section, we find the optimal quantile slope estimator obtained at minimum 𝑉(�̂�𝑝) for different 

error distributions using numerical method. Also, we evaluate the performance of the proposed estimators. 

We use a numerical optimization technique due to [10] to achieve minimization for the variance 

expressions given by (12), (13), (18) and (19). It is a root-finding algorithm which does not require the 

derivative of the function. By applying Brent's method, we observe that, for uniform, normal and Cauchy 

distributions, the 𝑉(�̂�𝑝) is minimum at 𝑝 =
1

2
, which corresponds to the median of 𝑏𝑖 . This suggests that the 

median is the optimal quantile for uniform, normal and Cauchy error distributions. However, for Laplace 

distribution, as 𝑝  increases, the variance decreases, reaching its minimum at 𝑝 = 0.99 . Thus, for Laplace 

distribution, 99th percentile yields minimum 𝑉(�̂�𝑝). In figure 1, we plot the 𝑉(�̂�𝑝) for 0 < 𝑝 < 1, 𝐷𝑥 = 1, 𝑚 =

100, 𝜆 = 1 for Cauchy distribution and 𝜎 = 1 for other distributions under consideration. 

 
              Figure 1. 𝑽(�̂�𝒑) under various distributions 
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The Figure 1 reveals that, the optimal quantiles obtained from 𝑉(�̂�𝑝)  plotted against 𝑝  and obtained from 

Brent’s method are the same. These results highlight the importance of selecting an appropriate quantile 

estimator based on distribution of 𝑒𝑖. The robustness of these optimal quantiles to varying sample sizes enhance 

their practical utility. 

 The performance of the estimators is also evaluated by considering relative efficiency (RE) which is 

the ratio of the variances of two estimators, indicating how much more efficient one estimator is compared to 

another. Suppose, �̂�𝜃1  and  �̂�𝜃2  are two unbiased estimators, then  

𝑅𝐸(�̂�𝜃1 , �̂�𝜃2) =
𝑉(�̂�𝜃2)

𝑉(�̂�𝜃1)
                                                                (20) 

where 𝜃1 and 𝜃2 are any two quantiles. The 𝑉(�̂�𝑝) are computed for various values of 𝑝 and error distributions 

in Table 1. 

Table 1. 𝑽(�̂�𝒑) for various error distributions 

Error 

distribution 

𝑝 

0.01 0.10 0.25 0.50 0.75 0.90 0.99 

Uniform 0.059400 0.054000 0.045000 0.030000 0.045000 0.054000 0.059400 

Normal 0.002787 0.000584 0.000371 0.000314 0.000371 0.000584 0.002787 

Laplace 2.671198 0.301563 0.128939 0.080000 0.011886 0.001107 0.000012 

Cauchy 4014.959828 3.896483     0.296088 0.098696     0.296088     3.896483 4014.959828 

 

From Table 1, it is observed that, for uniform, normal and Cauchy distributions, 𝑅𝐸(�̂�0.5, �̂�0.25) =

𝑅𝐸(�̂�0.5, �̂�0.75) > 1 which shows �̂�0.5 is better estimator than �̂�0.25 and �̂�0.75. However, 𝑅𝐸 of  (�̂�0.5, �̂�0.75) is 

1.5, 1.19 and 2.99 indicating 50%, 19% and 199% efficiency of median as estimator compared to other quartiles 

respectively for uniform, normal and Cauchy distributions. For Laplace error distribution, 𝑅𝐸(�̂�0.5, �̂�0.25) =

1.6 > 1  and 𝑅𝐸(�̂�0.5, �̂�0.75) = 0.1486 < 1 . This shows that, as 𝑝  increases, efficiency of �̂�𝑝  increases. 

However, while the efficiency increases as 𝑝 approaches 0.99, the robustness of the estimator may relatively 

decrease. Therefore, for Laplace distribution, any quantile with 𝑝 >
1

2
 is more efficient than the median and the 

choice of 𝑝 may be balanced between efficiency and robustness based on the data characteristics.  

 

V. ILLUSTRATION 

In this section, we illustrate the proposed estimator using data from [9]. The dataset contains 12 

observations from a Belgian insurance company, which gives details of monthly payments made in 1979 due to 

the expiration of life-insurance contracts. The payments are expressed as a percentage of the total annual amount 

as per the company's reporting standards. Notably, the December payments exhibit a significant spike, attributed 

to one extraordinarily high supplementary pension payout, introducing an outlier effect in the data. The data is 

given by 

Table 2. Monthly payment data due to [9] 

Month (𝑥) Payment (𝑦) 
1 3.22 

2 9.62 

3 4.50 

4 4.94 

5 4.02 

6 4.20 

7 11.24 

8 4.53 

9 3.05 

10 3.76 

11 4.23 

12 42.69 

After examining the distribution of the data using R software, it is found that, the data follows Cauchy 

distribution. The computed values of �̂�𝑝 and 𝑉(�̂�𝑝) under Cauchy distribution using ℎ𝑖 and 𝑞𝑚−𝑖 are presented 

in Table 3 and regression lines are plotted in Figure 2. 
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Table 3. Computations of �̂�𝒑 and 𝑽(�̂�𝒑) 

𝑝 
𝐷𝑥(𝑖) = ℎ𝑖 𝐷𝑥(𝑖) = 𝑞𝑚−𝑖 

�̂�𝑝 𝑉(�̂�𝑝)  �̂�𝑝 𝑉(�̂�𝑝) 

0.10 -0.84833 1.803927𝜆2 -0.58889 0.801745𝜆2 

0.25 -0.24167 0.137078𝜆2 -0.37800 0.197392𝜆2 

0.50 -0.19667 0.045693𝜆2 -0.10571 0.033570𝜆2 

0.75 1.33667 0.137078𝜆2 3.58818 0.040783𝜆2 

0.90 6.41500 1.803927𝜆2 7.04000 64.94138𝜆2 

To fit the regression model given in (1), 𝛼 is estimated using �̂� = �̃� − �̂�𝑝�̃� where, �̃� and  �̃� are median of 𝑦 and 

𝑥 respectively. 

 
Figure 2. The fitted regression lines 

From Table 3 and Figure 2, it is observed that, �̂�0.5 has minimum variance and shows better fit to the data. Also, 

the estimators obtained using 𝑞𝑚−𝑖 have lower variances than those obtained from ℎ𝑖 for �̂�0.10, �̂�0.5 and  �̂�0.75. 

 
VI. EXTENSION OF PROPOSED ESTIMATORS 

 In this section, we extend our proposed estimators for 𝛽 to accommodate situations where multiple 

responses, 𝑦𝑗𝑘 are observed for each predictor 𝑥𝑗. We encounter two kinds of situations where in the estimator is 

proposed considering slopes of all the responses and estimator is proposed using the function of responses. In 

the first situation, the model is formulated as 

𝑦𝑗𝑘 = 𝛼 + 𝛽𝑥𝑗 + 𝑒𝑗𝑘 ,     𝑗 = 1, … , 𝑛, 𝑘 = 1,… , 𝑐 .                                    (21) 

where 𝑦𝑗𝑘  represents the response for the 𝑗𝑡ℎobservation at the 𝑘𝑡ℎ instance. The corresponding errors, 𝑒𝑗𝑘 are 

symmetrically distributed around zero with variance 𝜎2.  Arrange the data pairs (𝑦𝑗𝑘 , 𝑥𝑗) in ascending order 

based on 𝑥𝑗, with 𝑦𝑗𝑘
∗  representing the 𝑦𝑗𝑘 observations corresponding to the 𝑥(𝑗)

𝑡ℎ  order statistics. The 𝑦𝑗𝑘
∗  values 

are random and sorted according to their occurrence. When 𝐷𝑥(𝑖) = ℎ𝑖, we get 𝑚𝑐 = 𝑁 slopes given by  

𝑏𝑖𝑗 =
𝑦(𝑚+𝑖)𝑗
∗ −𝑦𝑖𝑗

∗

ℎ𝑖
;    𝑖 = 1, 2, … ,𝑚, 𝑗 = 1, 2, … , 𝑐                                        (22) 

and when 𝐷𝑥(𝑖) = 𝑞𝑚−𝑖, we get 𝑚𝑐 = 𝑁 slopes given by 

𝑏𝑖𝑗 =
𝑦(𝑚+𝑖)𝑗
∗ −𝑦(𝑚−𝑖+1)𝑗

∗

𝑞𝑚−𝑖
;    𝑖 = 1, 2, … ,𝑚, 𝑗 = 1, 2, … , 𝑐                               (23) 

Hence, the proposed estimator given in (6) is generalized for 𝑁 slopes by replacing �̂�𝑝 by �̂�𝑝
∗, 𝑏𝑖 by 𝑏𝑖𝑗  and 𝑚 by 

𝑁. �̂�𝑝
∗ is also an unbiased estimator of 𝛽. The variance of �̂�𝑝

∗ can be obtained by making appropriate changes in 

(12), (13), (18) and (19) for uniform, normal, Laplace and Cauchy error distributions respectively. In the second 

situation, the model can be taken considering various functions of 𝑦𝑗𝑘 such as the maximum, minimum, average 

and median of 𝑦𝑗𝑘. That is,  

𝑔(𝑦𝑗∙) = 𝛼 + 𝛽𝑥𝑗 + 𝑔(𝑒𝑗∙),       𝑗 = 1,2, … , 𝑛                                                (24) 

where 𝑔(∙) and 𝑔(𝑒𝑗∙) are functions of 𝑦𝑗∙ and 𝑒𝑗∙ respectively. Also, 𝑔(𝑒𝑗∙) are iid, symmetric around zero with 

constant variance 𝜎𝑔
2. Here, we get 𝑚 slopes given by 

𝑏𝑖
′ =

𝐷𝑔(𝑦𝑖∙
∗)

𝐷𝑥(𝑖)
= 𝛽 +

𝐷𝑔(𝑒𝑖∙)

𝐷𝑥(𝑖)
, 𝑖 = 1,2, … ,𝑚 

                                                               = 𝛽 + 𝑢𝑖
′ 
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where 𝑢𝑖
′ =

𝐷𝑔(𝑒𝑖∙)

𝐷𝑥(𝑖)
 is symmetric around zero. Hence, 𝐸(𝑏𝑖

′) = 𝛽 ∀ 𝑖 = 1,2, … ,𝑚. The proposed estimators are 

given by replacing �̂�𝑝 by �̂�𝑝
′  and 𝑏𝑖 by 𝑏𝑖

′ in (6). The �̂�𝑝
′  is an unbiased estimator of 𝛽 and  𝑉(�̂�𝑝

′ ) =
𝑝(1−𝑝)

𝑚𝑓′
2
(𝜉𝑝)

 , 

where, 𝑓′
2
(∙) is pdf of 𝑏𝑖

′ evaluated at 𝜉𝑝. 

 

VII.  CONCLUSIONS 

 The estimators based on 𝑝𝑡ℎ  quantile of slopes obtained using two kinds of distances among 𝑥𝑖𝑠  are 

proposed for slope parameter 𝛽 in SLR. 

 The distributions of slopes are derived when 𝑒𝑖 follows uniform, normal, Laplace and Cauchy distributions. 

 The proposed estimators are consistent and unbiased. 

 The efficiency of the estimators is established through deriving their variances and identifying optimal 

quantiles (𝑝) for all the distributions under consideration. 

 The optimal 𝑝 is obtained using Brent’s numerical method, by minimizing the variances. It is found that, for 

uniform, normal and Cauchy distributions, the estimator based on median  (𝑝 = 0.5) remains optimal, while 

for Laplace distribution, the estimator based on 99th percentile (𝑝 = 0.99) is optimal.  

 Among the proposed estimators, the estimator using the quasi ranges of predictor variables is befitting than 

those using half ranges. 

 The proposed estimators are extended to include scenarios such as occurrence of multiple responses.  
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