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Markov triples, (a, b, ¢), consist of natural numbers that solve
a*+ b*+ 2 =3abc (*)

a, b, and c are then called Markov numbers. The Markov numbers less than 1000 are 1, 2, 5, 13, 29, 34, 89, 169,
194,233,433, 610, and 985. Here are several triples: (1,1, 1), (1, 1,2),(1,2,5), (1, 5, 13),and (2, 5, 29). Since
squares are 0 or 1 (mod 3), (*) becomes a? + b + ¢*> = 0 (mod 3), we must have either a®>=5b>=c?>=0 (mod 3) or
a>=b?>=c?=1 (mod 3). Other modular conditions include: a?+ b?> =0 (mod ¢), a> + ¢* = 0 (mod b), and b* + ¢?
=0 (mod a). Writing (*) as the quadratic equation in ¢, ¢ — 3abc + (a® + b?) = 0, we require the discriminant,
9a*b* — 4(a? + b?), to be a perfect square. Thus most pairs, (a, b), are not part of a Markov triple. All odd Markov

numbers have the form 4k + 1, and all even Markov numbers have the form 32k + 2. Every other Fibonacci

number, f+1, that is, 1, 2, 5, 13, 34, ... is a Markov number. (*) can be rewritten 3ab — ¢ =
2 2
a“+b ‘
3ab-c= , from which we have c | a*> + b%. (By symmetry, we also have a|b*+c?andb |
C

a® + ¢, of course.)

Lemma 1: If we take two numbers from any triple, we obtain a quadratic equation in the third number, leading to
two triples, namely the one we start with and a new one.

Remark: This implies that (*) has infinitely many solutions in natural numbers.

Example: Given (2, 5, 29), consider the equation satisfied by (2, 29, x), namely 22 + 29? + x> = (3-:2-29)x, or x> —
174x + 845 = 0. This becomes (x — 169)(x — 5) = 0, so x = 5, yielding the given triple, (2, 5, 29), and x = 169,
yielding the new triple, (2, 29, 169).

We briefly review ordinary and generalized Pell equations.

Lemma 2: Let (7, t) be the smallest solution in positive integers to the ordinary Pell equation, x2—

ky?* =1, and let (x1, y1) be the smallest solution in positive integers to the generalized Pell equation, x> — ky* = d,

where d # 1. Then the n-th solution, (x., y.), to the generalized Pell equation is given by

xn+yn\/F=(r+t\/F)nfl(x1+y1\/F) See[1]. m

0
We use the exponent, n — 1, so that when n = 1, we have (I’ +t\/E) (X1+ ylei) =X+ yl\/f.
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Example: Let us find infinitely many solutions, (x,, y»), to x2 —2y% = 2.

Step 1: x; =2 and y; = 1 solve the generalized Pell equation x> — 2)? = 2.

Step 2: =3 and ¢ = 2 solve the associated ordinary Pell equation x> — 2)* = 1.

n-1
Step 3: By Lemma 2, we obtain, forn=1,2,3, ..., xn+ynﬁ=(3+2ﬁ) (2+\/§).

Example: When n =2, x2+y2\/§:(3+2\/§)(2+\/§):10+7\/§. Then x, =10 and y, = 7. Whenn =

%+ Y2 = (3+2V2) (242 = (1741242 (2+42) =58+ 4142 . Then = 58 and s = 41

Theorem 1: There are infinitely many Markov numbers, (a, b, ¢), for which a = 1.

Proof: Settinga=1in(*)yields 1+ +c*=3bc = -3bc+(B*+1)=0 =

2 2
CsziJQb 4(b +1) N C=3bi~/5b2—4

2 2

3+1
By guesswork, letting b = 1, we have C = T , yielding the solutions (1, 1, 1) and (1, 1, 2). For additional

3b+ts
C=
2

solutions, we let 5> — 4 = 52, in which case,

**)

Observe that 5% — 4 = s? becomes the generalized Pell Equation, s*> — 56> = —4, with smallest positive solution, s;

= by = 1. The associated ordinary Pell Equation, s> — 5= 1, has the smallest positive solution, =9, t= 4. Then

s, +D, J5 = (9 +45 )nil <1+ J5 ) which has infinitely many solutions. m

Example: Letn=2. Then S, + b2\/§ = (9+4\/§)(1+ \/g) =29 +13\/§, s0 52 =29 and b, = 13. By (*¥),

39+29
we obtain two values for c, T =34 and 5, yielding the Markov triples (1, 13, 5) and (1, 13, 34).

Theorem 2: There are infinitely many Markov numbers, (a, b, c), for which a = 2.

Proof: Settinga =2 in (*)yields 4+b*+c2=6bc = F—6bc+(b*+4)=0 =

6b+,/36b2 —4(b%+4
c= +\/ 5 ( " )=3bi,/9b2—(b2+4)=3bi g8h’-4 =
c=3b+2y2b?—1=3b+2s

(** *)
2b* — 1 = s becomes the generalized Pell Equation, s? — 2b?=—1, with smallest positive solution, s1 = b; = 1. The

2

associated ordinary Pell Equation, s> — 2b*> = 1, has the smallest positive solution, » = 3, ¢ = 2. Then

s, +b, \/E = (3 + 2\/5 )n_l (1—0— \/E ) which has infinitely many solutions. m
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Example: Letn=2. Then S, +b2\/§=(3+ 2\/5)(1+\/§)=7+5\/§,sosz:7and by=5. By (***), we

obtain two values for ¢, 15+14 =29 and 1, yielding the triples (2, 5, 29) and (2, 5, 1).

A Markov triple of the form (a, a, a) satisfies 3a> = 3a°, whose only solution in natural numbers is @ = 1,
which yields (1, 1, 1). Our next theorem is more general.
Theorem 3: With the exception of (1, 1, 1) and (1, 1, 2), every Markov triple consists of three distinct Markov
numbers.

Proof: Assume that a = b. Then (*) becomes 2a> + ¢* = 3a’c, or ¢ — 3a’c + 24> = 0. We have

3a’++9a‘ —8a® . 3a++/9a’ -8

2 2

. We require 94> — 8 = 52, or (3a)?> — s> = 8. The only solution

to this last equationis a=s=1. m
Theorem 4: No Markov triple contains 3.

Proof: Let a = 3. Then (*) becomes 9 + b> + ¢ = 9bc, which becomes ¢ — 9bc + (B> + 9) = 0, so

9bi\/81b2—4(b2+9) 9bi~f77b2—36
- 2 - 2
(mod 7), or s> = 6 (mod 7). Now the only quadratic resides, mod 7, are 0, 1,2, 3,and 5. m

c . This requires that 77b> — 36 = s, which becomes —1 = s?

It has been conjectured that two different Markov triples cannot have the same maximum element. Thus
the existence of the Markov triple, (2, 5, 29), for example, precludes the existence of a different Markov triple
having maximum element, 29. The Markov triple, (2, 29, 169), contains 29, but the maximum element is 169.
Theorem 5: a® + b? + ¢? = (4k)abc has no (positive) integer solutions.

Proof: Observe that this becomes a? + b> + ¢ = 0 (mod 4). Since squares are 0 or 1 mod 4, we must have a* = b>
= ¢? =0 (mod 4) which implies that a, b, and c are even. Let a =24, b =2B, and ¢ = 2C. Then we have 44> + 4B
+ 4C? = (4k)-8ABC, or A*>+ B> + C* = 8kABC. Repeating the argument, mod 4, we find that 4, B, and C must be

even. Continuing in this manner presents an absurd infinite descent. m
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