Markov Triples

D.Bratotini and M.Lewinter

Markov triples, (a, b, c), consist of natural numbers that solve

$$
\begin{equation*}
a^{2}+b^{2}+c^{2}=3 a b c \tag{*}
\end{equation*}
$$

a, b, and c are then called Markov numbers. The Markov numbers less than 1000 are 1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, and 985 . Here are several triples: $(1,1,1),(1,1,2),(1,2,5),(1,5,13)$, and $(2,5,29)$. Since squares are 0 or $1(\bmod 3),\left(^{*}\right)$ becomes $a^{2}+b^{2}+c^{2}=0(\bmod 3)$, we must have either $a^{2}=b^{2}=c^{2}=0(\bmod 3)$ or $a^{2}=b^{2}=c^{2}=1(\bmod 3)$. Other modular conditions include: $a^{2}+b^{2}=0(\bmod c), a^{2}+c^{2}=0(\bmod b)$, and $b^{2}+c^{2}$ $=0(\bmod a)$. Writing $\left(^{*}\right)$ as the quadratic equation in $c, c^{2}-3 a b c+\left(a^{2}+b^{2}\right)=0$, we require the discriminant, $9 a^{2} b^{2}-4\left(a^{2}+b^{2}\right)$, to be a perfect square. Thus most pairs, (a, b), are not part of a Markov triple. All odd Markov numbers have the form $4 k+1$, and all even Markov numbers have the form $32 k+2$. Every other Fibonacci number, $f_{2 k+1}$, that is, $1,2,5,13,34, \ldots$ is a Markov number. $\left({ }^{*}\right)$ can be rewritten $3 a b-c=$ $3 a b-c=\frac{a^{2}+b^{2}}{c}$, from which we have $c \mid a^{2}+b^{2}$. (By symmetry, we also have $\quad a \mid b^{2}+c^{2}$ and $b \mid$ $a^{2}+c^{2}$, of course.)
Lemma 1: If we take two numbers from any triple, we obtain a quadratic equation in the third number, leading to two triples, namely the one we start with and a new one.
Remark: This implies that $\left(^{*}\right)$ has infinitely many solutions in natural numbers.
Example: Given (2, 5, 29), consider the equation satisfied by $(2,29, x)$, namely $2^{2}+29^{2}+x^{2}=(3 \cdot 2 \cdot 29) x$, or $x^{2}-$ $174 x+845=0$. This becomes $(x-169)(x-5)=0$, so $x=5$, yielding the given triple, $(2,5,29)$, and $x=169$, yielding the new triple, $(2,29,169)$.

We briefly review ordinary and generalized Pell equations.

Lemma 2: Let (r, t) be the smallest solution in positive integers to the ordinary Pell equation, $k y^{2}=1$, and let $\left(x_{1}, y_{1}\right)$ be the smallest solution in positive integers to the generalized Pell equation, $x^{2}-k y^{2}=d$, where $d \neq 1$. Then the n-th solution, $\left(x_{n}, y_{n}\right)$, to the generalized Pell equation is given by $x_{n}+y_{n} \sqrt{k}=(r+t \sqrt{k})^{n-1}\left(x_{1}+y_{1} \sqrt{k}\right)$ See [1].

We use the exponent, $n-1$, so that when $n=1$, we have $(r+t \sqrt{k})^{0}\left(x_{1}+y_{1} \sqrt{k}\right)=x_{1}+y_{1} \sqrt{k}$.

Example: Let us find infinitely many solutions, $\left(x_{n}, y_{n}\right)$, to $x^{2}-2 y^{2}=2$.

Step 1: $x_{1}=2$ and $y_{1}=1$ solve the generalized Pell equation $x^{2}-2 y^{2}=2$.
Step 2: $r=3$ and $t=2$ solve the associated ordinary Pell equation $x^{2}-2 y^{2}=1$.

Step 3: By Lemma 2, we obtain, for $n=1,2,3, \ldots, \quad x_{n}+y_{n} \sqrt{2}=(3+2 \sqrt{2})^{n-1}(2+\sqrt{2})$.

Example: When $n=2, x_{2}+y_{2} \sqrt{2}=(3+2 \sqrt{2})(2+\sqrt{2})=10+7 \sqrt{2}$. Then $x_{2}=10$ and $y_{2}=7$. When $n=$ $3, x_{3}+y_{3} \sqrt{2}=(3+2 \sqrt{2})^{2}(2+\sqrt{2})=(17+12 \sqrt{2})(2+\sqrt{2})=58+41 \sqrt{2}$. Then $x_{3}=58$ and $y_{3}=41$.

Theorem 1: There are infinitely many Markov numbers, (a, b, c), for which $a=1$.
Proof: Setting $a=1$ in $\left({ }^{*}\right)$ yields $\quad 1+b^{2}+c^{2}=3 b c \quad \Rightarrow \quad c^{2}-3 b c+\left(b^{2}+1\right)=0 \quad \Rightarrow$

$$
c=\frac{3 b \pm \sqrt{9 b^{2}-4\left(b^{2}+1\right)}}{2} \Rightarrow c=\frac{3 b \pm \sqrt{5 b^{2}-4}}{2}
$$

By guesswork, letting $b=1$, we have $c=\frac{3 \pm 1}{2}$, yielding the solutions $(1,1,1)$ and $(1,1,2)$. For additional solutions, we let $5 b^{2}-4=s^{2}$, in which case, $\quad c=\frac{3 b \pm s}{2}$

Observe that $5 b^{2}-4=s^{2}$ becomes the generalized Pell Equation, $s^{2}-5 b^{2}=-4$, with smallest positive solution, s_{1} $=b_{1}=1$. The associated ordinary Pell Equation, $s^{2}-5 b^{2}=1$, has the smallest positive solution, $r=9, t=4$. Then $s_{n}+b_{n} \sqrt{5}=(9+4 \sqrt{5})^{n-1}(1+\sqrt{5})$ which has infinitely many solutions.

Example: Let $n=2$. Then $s_{2}+b_{2} \sqrt{5}=(9+4 \sqrt{5})(1+\sqrt{5})=29+13 \sqrt{5}$, so $s_{2}=29$ and $b_{2}=13$. By (**), we obtain two values for $c, \frac{39 \pm 29}{2}=34$ and 5 , yielding the Markov triples $(1,13,5)$ and $(1,13,34)$.

Theorem 2: There are infinitely many Markov numbers, (a, b, c), for which $a=2$.
Proof: Setting $a=2$ in $\left(^{*}\right.$) yields $\quad 4+b^{2}+c^{2}=6 b c \quad \Rightarrow \quad c^{2}-6 b c+\left(b^{2}+4\right)=0 \quad \Rightarrow$

$$
\begin{array}{r}
c=\frac{6 b \pm \sqrt{36 b^{2}-4\left(b^{2}+4\right)}}{2}=3 b \pm \sqrt{9 b^{2}-\left(b^{2}+4\right)}=3 b \pm \sqrt{8 b^{2}-4} \Rightarrow \\
c=3 b \pm 2 \sqrt{2 b^{2}-1}=3 b \pm 2 s \tag{***}
\end{array}
$$

$2 b^{2}-1=s^{2}$ becomes the generalized Pell Equation, $s^{2}-2 b^{2}=-1$, with smallest positive solution, $s_{1}=b_{1}=1$. The associated ordinary Pell Equation, $s^{2}-2 b^{2}=1$, has the smallest positive solution, $r=3, t=2$. Then $s_{n}+b_{n} \sqrt{2}=(3+2 \sqrt{2})^{n-1}(1+\sqrt{2})$ which has infinitely many solutions.

Example: Let $n=2$. Then $s_{2}+b_{2} \sqrt{2}=(3+2 \sqrt{2})(1+\sqrt{2})=7+5 \sqrt{2}$, so $s_{2}=7$ and $b_{2}=5$. By ($\left.{ }^{* * *}\right)$, we obtain two values for $c, 15 \pm 14=29$ and 1 , yielding the triples $(2,5,29)$ and $(2,5,1)$.

A Markov triple of the form (a, a, a) satisfies $3 a^{2}=3 a^{3}$, whose only solution in natural numbers is $a=1$, which yields $(1,1,1)$. Our next theorem is more general.

Theorem 3: With the exception of $(1,1,1)$ and (1, 1, 2), every Markov triple consists of three distinct Markov numbers.

Proof: Assume that $a=b$. Then (*) becomes $2 a^{2}+c^{2}=3 a^{2} c$, or $c^{2}-3 a^{2} c+2 a^{2}=0$. We have $c=\frac{3 a^{2} \pm \sqrt{9 a^{4}-8 a^{2}}}{2}=a\left(\frac{3 a \pm \sqrt{9 a^{2}-8}}{2}\right)$. We require $9 a^{2}-8=s^{2}$, or $(3 a)^{2}-s^{2}=8$. The only solution to this last equation is $a=s=1$.

Theorem 4: No Markov triple contains 3.
Proof: Let $a=3$. Then $\left(^{*}\right)$ becomes $9+b^{2}+c^{2}=9 b c$, which becomes $c^{2}-9 b c+\left(b^{2}+9\right)=0$, so
$c=\frac{9 b \pm \sqrt{81 b^{2}-4\left(b^{2}+9\right)}}{2}=\frac{9 b \pm \sqrt{77 b^{2}-36}}{2}$. This requires that $77 b^{2}-36=s^{2}$, which becomes $-1=s^{2}$ $(\bmod 7)$, or $s^{2}=6(\bmod 7)$. Now the only quadratic resides, $\bmod 7$, are $0,1,2,3$, and 5 .

It has been conjectured that two different Markov triples cannot have the same maximum element. Thus the existence of the Markov triple, $(2,5,29)$, for example, precludes the existence of a different Markov triple having maximum element, 29. The Markov triple, $(2,29,169)$, contains 29 , but the maximum element is 169 .

Theorem 5: $a^{2}+b^{2}+c^{2}=(4 k) a b c$ has no (positive) integer solutions.
Proof: Observe that this becomes $a^{2}+b^{2}+c^{2}=0(\bmod 4)$. Since squares are 0 or $1 \bmod 4$, we must have $a^{2}=b^{2}$ $=c^{2}=0(\bmod 4)$ which implies that a, b, and c are even. Let $a=2 A, b=2 B$, and $c=2 C$. Then we have $4 A^{2}+4 B^{2}$ $+4 C^{2}=(4 k) \cdot 8 A B C$, or $A^{2}+B^{2}+C^{2}=8 k A B C$. Repeating the argument, $\bmod 4$, we find that A, B, and C must be even. Continuing in this manner presents an absurd infinite descent.

Reference

[1] M.Lewinter, J.Meyer, Elementary Number Theory with Programming, Wiley \& Sons. 2015.

