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ABSTRACT: The main purpose of this paper is to compare two types of convergence of double sequence, whose 

elements are in 2 −quasi-normed spaces. Firstly, we have introduced a new function in a quasi-normed space, 

which we have entitled the 2 −quasi-norm, and have seen that every quasi-normed space can be equipped with a 

2 −quasi−norm. The first results in the comparison of the types of convergence of double sequences are precisely 

related to the convergence according to quasi−norm and 2 −quasi−norm. To continue, we are focused on 

statistical convergence and that one that is related with ideals, and in the end, we have compared each of those 

types of convergence with their repeated ones. During this paper, we have defined a new type of convergence, 

which is called or-convergence, that makes possible a one-to-one function between each double sequence with a 

usually sequence, with one index and it enables that every double sequence will be bounded, a property that in 

general is not satisfied from Pringsheim’s convergent sequences. 
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I. INTRODUCTION 
The convergence of double sequence and the spaces constructed by them, have been studied from authors 

like S. Sarabadan, S. Talebi, A.K. Banerje, R. Mondal, B. Altay and F. Başar et al. in [1], [2], [3], [4], [6] and [7]. 

They are focused on Pringsheim’s convergence and in statistical convergence that related with ideals in the case 

of double sequences in normed space and 2 − quasi − normed space. For the 2 − normed spaces and 

2 −quasi−normed spaces have worked many authors, that can be found in C. Park paper in [5].  

These studies encourage additional investigation into the comparison of the types of convergence for 

double sequences, when a space is already equipped with a 2 −quasi−normed function. 

In the first section of this paper, we have constructed a 2 −quasi−norm into a quasi−normed space, 

which is generated from quasi−norm and then we have studied the relation between the convergence of double 

sequences linked with quasi−norm and 2 −quasi−norm. It is worth noting the Proposition 3.1.4 over a sufficient 

condition of convergence in terms of 2 −quasi−norm for double sequences convergent according to quasi−norm. 

The relationship between the statistical convergence and the one according to ideals has then been observed, 

related with quasi−norm or 2 −quasi−normed convergence. 

Also, we have defined a new type of convergence, that we have called or−convergence because, a famous 

criterion of convergence, the Pringsheim’ criterion which is given as: 

∀𝜀 > 0, exists 𝑝 ∈ 𝑁 such that ∀𝑚, 𝑛 ≥ 𝑝 we have ‖𝑥𝑚,𝑛 − 𝑥, 𝑧‖ < 𝜀  is replaced with the following 

condition:  

  ∀𝜀 > 0, exists 𝑝 ∈ 𝑁 such that (∀𝑚 ≥ 𝑝, and ∀𝑛 ∈ 𝑁) or (∀𝑛 ≥ 𝑝, and ∀𝑚 ∈ 𝑁) we have ‖𝑥𝑚,𝑛 − 𝑥, 𝑧‖ < 𝜀 . 
For the last condition, we have observed that it guarantees the boundness of the convergent sequence and 

exists a one-to-one function between every or−convergent double sequence and a usually sequence, with one 

index.  

For all these relationships are given some examples constructed in a quasi − normed and 

2 −quasi−normed spaces like 𝐿1
2

([1,2])as in [9]. 

The second section talks about the relation between the iterated limits and their double corresponding for 

each type of convergence mentioned above. Here we are focused on treated the cases when the existence of iterated 

limits guarantees double ones. To realize that, we are based in the notion of uniformly convergence according to 
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one index, where we have given the definition of iterated statistical limits and that one based on ideals. We also 

have given an example which satisfies this property.  

 

II. NOTATIONS 
In this section we are giving some notations of quasi−normed, quasi−2 −normed and 2 −quasi−normed 

spaces. Also, we have given some definitions over the well-known types of convergences for the double 

sequences.  

In [6] is defined the 2 −normed function, which satisfies the following conditions: 

Definition 2.1 [6] Let 𝑋 be a real linear space of dimension greater than 1 and let ‖. , . ‖ be a real valued function 

on 𝑋 × 𝑋 satisfying the following four conditions: 

1. ‖𝑥, 𝑦‖ = 0 if and only if 𝑥 and 𝑦 are linearly dependent in 𝑋. 
2. ‖𝑥, 𝑦‖ = ‖𝑦, 𝑥‖ for all 𝑥, 𝑦 ∈ 𝑋. 
3. ‖𝑥, 𝛼𝑦‖ = |𝛼|‖𝑥, 𝑦‖, for every real number 𝛼. 
4. ‖𝑥, 𝑦 + 𝑧‖ ≤ ‖𝑥, 𝑦‖ + ‖𝑦, 𝑧‖, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

The function ‖. , . ‖ is called 2 −norm on 𝑋 and the pair (𝑋, ‖. , . ‖) is called a linear 2 −normed space.  

 

Also, in [5] is defined the quasi−2 −normed space. 

Definition 2.2[5] Let 𝑋 be a linear space. A quasi−2 −norm is a real valued function on 𝑋 × 𝑋 satisfying three 

conditions of definition 2.1 (1, 2, and 3) and the condition: 

4. There is a constant 𝐾 ≥ 1 such that ‖𝑥 + 𝑦, 𝑧‖ ≤ 𝐾‖𝑥, 𝑧‖ + 𝐾‖𝑦, 𝑧‖ for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 
The pair (𝑋, ‖. , . ‖) is called quasi− 2 −normed space if ‖. , . ‖ is a quasi−2 −normed on  𝑋. The smallest possible 

𝐾 is called the modulus of concavity of ‖. , . ‖. 
Definition 2.3 [8] 

Let 𝑋 be a linear space. A function ‖. ‖: 𝑋 → ℝ+is said to be quasi − norm on 𝑋 if the following conditions hold:  

(i) ‖𝑥‖ = 0 ⇔ 𝑥 = 0 

(ii) for every  𝑥𝑋 and for every ∀𝜆 ∈ ℝ, ‖𝜆𝑥‖ = |𝜆| ∙ ‖𝑥‖ 

(iii) for every 𝑥, 𝑦𝑋  , ‖𝑥 + 𝑦‖ ≤ 𝐾 (‖𝑥‖ + ‖𝑦‖ ) where 𝐾 ≥ 1   is a constant independent from 

variables 𝑥 and 𝑦. 

The smallest possible 𝐾, such that the above conditions hold, is called the modulus of concavity of quasi−norm 

‖. ‖. 

If the linear space 𝑋 is equipped with a quasi − norm ‖. ‖, then (𝑋, ‖. ‖) is called quasi−normed space. 

 

Le 𝑋 be a quasi−normed space of dimension greater than 1. 

Let us construct the function ‖. , . ‖: 𝑋 × 𝑋 → ℝ+, such that: 

‖𝑥, 𝑦‖ = {

0              𝑥 and 𝑦 are linearly dependent

‖𝑥‖‖𝑦‖                elsewhere                                 
 

This function satisfies the following conditions: 

1. For all 𝑥, 𝑦 ∈ 𝑋, ‖𝑥, 𝑦‖ = ‖𝑦, 𝑥‖  because if 𝑥 , 𝑦  are linearly dependent, then 𝑦 , 𝑥  are also linearly 

dependent. From this, ‖𝑥, 𝑦‖ = ‖𝑦, 𝑥‖.  
2. For all 𝑥, 𝑦 ∈ 𝑋, for every 𝛼 ∈ ℝ, 

‖𝑥, 𝛼𝑦‖ = ‖𝑥‖‖𝛼𝑦‖ = ‖𝑥‖|𝛼|‖𝑦‖ = |𝛼|‖𝑥, 𝑦‖ 
or zero when they are linearly dependent. 

If 𝑥 and 𝑦 are linearly dependent then exists a constant 𝑘 such that 𝑦 = 𝑘𝑥. Since 𝛼𝑦 = 𝛼𝑘𝑥 is linearly dependent 

with 𝑥, we write‖𝑥, 𝛼𝑦‖ = ‖𝑥, 𝛼𝑘𝑥‖ = |α|‖𝑥, 𝑘𝑥‖ = 0. 
This means that for all 𝑥, 𝑦 ∈ 𝑋 and for every 𝛼 ∈ ℝ, we have that 

‖𝑥, 𝛼𝑦‖ = |𝛼|‖𝑥, 𝑦‖. 
3. For all 𝑥, 𝑦, 𝑧 ∈ 𝑋, exists K≥ 1 such that 

‖𝑥 + 𝑦, 𝑧‖ ≤ 𝐾‖𝑥, 𝑧‖ + 𝐾‖𝑦, 𝑧‖, 
If 𝑥 + 𝑦 and 𝑧 are linearly dependent, then 

‖𝑥 + 𝑦, 𝑧‖ = 0 ≤ 𝐾‖𝑥, 𝑧‖ + 𝐾‖𝑦, 𝑧‖. 
In all other cases,  

‖𝑥 + 𝑦, 𝑧‖ = ‖𝑥 + 𝑦‖‖𝑧‖ ≤ 𝐾(‖𝑥‖ + ‖𝑦‖)‖𝑧‖ = 𝐾(‖𝑥‖‖𝑧‖ + ‖𝑦‖‖𝑧‖) = 𝐾‖𝑥, 𝑧‖ + 𝐾‖𝑦, 𝑧‖. 
So, the conditions 1, 2, 3 and 4 of quasi−2 −norm function hold. 

The function ‖. , . ‖ defined as above we called 2 −quasi−norm in 𝑋. 
We have obtained that: 

Proposition 2.4 Le𝑋 be a quasi−normed space of dimension greater than 1. The quasi−norm on 𝑋 generates a 

2 −quasi−norm on 𝑋. 
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This means that every quasi − normed space (𝑋, ‖. ‖) of dimension greater than 1 will equiped with a 

quasi−2 −norm (like 2 −quasi−norm defined as above). 

 

Let (𝑋, ‖. ‖) be a quasi−normed space of dimension greater than 1. Also, this space can be equiped with 

a 2 −quasi−norm as above. 

The convergence of a double sequence was firstly introduced by Mohammad Mursaleen.  

A double sequence𝑥 = (𝑥𝑗,𝑘)j,k∈ℕ of real numbers is said to be convergent in the Pringsheim’s sense if for every 

𝜀 > 0, there exists a positive integer 𝑛0 = 𝑛0(𝜀) such that for all 𝑗, 𝑘 ≥ 𝑛0 implies that |𝑥𝑗,𝑘 − 𝑙| < 𝜀. 

 

Assume (𝑥𝑚,𝑛)  is a real numbers double sequence that is 𝑝 −convergent (𝑝 −convergent is the short for 

Pringsheim convergent). The functor 𝑝 − 𝑙𝑖𝑚𝑥𝑚,𝑛 yielding a real number 𝛼 which is defined as follows: 

Definition 2.5 [6] Let us consider a real number 𝜀 > 0. Then there exists a natural number 𝑛(𝜀) such that for 

every natural numbers 𝑚, 𝑛 such that 𝑚, 𝑛 ≥ 𝑛(𝜀) holds |𝑥𝑚,𝑛 − 𝛼| < 𝜀. 
 

We say that (𝑥𝑚,𝑛) is convergent in the first coordinate if and only if: 

Definition 2.6 [6] Let us consider an element 𝑚 ∈ ℕ. Then curry’(𝑥𝑚,𝑛, 𝑚) is convergent. 

 

We say that 𝑥𝑚,𝑛 is convergent in the second coordinate if and only if: 

Definition 2.7 [6] Let us consider an element 𝑛 ∈ ℕ. Then curry (𝑥𝑚,𝑛, 𝑛) is convergent. 

 

The limit in the first coordinate of 𝑥𝑚,𝑛 yielding a function from ℕ into ℝ is defined by: 

Definition 2.8 [6] Let us consider an element 𝑚 ∈ ℕ. Then 𝛼(𝑚) = lim 𝑐𝑢𝑟𝑟𝑦′(𝑥𝑚,𝑛, 𝑚). 
 

The limit in the second coordinate of 𝑥𝑚,𝑛 yielding a function from ℕ into ℝ is defined by: 

Definition 2.9 [6] Let us consider an element 𝑛 ∈ ℕ. Then 𝛼(𝑛) = lim 𝑐𝑢𝑟𝑟𝑦(𝑥𝑚,𝑛 , 𝑛). 
 

Assume that the lim in the first coordinate of 𝑥𝑚,𝑛 is convergent. The first coordinate major iterated lim of 𝑥𝑚,𝑛 

yielding a real number is defined by: 

Definition 2.10 [6]Let 𝜀 > 0 be a real number. Then there existsa natural number 𝑀 such that for every natural 

number 𝑚 such that 𝑚 > 𝑀 holds |(the lim in the first coordinate of 𝑥𝑚,𝑛)(𝑚)  −  𝛼|  < 𝜀.  
 

Assume that the lim in the second coordinate of 𝑥𝑚,𝑛 is convergent. The second coordinate major iterated lim of 

𝑥𝑚,𝑛 yielding a real number is defined by: 

Definition 2.11  [6] Let 𝜀 > 0 be a real number. Then there exists a natural number 𝑁 such that for every natural 

number 𝑛 such that 𝑛 > 𝑁 holds |(the lim in the second coordinate of 𝑥𝑚,𝑛)(𝑛)  − 𝛼|  < 𝜀.  
 

The limits of definition 2.10 and 2.11 are called iterated limits. 

 

Let 𝑥𝑚,𝑛 be a function from ℕ × ℕ into ℝ. We say that 𝑥𝑚,𝑛 is uniformly convergent in the first coordinate if and 

only if: 

Definition 2.12 [6] (i) 𝑥𝑚,𝑛𝑥 is convergent in the first coordinate, and 

(ii) for every 𝜀 > 0, there exists a natural number 𝑀 such that for every natural number 𝑚 such that 𝑚 ≥ 𝑀  for 

every natural number 𝑚, |𝑥𝑛,𝑚 − (the lim in the first coordinate of 𝑥𝑚,𝑛)(𝑛)| < 𝜀. 

We say that 𝑥𝑚,𝑛 is uniformly convergent in the second coordinate if and only if: 

Definition 2.13 [6] (i) 𝑥𝑚,𝑛 is convergent in the second coordinate, and 

(ii) for every 𝜀 > 0, there exists a natural number 𝑁 such that for every natural number 𝑛 such that 𝑛 ≥ 𝑁  for 

every natural number 𝑁, |𝑥𝑛,𝑚 − (the lim in the second coordinate of 𝑥𝑚,𝑛)(𝑚)| < 𝜀. 
 

Similarly, we define above concepts for double sequences in a quasi−normed and 2 −quasi−normed spaces.  

 
Definition 2.14 [6, 7] Let (𝑥𝑚,𝑛)  be a double sequence and let 𝛼𝑗 = 𝑠𝑢𝑝 {𝑥𝑚,𝑛: 𝑚, 𝑛 ≥ 𝑗}  for each 𝑗 . The 

Pringsheim limit superior of (𝑥𝑚,𝑛) is defined as follows: 

i) If 𝛼𝑗 = +∞ for each 𝑗, then 𝑙𝑖𝑚 𝑠𝑢𝑝 𝑥𝑚,𝑛 = +∞. 

ii) If 𝛼𝑗 < +∞ for some 𝑗, then 𝑙𝑖𝑚 𝑠𝑢𝑝 𝑥𝑚,𝑛 = 𝑖𝑛𝑓
𝑗
{𝛼𝑗} . 
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In the same way as limit superior, is defined also the Pringsheim limit inferior of 𝑥𝑚,𝑛.  

If 𝑥 = 𝑥𝑚,𝑛 and 𝑦 = 𝑦𝑚,𝑛 are double sequences, then ([7]) 

i) 𝑙𝑖𝑚 𝑖𝑛𝑓 𝑥𝑚,𝑛 ≤ 𝑙𝑖𝑚 𝑠𝑢𝑝𝑥𝑚,𝑛 

ii) 𝑙𝑖𝑚 𝑥𝑚,𝑛 = 𝑠 if and only if 𝑙𝑖𝑚 𝑖𝑛𝑓 𝑥𝑚,𝑛 = 𝑙𝑖𝑚 𝑠𝑢𝑝𝑥𝑚,𝑛 = 𝑠 

iii) 𝑙𝑖𝑚 𝑠𝑢𝑝(−𝑥𝑚,𝑛) = − 𝑙𝑖𝑚  𝑖𝑛𝑓 𝑥𝑚,𝑛 

iv) 𝑙𝑖𝑚 𝑠𝑢𝑝(𝑥𝑚,𝑛 + 𝑦𝑚,𝑛) ≤ 𝑙𝑖𝑚 𝑠𝑢𝑝 𝑥𝑚,𝑛 + 𝑙𝑖𝑚 𝑠𝑢𝑝 𝑦𝑚,𝑛 

v)𝑙𝑖𝑚 𝑖𝑛𝑓(𝑥𝑚,𝑛 + 𝑦𝑚,𝑛) ≥ 𝑙𝑖𝑚 𝑖𝑛𝑓 𝑥𝑚,𝑛 + 𝑙𝑖𝑚 𝑖𝑛𝑓 𝑦𝑚,𝑛. 
 
Recall that a sequence (𝑥𝑛)𝑛∈ℕ of elements of 𝑋 (where X is a normed space) is said to be statistically convergent 

to 𝑙 ∈ 𝑋 ([1]), if the set 𝐴(𝜀) = {𝑛 ∈ ℕ: ‖𝑥𝑛 − 𝑙‖ ≥ 𝜀} has natural density zero for each𝜀 > 0. In other words, for 

each 𝜀 > 0, 𝑙𝑖𝑚
𝑛→∞

1

𝑛
𝑐𝑎𝑟𝑑({𝑘 ≤ 𝑛: ‖𝑥𝑘 − 𝑙‖ ≥ 𝜀}) = 0. 

 

Let 𝐴 ⊆ ℕ × ℕ be a set of  pairs  of  positive integers and let 𝐴(𝑚, 𝑛) be the of numbers of (𝑗, 𝑘) in 𝐴 such that 

𝑗 ≤ 𝑚 and 𝑘 ≤ 𝑛. Then the two−dimensional concept of natural density can be defined as follows: 

Definition 2.15 [1] The lower asymptotic density of a set 𝐴 ⊆ ℕ × ℕ is defined as  

𝑑2(𝐴) = 𝑙𝑖𝑚𝑖𝑛𝑓
𝑚,𝑛

𝐴(𝑚, 𝑛)

𝑚𝑛
. 

If the sequence (
𝐴(m,n)

𝑚n
)
𝑛,𝑚∈ℕ

 has a limit in Pringsheim’s sense, then we say that 𝐴 ⊆ ℕ × ℕ has a double natural 

density and is defined as 𝑑2(𝐴) = 𝑙𝑖𝑚 
𝑚,𝑛→∞

𝐴(𝑚,𝑛)

𝑚𝑛
. 

Let 𝑌 be an arbitrary set 

Definition 2.16 [1] A family ℐ ⊆ 𝒫(𝑌) of subsets nonempty set 𝑌 is said to be ideal in 𝑌 if: 

i) 𝜙 ∈ ℐ 
ii) 𝐴, 𝐵 ∈ ℐ implies that 𝐴 ∪ 𝐵 ∈ ℐ 
iii) 𝐴 ∈ ℐ, 𝐵 ⊆ 𝐴 implies that 𝐵 ∈ ℐ. 
ℐ is called a nontrivial ideal if 𝑋 ∉ ℐ. 
Definition 2.17 [1] Let 𝑌 ≠ 𝜙. A nonempty family 𝐹 of subsets of 𝑌 is said to be a filter in 𝑌 provided: 

i) 𝜙 ∈ 𝐹 

ii) 𝐴, 𝐵 ∈ 𝐹 implies that 𝐴 ∩ 𝐵 ∈ 𝐹 

iii) 𝐴 ∈ 𝐹, 𝐴 ⊆ 𝐵 implies that 𝐵 ∈ 𝐹. 
Definition 2.18 [1] A nontrivial ideal ℐ in 𝑌 is called admissible if {𝑥} ∈ ℐ for each 𝑥 ∈ 𝑌. 
Definition 2.19 [1] A nontrivial ideal ℐ in ℕ × ℕ is called strongly admissible if {𝑖} × ℕ and ℕ × {𝑖} belong to ℐ 
for each 𝑖 ∈  ℕ.  

It is evident that a strongly admissible ideal is admissible also.  

Let ℐ ⊆ 𝒫(ℕ) be a nontrivial ideal in ℕ. The sequence (𝑥𝑛)𝑛∈ℕ in 𝑋 is said to be ℐ −convergent to 𝑥 ∈ 𝑋, if for 

each 𝜀 > 0 the set 𝐴(𝜀) = {𝑛 ∈ ℕ: ‖𝑥𝑛 − 𝑥‖ ≥ 𝜀} belongs to ℐ 
 

Definition 2.20 [1] A sequence (𝑥𝑛) 𝑛∈ℕ in a 2 −normed space (𝑋, ‖. , . ‖) is said to be convergent to 𝑥 in 𝑋 if 

𝑙𝑖𝑚
𝑛→∞

‖𝑥𝑛 − 𝑥, 𝑧‖ = 0 for every 𝑧 ∈ 𝑋. 

This can be written by the formula 

(∀𝑧 ∈ 𝑋)(∀𝜀 > 0)(∃𝑛0 ∈ ℕ)(∀𝑛 ≥ 𝑛0), ‖𝑥𝑛 − 𝑥, 𝑧‖ < 𝜀 

We write it as 𝑥𝑛
‖,.,‖𝑋
→  𝑥. 

Similarly, we define the sequence convergence in a 2 −quasi−normed space. 

 

Definition 2.21 [1] A double sequence 𝑥 = (𝑥𝑗,𝑘)𝑗,𝑘∈ℕ of all elements of 𝑋(where X is a metric space) is said to 

be ℐ −convergent to 𝑙 ∈ 𝑋 if for every 𝜀 > 0 we have 𝐴(𝜀) ∈ ℐ, where 𝐴(𝜀) = {(𝑚, 𝑛) ∈ ℕ × ℕ: 𝜌(𝑥𝑚𝑛 , 𝑙) ≥ 𝜀} 
and we write it as ℐ − 𝑙𝑖𝑚

𝑛,𝑚→∞
𝑥𝑚𝑛 = 𝑙. 

Similarly, we define the sequence ℐ −convergence in a 2 −quasi−normed space. 

 

Definition 2.22 [1] A double sequence 𝑥 = (𝑥𝑗,𝑘)𝑗,𝑘∈ℕ  of all elements of 𝑋 (where X is a 2 −quasi−normed 

space) is said to be ℐ −convergent to 𝑙 ∈ 𝑋  if for every  𝑧 ∈ 𝑋  and 𝜀 > 0  we have 𝐴(𝜀) ∈ ℐ , where 𝐴(𝜀) =
{(𝑚, 𝑛) ∈ ℕ × ℕ: ‖𝑥𝑛 − 𝑙, 𝑧‖ ≥ 𝜀} and we write it as   ℐ − 𝑙𝑖𝑚

𝑛,𝑚→∞
𝑥𝑚𝑛 = 𝑙. 
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III. MAIN RESULTS 
 

III.1 Comparison of types of convergence 

 

Now let us study the comparison of different types of convergence. 

Let (𝑋, ‖. ‖) be a quasi−normed space of dimension greater than 1 and ‖. , . ‖ the 2 −quasi−norm generates by 

the quasi−norm ‖. ‖. 

Definition 3.1.1 A double sequence 𝑥 = (𝑥𝑚,𝑛)𝑚,𝑛∈ℕ is said to be convergent in the Pringsheim’s sense if for 

each 𝜀 > 0 there exists a positive integer 𝑛0 = 𝑛0(𝜀) such that for all 𝑚, 𝑛 ≥ 𝑛0, implies that ‖𝑥𝑚,𝑛 − 𝑥‖ < 𝜀. 
We can easily see that: 

If a double sequence 𝑥 = (𝑥𝑚,𝑛)𝑚,𝑛∈ℕ  converges to 𝑥  in a 2 −quasi−normed space (𝑋, ‖. , . ‖) , then it is 

convergent to 𝑥 in the Pringsheim’s sense for the quasi−normed space (𝑋, ‖. , . ‖). To prove this let us take, 𝑧 ∈ 𝑋 

such that ‖𝑧‖ = 1, and from the definition of a double sequence, convergent in a 2 −quasi−normed space the 

above definition holds. 

Thus we have verified that: 

Proposition 3.1.2 The convergence in 2 −quasi−normed space implies the convergence in quasi-normed space. 

 

In general, the convergence of a double sequence in a quasi-normed space does not implies the convergence in a 

2 −quasi−normed space 𝑋. 

Example 3.1.3 Let 𝐿1
2

([1,2]) be the quasi−normed space of functions such that (∫ √|𝑓|𝑑𝑥)
2

1

2
< +∞ and let 

𝑓𝑚𝑛(𝑥) =
1

𝑥2𝑚𝑛
 be a double sequence in 𝑙1

2

[1,2]. The following equations hold: 

‖𝑓𝑚𝑛(𝑥)‖1
2

= (∫ √|𝑓𝑚𝑛|𝑑𝑥
2

1
)
2

= (∫
1

𝑥𝑚𝑛
𝑑𝑥

2

1
)
2

= (
𝑥1−𝑚𝑛

1−𝑚𝑛
|1
2)
2

= [
1

1−𝑚𝑛
(21−𝑚𝑛 − 1)]

2

=
(
1

2𝑚𝑛
−1)

2

(1−𝑚𝑛)2 𝑚,𝑛→∞
→    0. (1) 

So, for 𝑓𝑚𝑛(𝑥)

‖.‖1
2

→  𝑓(𝑥) = 0, ∀ 𝑥 ∈ [1,2]. 
Also, for 𝑔𝑚,𝑛(𝑥) = 𝑥

2𝑚𝑛, 

‖𝑓𝑚,𝑛, 𝑔𝑚𝑛‖1
2

= ‖𝑓𝑚,𝑛 ‖1
2

‖𝑔𝑚𝑛 ‖1
2

=
(
1

2𝑚𝑛
− 1)

2

(1 − 𝑚𝑛)2
(∫ √𝑥2𝑚𝑛𝑑𝑥

2

1

)

2

=
(
1

2𝑚𝑛
− 1)

2

(1 − 𝑚𝑛)2
(
𝑥𝑚𝑛+1

𝑚𝑛 + 1
|
2
1
)

2

               (2)

=
(
1

2𝑚𝑛
− 1)

2

(1 −𝑚𝑛)2
1

(𝑚𝑛 + 1)2
(2𝑚𝑛+1 − 1)2 =

2𝑚𝑛 (2 −
1

2𝑚𝑛
)
2

(
1

2𝑚𝑛
− 1)

2

(𝑚𝑛)2 (
1

𝑚𝑛
− 1)

2

(
1

𝑚𝑛
+ 1)

2 𝑚,𝑛→∞
→    ∞. 

From (2) we see that exists the functions 𝑔𝑚𝑛(𝑥)  for  𝑚  and 𝑛   sufficiently large numbers, such that 

‖𝑓𝑚,𝑛 − 𝑓𝑚𝑛‖1
2 𝑚,𝑛→∞
→    ∞, and this implies that that ‖𝑓𝑚,𝑛 ‖1

2

 do not converge to 𝑓(𝑥) = 0 in  2 −quasi−normed 

generated by the quasi−norm of 𝐿1
2

([1,2]). 

 

The following proposition holds: 

Proposition 3.1.4 If a double sequence (𝑥𝑚,𝑛)𝑚,𝑛∈ℕ converges to 𝑥, in a quasi−normed space (𝑋, ‖. ‖)  and 

lim
𝑛→∞

‖𝑥𝑚,𝑛 − 𝑥, 𝑦‖ = 0  for every 𝑦 ∈ 𝑌 , where 𝑌  is dense in 𝑋 , then (𝑥𝑚,𝑛)𝑚,𝑛∈ℕ  converge to 𝑥  in 

2 −quasi−normed space (𝑋, ‖. , . ‖) generated by the quasi−norm. 

Proof  

For every 𝑧 ∈ 𝑋, ∃(𝑦𝑛)𝑛∈ℕ such that lim
𝑛→∞

𝑦𝑛 = 𝑧. That means:  

(∀𝜀 > 0)(∃𝑛0 ∈ ℕ)(∀𝑛 ≥ 𝑛0), ‖𝑦𝑛 − 𝑧‖ <
𝜀

√2𝐾
, (where K is the modulus of concavity of quasi−norm) 

Also, lim
𝑚,𝑛→∞

𝑥𝑚,𝑛 = 𝑥 if and only if (∀𝜀 > 0)(∃𝑛1 ∈ ℕ)(∀𝑚, 𝑛 ≥ 𝑛1), ‖𝑥𝑚,𝑛 − 𝑥‖ <
𝜀

√2𝐾
. 

Take a 𝑦𝑛′ ∈ 𝑌 for 𝑛′ ≥ 𝑛0 and we see:  

‖𝑥𝑚,𝑛 − 𝑥, 𝑧‖ = ‖𝑥𝑚,𝑛 − 𝑥‖‖𝑧‖ = ‖𝑥𝑚,𝑛 − 𝑥‖‖−𝑦𝑛′ + 𝑧 + 𝑦𝑛′‖                     

≤ 𝐾‖𝑥𝑚,𝑛 − 𝑥‖‖𝑦𝑛′ − 𝑧‖ + 𝐾‖𝑥𝑚,𝑛 − 𝑥‖‖𝑦𝑛′‖

= 𝐾‖𝑥𝑚,𝑛 − 𝑥‖‖𝑦𝑛′ − 𝑧‖ + 𝐾‖𝑥𝑚,𝑛 − 𝑥, 𝑦𝑛′‖. 
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For 𝑦𝑛′ ∈ 𝑌 we have: lim
𝑚,𝑛→∞

‖𝑥𝑚,𝑛 − 𝑥, 𝑦𝑛′‖ = 0 iff (∃𝑛2 ∈ ℕ)(∀𝑚, 𝑛 ≥ 𝑛2), ‖𝑥𝑚,𝑛 − 𝑥, 𝑦𝑛′‖ <
𝜀

2𝐾
. 

If we take 𝑝 = 𝑚𝑎𝑥 {𝑛1, 𝑛2} we obtain that: 

‖𝑥𝑚,𝑛 − 𝑥, 𝑧‖ ≤ 𝐾‖𝑥𝑚,𝑛 − 𝑥‖‖𝑦𝑛′ − 𝑧‖ + 𝐾‖𝑥𝑚,𝑛 − 𝑥, 𝑦𝑛′𝑛‖ < 𝐾
𝜀

√2𝐾

𝜀

√2𝐾
+ 𝐾

𝜀

2𝐾
< 𝜀, for every 𝑚, 𝑛 ≥ 𝑝. 

This means that lim
𝑚,𝑛→∞

‖𝑥𝑚,𝑛 − 𝑥, 𝑧‖ = 0, for every 𝑧 ∈ 𝑋. This completes the proof. 

Corollary 3.1.5 The Pringsheim’s convergence of a double sequence in a quasi−normed subspace 𝑌 of 𝑋 is 

equivalent with the convergence in 2 −quasi−norm generated by quasi-norm of 𝑋 if 𝑌 is dense in 𝑋. 
 

The double sequence (𝑥𝑚,𝑛)𝑚,𝑛∈ℕ in a quasi−normed space is called statistically convergent in 𝑥 ∈ 𝑋, if 

the set 𝐴(𝜀) = {(𝑚, 𝑛) ∈ ℕ × ℕ: ‖𝑥𝑚,𝑛 − 𝑥‖ ≥ 𝜀} has natural density zero for each 𝜀 > 0. In other words, for 

each 

𝜀 > 0, 𝑙𝑖𝑚
𝑚,𝑛→∞

1

𝑚𝑛
𝑐𝑎𝑟𝑑{𝑘 ≤ 𝑚, 𝑙 ≤ 𝑛: ‖𝑥𝑚,𝑛 − 𝑥‖ ≥ 𝜀} = 0. 

The following proposition holds: 

Proposition 3.1.6 Every double sequence (𝑥𝑚,𝑛)𝑚,𝑛∈ℕ  that converges to 𝑥  in a quasi− normed space is 

statistically convergent to 𝑥. 

Proof If (𝑥𝑚,𝑛)𝑚,𝑛∈ℕ converges to 𝑥 in a quasi−normed space then we have: 

∀𝜀 > 0, ∃𝑝 ∈ ℕ such that for every 𝑚, 𝑛 ≥ 𝑝, ‖𝑥𝑚,𝑛 − 𝑥‖ < 𝜀. Let us have {𝑘 ≤ 𝑚, 𝑙 ≤ 𝑛: ‖𝑥𝑚,𝑛 − 𝑥‖ ≥ 𝜀}.   
We can see that: 

If  𝑚, 𝑛 < 𝑝, then 𝑐𝑎𝑟𝑑𝐴(𝜀) = 𝑚𝑛; 

If  𝑚 ≥ 𝑝 and 𝑛 < 𝑝, then 𝑐𝑎𝑟𝑑𝐴(𝜀) = 𝑚𝑛; 

If  𝑚 < 𝑝 and 𝑛 ≥ 𝑝, then 𝑐𝑎𝑟𝑑𝐴(𝜀) = 𝑚𝑛. 

If  𝑚, 𝑛 ≥ 𝑝, then 𝑐𝑎𝑟𝑑𝐴(𝜀) = 𝑚𝑛 − (𝑚 − 𝑝 + 1)(𝑛 − 𝑝 + 1). 
So, 

𝑐𝑎𝑟𝑑𝐴(𝜀)

𝑚𝑛
= {

1,             𝑖𝑓 𝑚 < 𝑝  𝑜𝑟  𝑛 < 𝑝

𝑚𝑛 − (𝑚 − 𝑝 + 1)(𝑛 − 𝑝 + 1)

𝑚𝑛
,   𝑖𝑓  𝑚, 𝑛 ≥ 𝑝.

 

 

𝑙𝑖𝑚
𝑚,𝑛→∞

𝑐𝑎𝑟𝑑𝐴(𝜀)

𝑚𝑛
= 𝑙𝑖𝑚
𝑚,𝑛→∞

𝑚𝑛 − (𝑚 − 𝑝 + 1)(𝑛 − 𝑝 + 1)

𝑚𝑛
, 

because, if 𝑚, 𝑛 → ∞ then 𝑚, 𝑛 ≥ 𝑝 for every 𝑝 ∈ ℕ. 
 Thus 

𝑙𝑖𝑚
𝑚,𝑛→∞

𝑐𝑎𝑟𝑑𝐴(𝜀)

𝑚𝑛
= 𝑙𝑖𝑚
𝑚,𝑛→∞

1 −
(𝑚 − 𝑝 + 1)(𝑛 − 𝑝 + 1)

𝑚𝑛
= 0 

This completes the proof. 

 

Now, let us give an example of double sequence that is statistically convergent to 𝑥 , but it is not 

convergent to 𝑥 according to quasi−norm on 𝑋. 
Example 3.1.7 Let (𝑥𝑚,𝑛)𝑚,𝑛∈ℕ be the double sequence that is given by the following table 

(

1 0 0
0 1 0
0 0 1

…
…
…

…   … … …

) 

 

where 1 is denote an element 𝑥 ∈ 𝑋 such that ‖𝑥‖=1 and 0 is denote the element 0 of 𝑋 space. 

The double sequence (𝑥𝑚,𝑛)𝑚,𝑛∈ℕ is statistically convergent to 0, because for every 𝜀 > 0  can see that: 

𝑐𝑎𝑟𝑑{𝑘 ≤ 𝑚, 𝑙 ≤ 𝑛: ‖𝑥𝑚,𝑛‖ ≥ 𝜀} = 𝑚𝑖𝑛(𝑚, 𝑛). 
So,  

𝑙𝑖𝑚
𝑚,𝑛→∞

𝑐𝑎𝑟𝑑𝐴(𝜀)

𝑚𝑛
= 𝑙𝑖𝑚
𝑚,𝑛→∞

𝑚𝑖𝑛(𝑚, 𝑛)

𝑚𝑛
. 

This implies that  

0 ≤
𝑚𝑖𝑛(𝑚, 𝑛)

𝑚𝑛
<
𝑚

𝑚𝑛
=
1

𝑛 𝑛→∞
→   0 𝑜𝑟 

𝑛

𝑚𝑛
=
1

𝑚 𝑚→∞
→   0. 

Thus,  

𝑙𝑖𝑚
𝑚,𝑛→∞

𝑐𝑎𝑟𝑑𝐴(𝜀)

𝑚𝑛
= 0, 

And  
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(𝑥𝑚,𝑛)
𝑠
→0. 

On the other hand, the double sequence (𝑥𝑚,𝑛) does not converge to 0 according to quasi-norm of 𝑋, because for 

all 𝑝 ∈ ℕ, ∃𝑚, 𝑛 ≥ 𝑝 such that ‖𝑥𝑚,𝑛‖ = 1. 
 

 

 

 

 

In the same way with theorem 3.10 in [2], we can proof the following proposition. 

 

Proposition 3.1.8 Let (𝑋, ‖. , . ‖) be a 2 −quasi−normed space. A double sequence (𝑥𝑚,𝑛)𝑚,𝑛∈ℕ is statistically 

convergent to 𝑥 ∈ 𝑋 if and only if there exists a subset 𝐴 = {(𝑚, 𝑛) ∈ ℕ × ℕ: 𝑑2(𝐴𝑚𝑛) = 1} and  𝑥𝑚,𝑛
‖.,.‖
→ 𝑥 for 

(𝑚, 𝑛) ∈ 𝐴. 
 

Put  ℐ𝑑 = {𝐴 ⊂ ℕ × ℕ: 𝑑2(𝐴) = 0}. Then ℐ𝑑  is an admissible ideal in ℕ × ℕ  and ℐ𝑑2 −convergence becomes 

statistical convergence (Remark 3.3 [1]) 

Definition 3.1.9 [1] A double sequence 𝑥 = (𝑥𝑗,𝑘)𝑗,𝑘∈ℕ  in a 2 − normed space (𝑋, ‖. , . ‖)  is said to be 

ℐ2 −convergent to 𝑙 ∈ 𝑋 if for all 𝜀 > 0 and nonzero 𝑧 ∈ 𝑋, the set 𝐴(𝜀) = {(𝑗, 𝑘): ‖𝑥𝑗,𝑘 − 𝑙, 𝑧‖ ≥ 𝜀} ∈ ℐ2. In this 

case we can write it as ℐ2 − 𝑙𝑖𝑚
𝑗,𝑘
𝑥𝑗,𝑘 = 𝑙. 

We can easily see that ℐ𝑑 is an admissible ideal in ℕ × ℕ, from definition of 𝑑2(𝐴) and the cardinality properties, 

ℐ𝑑2 −convergence becomes statistical convergence, because of the definition of this type of convergence and the 

fact that 𝑑2(𝐴) = 0 for every 𝐴 ∈ ℐ𝑑2 . 

So, the remark 3.3 [1] is also valid in a 2 −quasi−normed space (𝑋, ‖. , . ‖). 
 

If ℐ  is the ideal ℐ0 = {𝐴 ⊂ ℕ × ℕ: ∃𝑚(𝐴) ∈ ℕ | 𝑖, 𝑗 ≥ 𝑚(𝐴), 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 (𝑖, 𝑗) ∉ ℕ × ℕ − 𝐴},  then ℐ2 − 

convergence coincide with 2 − quasi−normed convergence (similar as Remark 3.4 of [1]). 

 

If 𝑥 = (𝑥𝑗,𝑘)𝑗,𝑘∈ℕ is ℐ2 −convergent then (𝑥𝑗,𝑘)𝑗,𝑘∈ℕ does not need to be 2 − norm convergent (and also 2 −quasi 

−normed convergent). 

Example 3.1.10 In [1] is an example of ℐ2 −convergent double sequence, that is not 2 −normed convergent. It is 

a special case of 2 −quasi−normed convergent.  

 

Let give another definition of double sequence in a 2 −quasi−normed space. 

Definition 3.1.11  The double sequence  (𝑥𝑚,𝑛) is called convergent to 𝑥 ∈ 𝑋 if for every 𝑦 ∈ 𝑋 and for every 

𝜀 > 0, exists 𝑝 ∈ ℕ such that for 𝑚 ≥ 𝑝 or 𝑛 ≥ 𝑝, ‖𝑥𝑚𝑛 − 𝑥, 𝑦‖ < 𝜀. 
In this case, we can write 𝑜𝑟 − 𝑙𝑖𝑚

𝑚,𝑛→∞
𝑥𝑚𝑛 = 𝑥. 

It is clear that, 𝑜𝑟 − 𝑙𝑖𝑚
𝑚,𝑛→∞

𝑥𝑚𝑛 = 𝑥 implies the convergence in Pringsheim sense. Also, we can write the double 

sequence (𝑥𝑚𝑛) in a table and we can find a usual sequence 𝑦𝑛 that converges to 𝑥. 

(

 
 

𝑥11 𝑥12 …
𝑥21 𝑥22 …
… … …

𝑥1𝑛
𝑥2𝑛
…

…
…
…

)

 
 
, 

𝑥11, 𝑥12, 𝑥22, 𝑥21, … , 𝑥1𝑝 , 𝑥𝜀𝑝, … , 𝑥𝑝𝑝, 𝑥𝑝,𝑝−1, … 𝑥𝑝1, … 

For all 𝑛 > 𝑝2, 𝑦𝑛 = 𝑥𝑖𝑗  where 𝑖 > 𝑝 or 𝑗 > 𝑝, and‖𝑦𝑛 − 𝑥‖ < 𝜀, this implies that 𝑦𝑛 ‖.,.‖
→ 𝑥. 

We can see easily that: 

Furthermore, an 𝑜𝑟 −convergent double sequence is bounded.  Also exists an one-to-one function between each 

𝑜𝑟 −convergent double sequence with a usually sequence. 

 

III.2 Comparison of limits and their iterated limits 

Let us see the comparison of these types of limits and their iterated limits, 𝑙𝑖𝑚
𝑚→∞

(𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛) and 𝑙𝑖𝑚
𝑛→∞

( 𝑙𝑖𝑚
𝑚→∞

𝑥𝑚𝑛). 

The following proposition holds: 
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Proposition 3.2.1 If the double sequence (𝑥𝑚𝑛)𝑚,𝑛∈ℕ is Pringsheim convergent to 𝑥 in the quasi−2 −normed 

( 2 − quasi − normed) space 𝑋  and for every 𝑚 ∈ ℕ  exists 𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛 ,  then exists the iterated limits, 

𝑙𝑖𝑚
𝑚→∞

(𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛) = 𝑥. 

Proof The double limit, 𝑙𝑖𝑚
𝑚,𝑛→∞

𝑥𝑚𝑛 = 𝑥 if and only if for every 𝑧 ∈ 𝑋, for each 
𝜀

2𝐾
> 0, exists 𝑝 ∈ ℕ such that for 

every 𝑚, 𝑛 ≥ 𝑝, ‖𝑥𝑚𝑛 − 𝑥, 𝑧‖ <
𝜀

2𝐾
 ( where K is modulus of concavity of quasi−norm). 

For all 𝑚 ∈ ℕ, let us denote 𝑦𝑚 = 𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛 . This means that for every 𝑧 ∈ 𝑋, for each 
𝜀

2𝐾
> 0, exists 𝑝1 ∈ ℕ such 

that for every 𝑛 ≥ 𝑝1, ‖𝑥𝑚𝑛 − 𝑦𝑚, 𝑧‖ <
𝜀

2𝐾
. Now we can write the following inequalities: 

‖𝑦𝑚 − 𝑥, 𝑧‖ ≤ 𝐾(‖𝑥𝑚𝑛 − 𝑦𝑚, 𝑧‖ + ‖𝑥𝑚𝑛 − 𝑥, 𝑧‖) < 𝐾 (
𝜀

2𝐾
+
𝜀

2𝐾
) < 𝜀, 

for all 𝑚, 𝑛 ≥ 𝑚𝑎𝑥{𝑝, 𝑝1}. 
So, for every 𝑚 ≥ 𝑚𝑎𝑥{𝑝, 𝑝1} , ‖𝑦𝑚 − 𝑥, 𝑧‖ < 𝜀, and this means that 𝑙𝑖𝑚

𝑚→∞
𝑦𝑚 = 𝑥.  

This completes the proof. 

Corollary 3.2.2 If the double sequence (𝑥𝑚𝑛) is Pringsheim’s convergent to 𝑥  in a 

quasi −2 − normed  (2 − quasi − normed) space 𝑋  and exist the iterated limits, 𝑙𝑖𝑚
𝑚→∞

(𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛)  and 

𝑙𝑖𝑚
𝑛→∞

( 𝑙𝑖𝑚
𝑚→∞

𝑥𝑚𝑛), then the following equality folds: 

𝑥 = 𝑙𝑖𝑚
𝑚,𝑛→∞

𝑥𝑚𝑛 = 𝑙𝑖𝑚
𝑚→∞

(𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛) = 𝑙𝑖𝑚
𝑛→∞

( 𝑙𝑖𝑚
𝑚→∞

𝑥𝑚𝑛). 

The proof is immediate from the above proposition. 

 

Let us suppose that the double sequence (𝑥𝑚𝑛)𝑚,𝑛∈ℕ  is statistically convergent to 𝑥 ∈ 𝑋.  So, 

𝑙𝑖𝑚
𝑚,𝑛→∞

𝑑2(𝐴𝑚𝑛)

𝑚𝑛
= 0, where 𝑑2(𝐴𝑚𝑛) = 𝑐𝑎𝑟𝑑{(𝑖, 𝑗); 𝑖 ≤ 𝑚, 𝑗 ≤ 𝑛: ‖𝑥𝑖𝑗 − 𝑥, 𝑧‖ ≥ 𝜀}, for all 𝑧 ∈  𝑋 and 𝜀 > 0. 

For every 𝑛 ∈ ℕ, let us denote 𝑑(𝐴𝑛) = 𝑐𝑎𝑟𝑑{𝑖 ∈ ℕ; 𝑖 ≤ 𝑚, 𝑗 = 𝑛: ‖𝑥𝑖𝑗 − 𝑥, 𝑧‖ ≥ 𝜀}. 

We can easily see that  

𝑑2(𝐴𝑚𝑛) =∑𝑑(𝐴𝑖)

𝑛

𝑖=1

. 

So, for every 𝑛 ∈ ℕ, exist 𝛼𝑛 = 𝑙𝑖𝑚
𝑚→∞

𝑑2(𝐴𝑚𝑛)

𝑚𝑛
, then 0 ≤ 𝑙𝑖𝑚

𝑚→∞

𝑑(𝐴𝑛)

𝑚𝑛
≤ 𝛼𝑛 . This implies that 

0 ≤ 𝑙𝑖𝑚
𝑛→∞

( 𝑙𝑖𝑚
𝑚→∞

𝑑(𝐴𝑛)

𝑚𝑛
) ≤ 𝑙𝑖𝑚

𝑛→∞
𝛼𝑛 = 0. 

Definition 3.2.3 The iterated statistical limit (𝑠) 𝑙𝑖𝑚
𝑚→∞

(𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛) is called the iterated Pringsheim limit 

𝑙𝑖𝑚
𝑚→∞

(𝑙𝑖𝑚
𝑛→∞

𝑑(𝐴𝑛)

𝑚𝑛
). 

The following proposition holds: 

Proposition 3.2.4 If the double sequence (𝑥𝑚𝑛)𝑚,𝑛∈ℕ  is statistically convergent to 𝑥  in a quasi−2 −normed 

(2 −quasi−normed) space𝑋  and for every 𝑚 ∈ ℕ  exist 𝑙𝑖𝑚
𝑛→∞

𝑑2(𝐴𝑚𝑛)

𝑚𝑛
,  then exist the iterated statistical limit 

(𝑠) 𝑙𝑖𝑚
𝑚→∞

(𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛) = 𝑥. 

Corollary 3.2.5 If the double sequence (𝑥𝑚𝑛)𝑚,𝑛∈ℕ is statistically convergent to 𝑥 ∈ 𝑋 and exists the iterated 

statistical limits (𝑠) 𝑙𝑖𝑚
𝑚→∞

(𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛)  and (𝑠) 𝑙𝑖𝑚
𝑛→∞

( 𝑙𝑖𝑚
𝑚→∞

𝑥𝑚𝑛),  then the equality 𝑥 = (𝑠) 𝑙𝑖𝑚
𝑚,𝑛→∞

𝑥𝑚𝑛 =

(𝑠) 𝑙𝑖𝑚
𝑚→∞

(𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛) = (𝑠)𝑙𝑖𝑚
𝑛→∞

( 𝑙𝑖𝑚
𝑚→∞

𝑥𝑚𝑛), holds. 

 

Let us now see what happens with ℐ −convergence. Let ℐ ⊆ 𝒫(𝑌) be an ideal in 𝑌. 
Proposition 3.2.6 The family ℐ2 ⊆ 𝒫(𝑌 × 𝑌) = 𝒫(𝑌

2), such that for every 𝐴 × 𝐵 ∈ ℐ2, 𝐴, 𝐵 ∈ ℐ is an ideal in 𝑌2. 
Proof 

i) 𝜙 × 𝜙 = 𝜙 ∈ ℐ2, because 𝜙 ∈ ℐ. 
ii)𝐴1 × 𝐵1, 𝐴2 × 𝐵2 ∈  ℐ2 implies that 𝐴1, 𝐴2, 𝐵1, 𝐵2 ∈ ℐ, and this implies that 

(𝐴1 × 𝐵1) ∪ (𝐴2 × 𝐵2) = (𝐴1 ∪ 𝐴2) × (𝐵1 ∪ 𝐵2) ∈ ℐ2. 
iii) 𝐴1 × 𝐵1 ∈  ℐ; 𝐴2 × 𝐵2 ⊆ 𝐴1 × 𝐵1 implies that 𝐴2 × 𝐵2 ∈  ℐ2, because from definition 2.16 iii), 𝐴2, 𝐵2 ∈ ℐ. 
 

Definition 3.2.7 A double sequence (𝑥𝑖𝑗)  in a quasi−2 −normed (2 −quasi−normed) space is said to be 

ℐ2 −convergent to 𝑥 ∈ 𝑋, if for all 𝜀 > 0 and non-zero 𝑧 ∈ 𝑋, the set 𝐴(𝜀) = {(𝑖, 𝑗): ‖𝑥𝑖𝑗 − 𝑥, 𝑧‖ ≥ 𝜀} ∈ ℐ2. 
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If ℐ is an admissible ideal, then: 

for all 𝑖 ∈ ℕ and 𝑖 ∈ 𝐴(𝜀), 𝐴(𝜀𝑖) = {𝑗: ‖𝑥𝑖𝑗 − 𝑥, 𝑧‖ ≥ 𝜀} ∈  ℐ  

and for all 𝑗 ∈ 𝐴(𝜀), 𝐴(𝜀𝑗) = {𝑖: ‖𝑥𝑖𝑗 − 𝑥, 𝑧‖ ≥ 𝜀} ∈  ℐ. 

 

Definition 3.2.8 Consider the double sequence (𝑥𝑚𝑛)𝑚,𝑛∈ℕ. Suppose that there exists the  ℐ − 𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛 = 𝑦𝑚 ∈

𝑋 for every fixed 𝑚 ∈ ℕ,  and also exists ℐ − 𝑙𝑖𝑚
𝑚→∞

𝑦𝑚 = 𝑦 ∈ 𝑋. The element 𝑦 ∈ 𝑋 is called ℐ2 −iterrated limit of 

𝑥𝑚𝑛 and is denoted by ℐ2 − 𝑙𝑖𝑚
𝑚→∞

(𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛) = 𝑦. 

  

It is clear from the above definitions that if the double sequence (𝑥𝑚𝑛) is ℐ2 −convergent to 𝑥 ∈ 𝑋 then there 

exists ℐ2 − 𝑙𝑖𝑚
𝑚→∞

(𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛) = ℐ2 − 𝑙𝑖𝑚
𝑛→∞

( 𝑙𝑖𝑚
𝑚→∞

𝑥𝑚𝑛) = 𝑥. 

 

To answer the question, “When the existence of the iterated limits brings the Pringsheim’s convergence 

or the statistical convergence?”, the following proposition holds: 

Proposition 3.2.9 If there exists the Pringsheim’s iterated limit, 𝑙𝑖𝑚
𝑚→∞

(𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛) = 𝑥 and the limit 𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛 is 

uniformly according to 𝑚 ∈ ℕ, then the double sequence (𝑥𝑚𝑛) is Pringsheim’s convergent to 𝑥. 

Proof From the fact that 𝑙𝑖𝑚
𝑚→∞

(𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛) = 𝑥, we can write: 

For every 𝑚 ∈ ℕ, denote 𝑦𝑚 = 𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛 and so, for all 𝑧 ∈ 𝑋 and for every 
𝜀

2
> 0, there exists 𝑝1 ∈ ℕ, such that 

for all 𝑛 ≥ 𝑝1 and for all 𝑚 ∈ ℕ¸‖𝑥𝑚𝑛 − 𝑦𝑚, 𝑧‖ <
𝜀

2𝐾
. Also, 𝑙𝑖𝑚

𝑚→∞
𝑦𝑚 = 𝑥, and this implies that for all 𝑧 ∈ 𝑋, for 

every 
𝜀

2
> 0, exists 𝑝2 ∈ ℕ, such that for all 𝑚 ≥ 𝑝2 and for all 𝑚 ∈ ℕ¸‖𝑦𝑚 − 𝑥, 𝑧‖ <

𝜀

2𝐾
, thus for all 𝑚, 𝑛 ≥

𝑚𝑎𝑥{𝑝1, 𝑝2} ; ‖𝑥𝑚𝑛 − 𝑥, 𝑧‖ < 𝐾(‖𝑥𝑚𝑛 − 𝑦𝑚, 𝑧‖ + ‖𝑦𝑚 − 𝑥, 𝑧‖) < 𝐾 (
𝜀

2𝐾
+

𝜀

2𝐾
) = 𝜀. 

This completes the proof. 

In a similar way we can prove the same proposition in case of real double sequences. So, the following proposition 

holds:  

Proposition 3.2.10 If there exists the iterated statistical limit, (𝑠) 𝑙𝑖𝑚
𝑚→∞

(𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛) = 𝑥 (or(𝑠) 𝑙𝑖𝑚
𝑛→∞

( 𝑙𝑖𝑚
𝑚→∞

𝑥𝑚𝑛) =

𝑥) and it is uniformly in 𝑚 ∈ ℕ (in 𝑛 ∈ ℕ),  then the double sequence (𝑥𝑚𝑛) is statistically convergent to 𝑥. 

The proof is immediate from the existence of 𝑙𝑖𝑚
𝑚→∞

(𝑙𝑖𝑚
𝑛→∞

𝑑2(𝐴𝑚𝑛)

𝑚𝑛
) = 0, the limit 𝑙𝑖𝑚

𝑛→∞

𝑑2(𝐴𝑚𝑛)

𝑚𝑛
 is uniformly in      

𝑚 ∈ ℕ and from the above proposition. 

 

If  ℐ = ℐ0 then  ℐ2 − converge coincide with usual convergence. So, we have the following proposition. 

Proposition 3.2.11 If there exists ℐ2 – 𝑙𝑖𝑚
𝑚→∞

(𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛) =  𝑥 and ℐ – 𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛  is uniformly in 𝑚ℕ, then the 

double sequence (𝑥𝑚𝑛) is ℐ2 −convergent to 𝑥. 

 

In general, if there excist the Pringsheim iterated limits ((s) iterated limits), it is not enough for the existence of 

the Pringsheim limit of the double sequence ((s) limit). 

Example 3.2.12 

Let 

𝑥𝑚𝑛= {
𝑥     𝑚 < 𝑛
−𝑥     𝑚 > 𝑛
0     𝑚 = 𝑛

 

be a double sequence in a 2 −quasi−normed space 𝑋. 

It can be written as follows: 

(

 
 

0 𝑥 𝑥
−𝑥 0 𝑥
−𝑥 −𝑥 0

…
…
…

…     …      …      …  )

 
 
, 

𝑙𝑖𝑚
𝑚→∞

(𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛) =  𝑙𝑖𝑚
𝑚→∞

(𝑥) = 𝑥 

𝑙𝑖𝑚
𝑛→∞

( 𝑙𝑖𝑚
𝑚→∞

𝑥𝑚𝑛) =  𝑙𝑖𝑚
𝑛→∞

(−𝑥) = −𝑥 
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So, the Pringsheim limit lim
𝑚,𝑛→∞

(𝑥𝑚𝑛) does not exists. 

To find: (𝑠) 𝑙𝑖𝑚
𝑚→∞

(𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛) . 

∀ 𝑚ℕ, 𝑑(𝐴𝑚)  =  𝑐𝑎𝑟𝑑{𝑛: ‖𝑥𝑚𝑛 − 𝑥, 𝑧 ‖ ≥ 𝜀} = 𝑚 implies that 

𝑙𝑖𝑚
𝑚→∞

(𝑙𝑖𝑚
𝑛→∞

𝑑(𝐴𝑚𝑛)

𝑚𝑛
) = 𝑙𝑖𝑚

𝑚→∞
(𝑙𝑖𝑚
𝑛→∞

∑ 𝑘𝑚
𝑘=1

𝑚𝑛
) = 𝑙𝑖𝑚

𝑚→∞
(𝑙𝑖𝑚
𝑛→∞

(1+𝑚)𝑚

2

𝑚𝑛
) = 𝑙𝑖𝑚

𝑚→∞
(𝑙𝑖𝑚
𝑛→∞

1+𝑚)

2𝑛
) = 0 

So, (𝑠) lim
𝑚→∞

( lim
𝑛→∞

𝑥𝑚𝑛) = 𝑥 in similar way, we see that (𝑠) lim
𝑛→∞

( lim
𝑚→∞

𝑥𝑚𝑛) = −𝑥. 

Thus, does not exist the (𝑠) 𝑙𝑖𝑚
𝑚,𝑛
𝑥𝑚𝑛. 

 

 

IV. CONCLUSIONS 

In this paper we have obtained some conclusions regarding the comparison of different types of limits of 

double sequences and between repeated and double limits of the same type. 

We are listing them as follows: 

1. The convergence in 2 −quasi−normed space implies the convergence in quasi−normed space. 

2. The Pringsheim’s convergence of a double sequence in a quasi−normed subspace 𝑌 of 𝑋 is equivalent 

with the convergence in 2 −quasi−norm generated by quasi−norm of 𝑋 if 𝑌 is dense in 𝑋. 
3. Every double sequence (𝑥𝑚,𝑛)𝑚,𝑛∈ℕ  that converges to 𝑥  in a quasi−normed space is statistically 

convergent to 𝑥. 

4. ℐ𝑑2 −convergence becomes statistical convergence. 

5. If the double sequence(𝑥𝑚𝑛) is Pringsheim’s (statistically) convergent to 𝑥  in a quasi−2 −normed 

(2 − quasi − normed) space 𝑋  and exist the iterated limits, 𝑙𝑖𝑚
𝑚→∞

(𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛)  and 

𝑙𝑖𝑚
𝑛→∞

( 𝑙𝑖𝑚
𝑚→∞

𝑥𝑚𝑛) , ((𝑠) 𝑙𝑖𝑚
𝑚→∞

(𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛)  and (𝑠) 𝑙𝑖𝑚
𝑛→∞

( 𝑙𝑖𝑚
𝑚→∞

𝑥𝑚𝑛))then the following equality holds: 

𝑥 = 𝑙𝑖𝑚
𝑚,𝑛→∞

𝑥𝑚𝑛 = 𝑙𝑖𝑚
𝑚→∞

(𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛) = 𝑙𝑖𝑚
𝑛→∞

( 𝑙𝑖𝑚
𝑚→∞

𝑥𝑚𝑛) 

(𝑥 = (𝑠) 𝑙𝑖𝑚
𝑚,𝑛→∞

𝑥𝑚𝑛 = (𝑠) 𝑙𝑖𝑚
𝑚→∞

(𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛) = (𝑠)𝑙𝑖𝑚
𝑛→∞

( 𝑙𝑖𝑚
𝑚→∞

𝑥𝑚𝑛)). 

6. If there exists ℐ2  – 𝑙𝑖𝑚
𝑚→∞

(𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛) =  𝑥  and ℐ  – 𝑙𝑖𝑚
𝑛→∞

𝑥𝑚𝑛  is uniformly in 𝑚ℕ , then the double 

sequence (𝑥𝑚𝑛) is ℐ2 −convergent to 𝑥. 
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