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ABSTRACT: One of the main challenges in coding theory is finding optimal binary linear codes. A binary linear 
code 𝐶	=	[𝑛,	𝑘,	𝑑]	is considered optimal if no other linear code with the same length 𝑛	and dimension 𝑘	has a 
greater minimum distance 𝑑. Theoretical bounds provide limits for the minimum distance 𝑑	of a linear code given 
𝑛	and 𝑘. For instance, the lower bound indicates that a linear code with a specified minimum distance exists, 
while the upper bound can be determined using results such as the Griesmer bound. Achieving an optimal binary 
linear code involves constructing a code where the lower and upper bounds of 𝑑	coincide. In previously published 
tables, Andries Brouwer presented some optimal binary linear codes for 1	≤	𝑛	≤	256	and 𝑘	≤	𝑛. Markus Grassl 
further improved these results by detailing construction processes for codes achieving the lower bound. In this 
paper, we introduce new optimal binary linear codes using novel construction methods applied to existing codes. 
Specifically, we developed a construction algorithm that extends the list of optimal binary linear codes for 257	≤𝑛	
≤	300	with 𝑘	≤	7. 
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I. INTRODUCTION 
Coding theory is the study of methods for the efficient and accurate transfer of information from one 

party to another. The physical medium through which the information is transmitted is called a channel. Some 
examples of channels are network communication, USB channel, satellite communication, and so on. It is worth 
noting that all communication channels are susceptible to errors. Often, undesirable disturbances may result in the 
distortion of transmitted information, and these disturbances are referred to as noise. In this regard, codes were 
developed to correct errors on noisy and inaccurate communication channels. Thus, coding theory deals with the 
problem of detecting and correcting transmission errors caused by noise in the channel. Encoding is the process 
of adding redundancy digits to the information digits while decoding is the process of getting the information 
being sent. Hence, coding theory poses two main questions: (1) to construct codes that can correct a maximal 
number of errors while using a minimal amount of redundancy, and (2) to construct codes with efficient encoding 
and decoding procedures. 

On one hand, linear codes are some of the most basic codes in coding theory. A linear code 𝐶  with  
length 𝑛 over 𝔽! is a vector subspace of 𝔽!", where 𝔽! is a field of order 𝑞. Linear codes are simple to understand 
but are very important and effective for practical applications, such as encoding and decoding messages sent over 
communication channels. Since coding theory is interested in constructing codes that can correct a maximal 
number of errors while using a minimal amount of redundancy, finding optimal linear codes had been one of its 
central problems. A linear code 𝐶 = [𝑛, 𝑘, 𝑑] is called optimal if there is no linear code with a higher minimum 
distance 𝑑 given the length 𝑛 and the dimension 𝑘. For the purpose of error-correcting codes, we are interested in 
codes with high minimum distance 𝑑 as these allow the correction of ⌊(𝑑 − 1)/2⌋ errors [6]. For the purpose of 
discussion, any mention of codes in this paper refers to linear codes, unless otherwise stated. 

There are several methods of constructing new linear codes from a given linear code. These include 
lengthening, extending, subcoding, shortening, puncturing, juxtaposition, combination, and Plotkinsum 
construction. A combination of these methods results in another linear code.  One way to find an optimal binary 
linear code is to construct a binary linear code 𝐶 that achieves the highest possible value of its minimum distance 
𝑑, given length 𝑛 and dimension 𝑘. That is, constructing a binary linear code which results in the code 𝐶 =
[𝑛, 𝑘, 𝑑], where 𝑑 is the upper bound of the minimum distance. We note that the lower bound and the upper bound 
of 𝑑 do not always meet. The upper bound may be taken by using some theoretic results such as the Griesmer 
Bound [2], and the lower bound may be taken by constructing a linear code with the highest distance 𝑑, given 𝑛 
and 𝑘. 
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Meanwhile, a binary linear code is a linear code over a field 𝔽#. Andries Brouwer [1] published a table 
of the lower bounds and upper bounds of the minimum distance 𝑑 of binary linear codes for 1 ≤ 𝑛 ≤ 256 and 
𝑘 ≤ 𝑛. In addition to the bounds, some information on the construction of the codes and some references were 
provided. Markus Grassl [3] further improved this table by increasing the values of some lower bounds and 
constructing the binary linear codes exhibiting these lower bounds.  In such table, in most cases, for 𝑛 > 30 and 
𝑘 > 7,  the upper bounds and lower bounds of the values of 𝑑 are not equal. This is due to the fact that the 
constructed binary linear codes with the highest 𝑑 (the lower bounds) do not reach the computed upper bounds of 
the minimum distance 𝑑. In such cases, the constructed binary linear codes are called “good codes.” On the other 
hand, in most cases, for 𝑘 ≤ 7 the lower bounds of 𝑑 are equal to its higher bounds, making the constructed binary 
linear codes optimal. 

In this paper, we are interested in finding new optimal binary linear codes. We do this by getting the 
upper bounds of the minimum distance of the codes using the Griesmer bound and constructing binary linear 
codes which meet the upper bound of 𝑑, given the values of 𝑛 and 𝑘. Particularly, since we wanted to construct 
optimal binary linear codes, we focus on constructing optimal binary linear codes for 257 ≤ 𝑛 ≤ 300 and 𝑘 ≤ 7.  
We do this by applying a construction algorithm on the codes already constructed by Grassl and on other codes 
that we had already constructed. 
 

II. LINEAR CODES 
In this section, we discuss some basic concepts in coding theory such as the basic definitions, examples, 

lemmas and theorems; the Griesmer bound which gives the upper bound of a parameter of a binary linear code; 
and some methods on constructing new binary linear codes from existing binary linear codes. 
 
2.1. Basic Concepts 

A linear code 𝐶 = [𝑛, 𝑘, 𝑑] with length 𝑛, dimension 𝑘 and minimum distance 𝑑, over a field  
𝔽! is a vector subspace of 𝔽!".  If 𝔽! = {𝑥$, 𝑥#, … , 𝑥!} is a field of size 𝑞, we call 𝔽! an alphabet and the 𝑥% values 
as symbols. A block code 𝐶 of length 𝑛 over 𝔽! is a nonempty subset of 𝔽!". A vector 𝑥 ∈ 𝐶 is called a codeword 
and the number of codewords in 𝐶, denoted by |𝐶|, is called the size of C. A code of length n and size 𝑀 is called 
(𝑛,𝑀)-code. The dimension 𝑘 of the linear code C is the dimension of 𝐶 as a vector subspace of 𝔽!". We begin to 
use 𝔽# or 𝐺𝐹(2), the Galois Field of order 2, in preference to {0, 1} to denote our binary alphabet, since we wish 
to emphasize that the alphabet carries with it an arithmetic structure. The minimum distance of a code 𝐶, denoted 
by d(𝐶), is defined by  

d(𝐶) = min{d(𝑥, 𝑦) ∶ 𝑥, 𝑦 ∈ 𝐶, 𝑥 ≠ 𝑦}. 
If 𝐶 has length 𝑛, dimension 𝑘 and minimum distance d(𝐶) = 𝑑, then 𝐶 is referred to as [𝑛, 𝑘, 𝑑]-code. 

The numbers 𝑛, 𝑘 and 𝑑 are called the parameters of the linear code. The 𝑘 × 𝑛 matrix 𝐺 whose rows form a basis 
of an [𝑛, 𝑘]-code 𝐶 is called a generator matrix of 𝐶. The hamming weight of 𝑥,  denoted by wt(𝑥),  for 𝑥 ∈ 𝔽!", 
is defined to be the number of nonzero coordinates of 𝑥. That is,  

wt(𝑥) = |{𝑖: 𝑥% ≠ 0}|. 
The minimum weight of a linear code 𝐶, denoted by wt(𝐶), is the smallest among the weights of all 

nonzero codewords in 𝐶. We note that for a linear code 𝐶 over 𝔽!", the minimum distance d(𝐶) is equal to 
minimum weight wt(𝐶). Also, for a linear code 𝐶 of length 𝑛 and dimension 𝑘, over 𝔽!, the number of codewords 
in 𝐶 is equal to 𝑞&. This follows from the fact that each codeword of 𝐶 can be expressed uniquely as a linear 
combination of the basis vectors (a subspace with dimension 𝑘 has 𝑞&	elements). We can clearly see that a binary 
linear code 𝐶 of dimension 𝑘 contains precisely 2& codewords. 

A trivial linear code is a linear code with parameter [𝑛, 1, 𝑛] or [𝑛, 𝑛, 1], for all 𝑛 ∈ ℕ . The [𝑛, 1, 𝑛]-
linear code is a code with one non-zero codeword, and the weight of this codeword is 𝑛. The [𝑛, 𝑛, 1]-linear code 
is a code that contains the whole subspace 𝔽!", with a generator matrix row equivalent to an identity matrix, 𝐼", 
and has minimum weight of 1. The repetition codes are codes consisting of codewords 𝑥% , 𝑥% , … , 𝑥% for 𝑥% ∈ 𝔽. A 
cyclic code is a linear code whose any cyclic shift of a codeword is also a codeword, i.e., whenever 𝑥', … , 𝑥"($ ∈
𝐶, then also 𝑥"($, 𝑥', … , 𝑥"(# ∈ 𝐶. On the other hand, a quasi-cyclic code is an (𝑛, 𝑘) linear block code of 
dimensions 𝑛 = 𝑚𝑛) and 𝑘 = 𝑚𝑘) where every cyclic shift of a codeword by no symbols yields another 
codeword. 

For a linear code 𝐶 over 𝔽!", the dual code of 𝐶, denoted by 𝐶*, is the orthogonal complement of subspace 
𝐶, that is, 

𝐶* = {𝑥 ∈ 𝔽" ∶ 	𝑥 · 𝑐 = 0, ∀𝑐 ∈ 𝐶}. 
where 𝑥 · 𝑐 is the usual dot product. We note that (𝐶*)* = 𝐶** ⊇ 𝐶 and  C⊥⊥=C.   If 𝐶 is an  [𝑛, 𝑘] linear code 
over 𝔽, then its dual 𝐶* is an [𝑛, 𝑛 − 𝑘] linear code over 𝔽. The linear code 𝐶 is self-orthogonal if 𝐶 ⊆ 𝐶* and is 
self-dual if 𝐶 = 𝐶*. A generator matrix 𝐻 for the dual code 𝐶* of the linear code 𝐶 is sometimes called a check 
matrix for 𝐶. A parity check matrix for 𝐶 is an (𝑛 − 𝑘) × 𝑛 matrix 𝐻 such that 𝑥 ∈ 𝐶 if and only if 𝑥𝐻, = 0. 
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2.2. The Griesmer Bound 
 The following is a theorem developed by James Hugo Griesmer [5], that can be used to find the upper 
bound of the minimum distance 𝑑 of a (binary) linear code 𝐶 = [𝑛, 𝑘, 𝑑]. 
Theorem 1 (Griesmer Bound) Let 𝐶 be an [𝑛, 𝑘, 𝑑] code over 𝔽!  with 𝑘 ≥ 1. Then, 

𝑛 ≥[\
𝑑
𝑞%]

&($

%-'

(1) 

 
2.3. Existing Methods in Constructing Codes from Other Codes 
 We now discuss a few methods in constructing binary linear codes from old binary linear codes such as 
lengthening, extending, subcoding, shortening, puncturing, juxtaposition, combination, and Plotkinsum 
construction. We also give the theorems that are used in identifying the changes in the parameters of the new code 
resulting from the constructions described. We refer the readers to [6], [8] and [9] for the detailed proofs of these. 
 
2.3.1. Lengthening a Code 

For a binary linear code 𝐶, the process of adding 0 to all codewords in 𝐶 is referred to as lengthening the 
code 𝐶. 
Theorem 2. Let 𝐶 be an [𝑛, 𝑘, 𝑑] binary linear code. Then, there exists a linear code 𝐶∗ with parameter [𝑛 +
𝑠, 𝑘, 𝑑], where 𝑠 > 0. 
 
2.3.2. Extending a Code 
  For a binary linear code 𝐶 of length 𝑛, the code 𝐶∗ of length 𝑛 + 1 obtained from 𝐶 by adding one extra 
bit to each codeword in order to make each codeword into a new codeword of even weight is called the extended 
code of 𝐶. In particular, we are interested in codes that have codewords with odd weight initially. 
Theorem 3. Let C be an [𝑛, 𝑘, 𝑑] binary linear code. Then, given that 𝑑 is odd, there exists a binary linear code 
𝐶∗	with parameter [𝑛 + 1, 𝑘, 𝑑 + 1]. 
 
2.3.3. Taking a Subcode from a Code 
  For a binary linear code 𝐶 of length 𝑛, the process of deleting a codeword from the basis of 𝐶 so as to 
obtain a new code 𝐶∗	where the minimum weight of 𝐶∗	remains the same, is referred to as taking a subcode of 𝐶, 
or subcoding the code 𝐶. 
Theorem 4. Let 𝐶 be an [𝑛, 𝑘, 𝑑] binary linear code. Then, there exists a binary linear code 𝐶∗ with parameter 
[𝑛, 𝑘 − 𝑠, 𝑑], where 𝑠 > 0 and 𝑘 > 1. 
 
2.3.4. Shortening a Code 
  For a binary linear code 𝐶 of length 𝑛, a shortened code of 𝐶 is the set of all codewords of 𝐶 which are 
zero at a fixed coordinate with that coordinate deleted. Those non-zero codewords in 𝐶 shall be removed from 𝐶. 
In particular, we are interested in deleting those coordinates that are not 0 for all codewords in 𝐶. If the coordinate 
is 0 for all codewords in 𝐶, we shall use the reverse technique of lengthening, and then use the technique of taking 
a subcode. 
Theorem 5. Let 𝐶 be an [𝑛, 𝑘, 𝑑] binary linear code. Then, there exists a binary linear code 𝐶∗ with parameter 
[𝑛 − 𝑠, 𝑘 − 𝑠, 𝑑], where 𝑘 > 𝑠 > 0. 
 
2.3.5. Puncturing or Truncating a Code 
 For a binary linear code 𝐶 of length 𝑛, the code obtained by removing a fixed coordinate of 𝐶 is called a 
punctured code of 𝐶. In particular, we are interested in deleting those coordinates that is not 0 for all codewords 
in 𝐶. 
Theorem 6. Let 𝐶 be an [𝑛, 𝑘, 𝑑]	binary linear code. Then, there exists a binary linear code 𝐶∗ with parameter 
[𝑛 − 𝑠, 𝑘, 𝑑 − 𝑠], where 𝑠 > 0 and 𝑑 > 1. 
 
2.3.6. Juxtaposition or Concatenation of Codes 
  The concatenation of two codewords, 𝑐$ and 𝑐#, is a new string 𝑐$𝑐# formed by writing the elements of 
𝑐$ and the elements of 𝑐# consecutively. The concatenation of two codes, 𝐶$ and 𝐶#, is a set of codewords of the 
form 𝑐$𝑐# such that 𝑐$ ∈ 𝐶$ and 𝑐# ∈ 𝐶#. In particular, the sizes of 𝐶$  and 𝐶# are both equal. We define 
concatenation as an injective operation. That is, each codewords in 𝐶$ and 𝐶# can only be used once in the 
concatenation. Then, the new code has a generator matrix 𝐺∗ = (𝐺$𝐺#), where 𝐺$ and 𝐺# are the generator matrices 
of 𝐶$ and 𝐶#, respectively. 
Theorem 7. Let 𝐶$	be an [𝑛$, 𝑘, 𝑑$]	binary linear code and 𝐶# be an [𝑛#, 𝑘, 𝑑#]	binary linear code. Then, there 
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exists a binary linear code 𝐶∗ with parameter [𝑛$ + 𝑛#, 𝑘, 𝑑$ + 𝑑#]. 
 
2.3.7. Combination of Codes 
  The combination of two codes, 𝐶$ and 𝐶#, is a set of codewords of the form 𝑐$𝑐# such that 𝑐$ ∈ 𝐶$ and 
𝑐# ∈ 𝐶#. We define combination as a surjective operation, which is different from concatenation of two codes. 
That is, every codewords in 𝐶$ will concatenate with every codewords in 𝐶#. In particular, the sizes of 𝐶$	and 
𝐶#	need not to be equal. 
Theorem 8. Let 𝐶$ be an [𝑛$, 𝑘$, 𝑑$]	binary linear code and 𝐶# be an [𝑛#, 𝑘#, 𝑑#] binary linear code. Then, there 
exists a binary linear code 𝐶∗ with parameter [𝑛$ + 𝑛#, 𝑘$ + 𝑘#, 𝑚𝑖𝑛{𝑑$, 𝑑#}]. 
 
2.3.8. Plotkinsum or 𝒖(𝒖 + 𝒗)-Construction 
  Plotkinsum, also called 𝑢(𝑢 + 𝑣) construction and bar product, is a classic tool to construct new binary 
linear codes from a binary linear code already known. Particularly, we consider two binary linear codes of the 
same length and of which one code has minimum distance which is twice the minimum distance of the other. 
Theorem 9. Let 𝐶$	be an [𝑛, 𝑘$, 𝑑] binary linear code and 𝐶# be an [𝑛, 𝑘#, 2𝑑] binary linear code. Let 𝐶$⊕𝐶# be 
the code consisting of all codewords of the form 

(𝑢, 𝑢 + 𝑣) = (𝑢$, 𝑢#, . . . , 𝑢", 𝑢$ + 𝑣$, 𝑢# + 𝑣#, … , 𝑢" + 𝑣") 
with 

𝑢 =	 (𝑢$, 𝑢#, … , 𝑢") ∈ 𝐶$ and 𝑣 = 	 (𝑣$, 𝑣#, … , 𝑣") ∈ 𝐶#. 
Then, 𝐶$⊕𝐶# is a [2𝑛, 𝑘$ + 𝑘#, 2𝑑] binary linear code. 
 
 

III. CONSTRUCTING OPTIMAL BINARY LINEAR CODES 
Andries Brouwer [1] published a table of the lower bounds and upper bounds of the minimum distance 

𝑑 of binary linear codes for 1 ≤ 𝑛 ≤ 256 and 𝑘 ≤ 𝑛, which was further improved by Markus Grassl [3] by 
increasing the values of some lower bounds and constructing the binary linear codes exhibiting these lower bounds 
by using some known binary linear codes. Significantly, some optimal binary linear codes were constructed for 
those of which the lower bounds were to equal the higher bounds (most of which are those codes with 𝑘 ≤ 7). In 
this section, we extend the list of these optimal binary linear codes up to 257 ≤ 𝑛 ≤ 300 and 𝑘 ≤ 7. Particularly, 
we use the Griesmer Bound in taking the upper bound of each minimum distance of the codes and we apply a 
construction algorithm on the codes already constructed by Grassl in taking the lower bounds. 
 
3.1. Taking the Upper Bounds Using the Griesmer Bound Theorem 

We now show a process of taking the upper bounds of the minimum distance d of the binary linear codes 
for 257 ≤ 𝑛 ≤ 300 and 𝑘 ≤ 7, using the Griesmer Bound. 
Let us suppose that the binary linear code [257, 2	,172], where 𝑛 = 257, 𝑘 = 2 and 𝑑 = 172, exists. Then, 
equation 1 has the following representation: 

257 ≥[\
172
2% ]

$

%-'

 

so that 257 ≱ 258. 
By Theorem 1, this implies that the binary linear code [257,2,172] does not exist. However, if we replace 

𝑑 = 172 by 𝑑 = 171, we have the binary linear code [257, 2, 171]. Then, equation 1 has the following 
representation: 

257 ≥[\
171
2% ]

$

%-'

 

so that 257 ≥ 257. Thus, the upper bound of 𝑑 for a binary linear code with 𝑛 = 257 and 𝑘 = 2 is 171 (as shown 
in row 1 column 2 of Table 2). We use similar process in getting other values of the upper bounds of d for 257 ≤
𝑛 ≤ 300 and 𝑘 ≤ 7. 
 
3.2. Constructing Codes Exhibiting the Lower Bounds 
  We now present a construction algorithm that we shall use in constructing a binary linear code exhibiting 
the lower bound of the minimum distance 𝑑, for a given value of length 𝑛 and dimension 𝑘. 
  In constructing the binary linear code 𝐶 = [𝑛, 𝑘, 𝑑], with length 𝑛, dimension 𝑘, and minimum distance 
upper bound 𝑑, we follow the algorithm as shown in Table 1. Please note that the (optimal) binary linear codes 
𝐶∗, 	𝐶$∗ and 𝐶#∗ that we look for in the algorithm are the codes already constructed by Markus Grassl [4] and/or the 
codes that we had already constructed. 
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Table 1.  A construction algorithm for optimal binary linear codes. 

  Suppose we construct the binary linear code [258, 6	,129], where length 𝑛 = 258, dimension 𝑘 = 6, and 
minimum distance upper bound 𝑑 = 129. Since 𝑑 is odd, we look for the binary linear codes of parameters 𝐶$∗ =
[𝑛$, 𝑘, 𝑑$] and 𝐶#∗ = [𝑛#, 𝑘, 𝑑#]  such that 𝑛 = 𝑛$ + 𝑛# and 𝑑 = 𝑑$ + 𝑑# in the list of binary linear codes already 
constructed (refer to Appendix B). Now, since the binary linear codes [252, 6, 128] and [6, 6, 1] exist, we apply 
juxtaposition to [252,6,128] and [6, 6, 1]. We now get the optimal binary linear code [258, 6, 129]. Table 2 shows 
the complete list of optimal binary linear codes (colored red) constructed through this method. 
  Now, suppose we construct the binary linear code [257,6,128], where length 𝑛 = 257, dimension 𝑘	 =
	6, and minimum distance upper bound 𝑑 = 128. Since 𝑑 is even, we consider looking for either binary linear 
codes of parameters [256, 6, 128] or [256, 6, 127] in the list of binary linear codes already constructed (refer to 
Appendix B). Now, since the binary linear code [256, 6, 128] exists, we apply lengthening to [256, 6, 128] by 1. 
We now get the optimal binary linear code [257, 6, 128]. Table 2 shows the complete list of optimal binary linear 
codes (colored violet) constructed through this method. 
  On the other hand, suppose we construct the binary linear code [257,5,132], where length 𝑛 = 257, 
dimension 𝑘 = 5, and minimum distance upper bound 𝑑 = 132. Since 𝑑 is even, we consider looking for either 
binary linear codes of parameters [256,6,128] or [256, 6, 127] in the list of binary linear codes already constructed 
(refer to Appendix B). Now, since the binary linear code [256, 5, 131] exists, we apply extending to [256, 5, 131] 
by 1. We now get the optimal binary linear code [257, 5, 132]. Table 2 shows the complete list of optimal binary 
linear codes (colored green) constructed through this method. A trivial binary linear code [𝑛, 1, 𝑛] (the code with 
one non-zero codeword) can easily be constructed. 
  In Table 2, we summarize the optimal binary linear codes for 257 ≤ 𝑛 ≤ 300 and 𝑘 ≤ 7. Please note 
that the color of each entry in the minimum distance corresponds to the following construction: trivial construction 
- black; construction by applying juxtaposition - red; construction by applying lengthening - violet; construction 
by applying extending - green. 
 

IV. CONCLUSIONS 
  Construction of optimal binary linear codes is a central problem in coding theory. Andries Brouwer 
published a table of the lower bounds and upper bounds of the minimum distance 𝑑 of binary linear codes for 1 ≤
𝑛 ≤ 256	and 𝑘 ≤ 𝑛	which was further developed by Markus Grassl. In his table, Grassl was able to improve the 
lower bounds of the codes presented by Brouwer and presented detailed construction for each code exhibiting the 
lower bounds. Some optimal binary linear codes were then constructed for those results in which the upper bounds 
and lower bounds of 𝑑 are equal. To improve the list of the optimal binary linear codes which were already 
constructed by Grassl, we developed an algorithm applied to (optimal) binary linear codes already constructed to 
construct optimal binary linear codes for 257 ≤ 𝑛 ≤ 300	and 𝑘 ≤ 7. Particularly, we were able to construct the 
optimal binary linear codes by: (1) taking the upper bounds of the minimum distance 𝑑 of the binary linear codes 
using Griesmer Bound; and (2) constructing binary linear codes which satisfy these upper bounds. More so, we 
were able to show a detailed construction method for each (optimal) binary linear code exhibiting the minimum 
distance lower bound. 
 

 
Table 2.  Optimal binary linear codes for 257 ≤ 𝑛 ≤ 300 and 𝑘 ≤ 7. 
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				𝒏\𝒌 1 2 3 4 5 6 7 

257 257  171 146 136 132 128 128 
258 258  172 147 136 132 129 128 
259 259  172 148 137 132 130 128 
260 260  173 148 138 133 130 128 
261 261  174 148 138 134 131 129 
262 262  174 149 139 134 132 130 
263 263  175 150 140 135 132 130 
264 264  176 150 140 136 132 131 
265 265  176 151 140 136 133 132 
266 266  177 152 141 136 134 132 
267 267  178 152 142 136 134 132 
268 268  178 152 142 137 135 133 
269 269  179 153 143 138 136 134 
270 270  180 154 144 138 136 134 
271 271  180 154 144 139 136 135 
272 272  181 155 144 140 136 136 
273 273 182 156 144 140 137 136 
274 274  182 156 145 140 138 136 
275 275  183 156 146 141 138 136 
276 276  184 157 146 142 139 137 
277 277  184 158 147 142 140 138 
278 278  185 158 148 143 140 138 
279 279  186 159 148 144 140 139 
280 280  186 160 148 144 141 140 
281 281  187 160 149 144 142 140 
282 282  188 160 150 144 142 140 
283 283  188 161 150 144 143 141 
284 284  189 162 151 145 144 142 
285 285  190 162 152 146 144 142 
286 286  190 163 152 146 144 143 
287 287  191 164 152 147 144 144 
288 288  192 164 152 148 144 144 
289 289  192 164 153 148 145 144 
290 290  193 165 154 148 146 144 
291 291  194 166 154 149 146 144 
292 292  194 166 155 150 147 145 
293 293  195 167 156 150 148 146 
294 294  196 168 156 151 148 146 
295 295  196 168 156 152 148 147 
296 296  197 168 157 152 149 148 
297 297  198 169 158 152 150 148 
298 298  198 170 158 152 150 148 
299 299  199 170 159 153 151 149 
300 300  200 171 160 154 152 150 

 
  Meanwhile, since this paper only focused on the construction of optimal binary linear codes for 257 ≤
𝑛 ≤ 	300 and 𝑘 ≤ 7, further studies may consider increasing the parameters 𝑛 and 𝑘, with 𝑘	 ≤ 	𝑛. Further studies 
may also deal on constructing optimal linear codes over other fields. More so, in most cases, for binary linear 
codes with 𝑛 > 30 and 8 ≤ 𝑘 ≤ 	𝑛, the lower bounds of 𝑑 found are less than the upper bounds of 𝑑. It is of great 
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interest to construct those codes which satisfy the upper bounds of 𝑑. It would even be a great discovery if we can 
develop an algorithm in finding optimal (binary) linear codes for greater values of 𝑛 and/or 𝑘. 
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