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Markov triples, (a, b, c), consist of natural numbers that solve  

                                                          a2 + b2 + c2 = 3abc                                                     (*) 

a, b, and c are then called Markov numbers.  The Markov numbers less than 1000 are 1, 2, 5, 13, 29, 34, 89, 169, 

194, 233, 433, 610, and  985. Here are several triples:  (1, 1, 1), (1, 1, 2), (1, 2, 5), (1, 5, 13), and (2, 5, 29).  Since 

squares are 0 or 1 (mod 3), (*) becomes a2 + b2 + c2 = 0 (mod 3), we must have either  a2 = b2 = c2 = 0 (mod 3) or  

a2 = b2 = c2 = 1 (mod 3).  Other modular conditions include:  a2 + b2 = 0 (mod c), a2 + c2 = 0 (mod b), and b2 + c2 

= 0 (mod a).  Writing (*) as the quadratic equation in c, c2 – 3abc + (a2 + b2) = 0, we require the discriminant, 

9a2b2 – 4(a2 + b2), to be a perfect square.  Thus most pairs, (a, b), are not part of a Markov triple.  All odd Markov 

numbers have the form 4k + 1, and all even Markov numbers have the form 32k + 2.  Every  other Fibonacci 

number, f2k+1, that is, 1, 2, 5, 13, 34, … is a Markov number. (*) can be rewritten                3ab – c = 

2 2

3
a b

ab c
c


  , from which we have c | a2 + b2.  (By symmetry, we also have                    a | b2 + c2 and b | 

a2 + c2, of course.)   

Lemma 1: If we take two numbers from any triple, we obtain a quadratic equation in the third number, leading to 

two triples, namely the one we start with and a new one.   

Remark:  This implies that (*) has infinitely many solutions in natural numbers. 

Example:  Given (2, 5, 29), consider the equation satisfied by (2, 29, x), namely 22 + 292 + x2 = (3∙2∙29)x, or x2 – 

174x + 845 = 0.  This becomes (x – 169)(x – 5) = 0, so x = 5, yielding the given triple, (2, 5, 29), and x = 169, 

yielding the new triple, (2, 29, 169).  

We briefly review ordinary and generalized Pell equations. 

Lemma 2:  Let (r, t) be the smallest solution in positive integers to the ordinary Pell equation,                     x2 – 

ky2 = 1, and let (x1, y1) be the smallest solution in positive integers to the generalized Pell equation, x2 – ky2 = d, 

where d ≠ 1.  Then the n-th solution, (xn, yn), to the generalized Pell equation is given by    

   
1

1 1

n

n nx y k r t k x y k


      See [1].  ■ 

We use the exponent, n – 1, so that when n = 1, we have    
0

1 1 1 1r t k x y k x y k    .  
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Example:  Let us find infinitely many solutions, (xn, yn), to  x2 – 2y2 = 2.   

Step 1:  x1 = 2 and y1 = 1 solve the generalized Pell equation x2 – 2y2 = 2.   

Step 2:  r = 3 and t = 2 solve the associated ordinary Pell equation x2 – 2y2 = 1.   

Step 3:  By Lemma 2, we obtain, for n = 1, 2, 3, …,      
1

2 3 2 2 2 2
n

n nx y


    . 

Example:  When n = 2,   2 2 2 3 2 2 2 2 10 7 2x y      .  Then x2 = 10 and y2 = 7.  When n = 

3,       
2

3 3 2 3 2 2 2 2 17 12 2 2 2 58 41 2x y         .  Then x3 = 58 and y3 = 41.   

Theorem 1:  There are infinitely many Markov numbers, (a, b, c), for which a = 1.   

Proof:  Setting a = 1 in (*) yields     1 + b2 + c2 = 3bc            c2 – 3bc + (b2 + 1) = 0                                              

 2 23 9 4 1

2

b b b
c

  
              

23 5 4

2

b b
c

 
   

By guesswork, letting b = 1, we have 
3 1

2
c


 , yielding the solutions (1, 1, 1) and (1, 1, 2).  For additional 

solutions, we let  5b2 – 4 = s2, in which case,            
3

2

b s
c


                       (**) 

Observe that 5b2 – 4 = s2 becomes the generalized Pell Equation, s2 – 5b2 = –4, with smallest positive solution, s1 

= b1 = 1.  The associated ordinary Pell Equation, s2 – 5b2 = 1, has the smallest positive solution, r = 9, t = 4. Then   

   
1

5 9 4 5 1 5
n

n ns b


     which has infinitely many solutions.  ■ 

Example:  Let n = 2.  Then   2 2 5 9 4 5 1 5 29 13 5s b      , so s2 = 29 and b2 = 13.  By (**), 

we obtain two values for c, 
39 29

2


  = 34 and 5, yielding the Markov triples (1, 13, 5) and (1, 13, 34).   

Theorem 2:  There are infinitely many Markov numbers, (a, b, c), for which a = 2.   

Proof:  Setting a = 2 in (*) yields     4 + b2 + c2 = 6bc            c2 – 6bc + (b2 + 4) = 0                                              

 
 

2 2

2 2 2
6 36 4 4

3 9 4 3 8 4
2

b b b
c b b b b b

  
                   

                                                                  
23 2 2 1 3 2c b b b s                                                     

(***) 

2b2 – 1 = s2 becomes the generalized Pell Equation, s2 – 2b2 = –1, with smallest positive solution, s1 = b1 = 1.  The 

associated ordinary Pell Equation, s2 – 2b2 = 1, has the smallest positive solution, r = 3, t = 2. Then  

   
1

2 3 2 2 1 2
n

n ns b


      which has infinitely many solutions.  ■ 



Markov Triples  

DOI: 10.35629/4767-12035052                                     www.ijmsi.org                                                      52 | Page 

Example:  Let n = 2.  Then   2 2 2 3 2 2 1 2 7 5 2s b      , so s2 = 7 and b2 = 5.  By (***), we 

obtain two values for c, 15 14  = 29 and 1, yielding the triples (2, 5, 29) and (2, 5, 1).   

A Markov triple of the form (a, a, a) satisfies 3a2 = 3a3, whose only solution in natural numbers is a = 1, 

which yields (1, 1, 1).  Our next theorem is more general. 

Theorem 3:  With the exception of (1, 1, 1) and (1, 1, 2), every Markov triple consists of three distinct Markov 

numbers. 

Proof:  Assume that a = b.  Then (*) becomes 2a2 + c2 = 3a2c, or c2 – 3a2c + 2a2 = 0.  We have 

2 4 2 23 9 8 3 9 8

2 2

a a a a a
c a

    
   

 
 

.  We require 9a2 – 8 = s2, or (3a)2 – s2 = 8. The only solution 

to this last equation is  a = s = 1.  ■ 

Theorem 4:  No Markov triple contains 3.   

Proof:  Let a = 3.  Then (*) becomes 9 + b2 + c2 = 9bc, which becomes c2 – 9bc + (b2 + 9) = 0, so 

 2 2
29 81 4 9 9 77 36

2 2

b b b b b
c

    
  .  This requires that 77b2 – 36 = s2, which becomes –1 = s2 

(mod 7), or s2 = 6 (mod 7).  Now the only quadratic resides, mod 7, are 0, 1, 2, 3, and 5.  ■ 

It has been conjectured that two different Markov triples cannot have the same maximum element.  Thus 

the existence of the Markov triple, (2, 5, 29), for example, precludes the existence of a different Markov triple 

having maximum element, 29.  The Markov triple, (2, 29, 169), contains 29, but the maximum element is 169.   

Theorem 5:  a2 + b2 + c2 = (4k)abc has no (positive) integer solutions.  

Proof: Observe that this becomes a2 + b2 + c2 = 0 (mod 4). Since squares are 0 or 1 mod 4, we must have a2 = b2 

= c2 = 0 (mod 4) which implies that a, b, and c are even.  Let a = 2A, b = 2B, and c = 2C. Then we have 4A2 + 4B2 

+ 4C2 = (4k)∙8ABC, or A2 + B2 + C2 = 8kABC.  Repeating the argument, mod 4, we find that A, B, and C must be 

even.  Continuing in this manner presents an absurd infinite descent. ■ 
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