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ABSTRACT: It is very difficult to identify which distribution is best fit to the data, out of thousands of 

probability distributions that are available in the literature. So, it is necessary to group the distributions further 

according to their nature of curve or common properties they satisfy. In this regard initially Karl Pearson, 

Johnson, Koopman, Kumaraswamy etc. made attempts to identify the family of distributions. In this paper, we 

made an attempt to explore the literature available on the families of distributions. 
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I. INTRODUCTION 
Probability distributions are playing a key role to study the properties of the population of a given data. 

There are many probability distributions and many classifications exist. In general, based on the type of random 

variables the probability distributions are broadly classified as: Discrete and Continuous Probability 

Distributions. If the random variable that takes only the integral real values, corresponding probability models 

are said to be discrete probability distributions. If the random variable takes real values in an interval (i.e. range 

of real values), the corresponding probability models are said to be continuous Probability models.  

It is very difficult to identify which distribution is best fit to the data, out of thousands of Probability 

distributions. In this aspect, Karl-Pearson opine that it is necessary to group the distributions further according 

to their nature of curve / common properties. A group of probability distributions that possess some common 

properties they are exhibiting is called a family of distributions. In this aspect few authors made attempts to 

group the probability distributions based on the common properties they are exhibiting. It aims to explore the 

various families of probability distributions that are available in the literature and understanding on their 

common properties.  

Initially, [10] Karl Pearson (1894,1895) attempted to propose a family of distributions, identifying the 

normal distribution (originally described as type V) as well as four further types of distributions (Type-I to 

Type-IV). "The distributions' support on a bounded interval, a half-line, or the entire real line, as well as 

whether or not they were symmetric or potentially skewed, determine how the data are classified." Later [11] 

Karl Pearson (1901) introduced the type VI distribution and defined the type V distribution, which was once 

only the normal distribution but is now the inverse gamma distribution. Rhind (1909) created an easy approach 

for visualising the Pearson system's parameter space, and Pearson later adopted it (1916). [12] Pearson (1916) 

introduced more special conditions and subtypes (VII through XII) in his third article. Two numbers that are 

sometimes referred to as β1 and β2 define the Pearson types. [8] Normal L. Johnson (1949) certain curve 

systems that were created using the translation method. [7] Noack, A. (1950) Certain power series can be used 

to construct a wide category of random variables with discrete probability distributions. 

John (1960) The creation of extended tables of percentage points for the Pearson system of 

distributions was reported in his thesis, "Some contributions to the evaluation of Pearsonian Distribution 

functions." [9] Ord (1967) a system of discrete distributions is developed using difference equation. Anthony 

(1971) found Relatively simple approximating function to express the probability integral in closed form. Mitra 

and Romaniuk (1973) - created new approaches for calculating the Pearsonian Type-I curve's parameters, 

which are especially flexible in response to variables affecting the pattern of age-specific fertility rates. [4] 

Ollero and Ramos (1995) demonstrated that generalized-binomial distributions can be used to characterise a 

subclass of discrete Pearson system distributions, which includes the Polya's distribution without replacement 

and, consequently, the hypergeometric distribution. Sankaran and Unnikrishnan Nair (1998) established a 

connection between the higher order moments of residual life and the failure rate, which defined the Pearson 
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family of distributions. A characterisation theorem of the IFR (DFR) class of distributions in the Pearson family 

was also provided by them. 

Mahanta and Dilip (2007) estimated parameters for Type II of Pearsonian system of distribution 

curves by using the method of maximum likelihood. Mohammad Shakil et.al, (2010, 2011) developed a new 

family of distributions that are a logical extension of the generalised inverse Gaussian distribution and are 

founded on the generalised Pearson differential equation. A few properties of the new distribution were 

discovered. There were tables containing percentiles, skewness and kurtosis values, and plots for the probability 

density function, hazard function, and cumulative distribution function. The statistical application of these 

findings to the forestry data has been examined as an incentive. It is discovered that compared to gamma, log-

normal, and inverse Gaussian distributions, this recently suggested model fits data better. Additionally, they 

investigated the distributional connections and created several new classes of continuous probability 

distributions based on the generalised Pearson differential equation. 

G.M Cordeiro and M. Castro (2011) expanded on a number of well-known distributions, such as the 

gamma, Gumbel, inverse Gaussian, Weibull, and normal distributions, by creating a new family of generalised 

distributions. studied some of the special distributions of the new family, such as the Kw-inverse Gaussian, Kw-

gamma, Kw-Gumbel, Kw-normal, and Kw-Weibull distributions. The ordinary moments of any Kw generalised 

distribution can be expressed as linear functions of probability weighted moments of the parent distribution. We 

produced the ordinary moments of order statistics by calculating the weighted moments of the baseline 

distribution as functions of probability. 

Saralees Nadarajah (2011) developed an easily understood linear combination of exponentiated-G 

distributions to express the Kumaraswamy-G density function. They suggest a few new distributions as this 

family's sub-models. George and Ramachandran (2011) A new approach is put forth to estimate the 

parameters of Johnson's distribution. The MLE-Least Squares technique is the name of this algorithm. 

Mohammad et.al, (2012) also used Pearsonian system of frequency curves for the analysis of stock returns. [5] 

Mahanta and Dilip (2012) applied the Pearsonian Type - III curves and its potentials in the analysis of 

insurance data. Raykundaliya et. al, (2013) applied Pearsonian type - IV distribution, to improvise the 

confidence limits of coefficient of variation of the data on the yield of wheat crop.  

[2] Lahcene (2013) proposed a new extended model of Pearsonian distribution and named it as the 

extended generalized distribution. This new family is studied for a variety of characteristics. Raid Al-Aqtash 

(2014) The Gumbel-Weibull distribution's applications are highlighted. Shakil et al (2016) the expanded 

Pearson system of differential equations, which can produce these new types of continuous probability 

distributions, was discussed. In another study, several characterizations of a new type of generalized Pearson 

distribution were offered using truncated moments. Morad Alizadeh (2016) The new density function can be 

expressed as a linear combination of exponentiated densities with respect to the same baseline distribution. 

AL – Kadim and Mohammed (2017) created the cubic transmuted Weibull distribution, or lifespan 

distribution, and talked about some of its statistical characteristics. Mahdavi, A. and Kundu, D. (2017) A novel 

approach has been proposed to increase the flexibility of a family of distributions by including an extra 

parameter. One specific example, the one-parameter exponential distribution, has been studied in detail. Various 

features of the proposed distribution are generated, including different explicit formulations for the moments, 

quantiles, mode, mean residual lifetime, order statistics, stochastic ordering, and expression of the entropies. 

Mustafa Unlu et al (2019) demonstrated that Pearson Type IX probability density functions can be 

used to generate desired distributions and their accompanying quality-loss functions. Hongjie Wan et al (2019) 

estimated the parameters of an autoregressive model, and a Bayesian model is constructed using the Pearson 

type VII distribution as the noise model. Tegos et al (2020) provided new results for Pearson distributions of 

Type - III and used them to look at the statistical behaviour of wireless power transfer for the first time in the 

literature. Rahman (2020) provided a summary of the transmuted families of distributions, a list of the 

transmuted distributions that can be found in the literature, and some finishing comments. Provost et al (2022) 

presented a method for approximating density based on moments, which is based on a generalisation of 

Pearson's system of frequency curves. Mohiuddin (2022) a thorough analysis of several distribution families is 

provided. Twenty-six related distributions are investigated and a total of roughly eighteen approaches for 

creating new families of distributions are discussed. Aneeqa Khadim et al (2022) A brief summary of the 

family of distributions produced by the {T-X} transformed-transformer is given. Included are comprehensive 

reviews, recommendations for specific enlarged versions of these distributions, and a list of pertinent research 

publications on the {T-X} family of distributions. 

 

II. SOME POPULAR FAMILIES OF DISTRIBUTIONS: 
1. PEARSONIAN FAMILY: The two primary quantities that define the Pearson distributions are sometimes 

referred to as Pearsonian constants β1 and β2, where 1 = 3
2 

/2
3
; 2 = 4/2

2   
Where 2

, 
3 and 4 are the 

second, third and fourth central moments of a probability distribution.  These parameters are describing the 
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nature of the curve of the distribution and the properties of centrality of the data, variance in the data, 

symmetricity / skewness and peaked Ness / kurtosis of the curve. Pearson initially classified the distributions 

into seven types of distributions named as Types I to Type-VII based on the values for the parameters. Later, 

identified 12 types which are variants of three basic distributions (Beta, Gamma and Normal).  Pearson defined 

initially seven types of distributions based on the solutions to the below differential equation  

𝑓(𝑥) 𝑑𝑥 +  
[𝑏0 + 𝑏1𝑥 + 𝑏2(𝑥)

2 ] 

𝑎 + 𝑥
𝑑𝑓(𝑥) = 0 

           𝒂 = 𝒃𝟏 = √𝜇2√𝛽1
𝛽2+3

10𝛽2−12𝛽1−18
  ; 𝒃𝟎 =

4𝛽2−3𝛽1

10𝛽2−12𝛽1−18
𝜇2,  and 𝒃𝟐 =

2𝛽2−3𝛽1−6

10𝛽2−12𝛽1−18
. 

where 𝑘 =
1

4
(𝑏1)

2(𝑏0𝑏2)
−1. 

 

 

Figure 1. Seven types of Pearsonian distributions for different values of k 

Types Density function Range of r.v. Parameters 

Type – I 
𝑓(𝑦) = 𝑦0 (1 +

𝑥

𝑎1
)
𝑚1

(1 −
𝑥

𝑎2
)
𝑚2

 
−𝑎1 < 𝑥 < 𝑎2 𝑚1,𝑚2 > 0 

Type – II 
𝑓(𝑦) = 𝑦0 (1 −

𝑥2

𝑎2
)

𝑚

 
−𝑎 < 𝑥 < 𝑎  𝑚 > −1 

Type – III 
𝑓(𝑦) = 𝑦0 (1 +

𝑥

𝑎
)
𝜇𝑎

𝑒−𝜇𝑥 
−𝑎 < 𝑥 < ∞  𝜇, 𝑎 > −1 

Type – IV 

𝑓(𝑦) = 𝑦0 (1 +
𝑥2

𝑎2
)

−𝑚

𝑒−𝜇 tan
−1(𝑥 𝑎⁄ ) 

−∞ < 𝑥 < ∞ 𝑎, 𝜇,𝑚 > 0 

Type – V 𝑓(𝑦) = 𝑦0𝑥
−𝑝𝑒−(𝛼 𝑥)⁄  0 < 𝑥 < ∞  𝛼 > 0,  𝑝 > 1 

Type – VI 
𝑓(𝑦) = 𝑦0𝑥

−𝑝(𝑥 − 𝑎)𝑞 
𝑎 < 𝑥 < ∞  𝑞 > −1,  𝑝 < 1 

Type – VII 
𝑓(𝑦) = 𝑦0 (1 +

𝑥2

𝑎2
)

−𝑚

 
−∞ < 𝑥 < ∞  

𝑚 >
1

2
 

Type-VIII 
𝑓(𝑦) = 𝑦0 (1 +

𝑥

𝑎
)
−𝑚

 
−𝑎 < 𝑥 ≤ 0  𝑚 > 1 

Type – IX 
𝑓(𝑦) = 𝑦0 (1 +

𝑥

𝑎
)
𝑚

 
−𝑎 < 𝑥 ≤ 0  𝑚 > −1 

Type – X 
𝑓(𝑦) = 𝑦0𝑒

−(𝑥 𝜎)⁄  
0 ≤ 𝑥 < ∞  𝜎 > 0 

Type – XI 𝑓(𝑦) = 𝑦0𝑥
−𝑚 𝑏 ≤ 𝑥 < ∞  𝑚 > 1 

Type – XII 
𝑓(𝑦) = 𝑦0 (

𝑔 + 𝑥

𝑔 − 𝑥
)
𝑚

 
−𝑔 ≤ 𝑥 ≤ 𝑔  |𝑚| < 1 

Table 1. Pearsonian Family of Distribution density functions  
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2. JOHNSON’S FAMILY: Johnson (1949), introduced a system of distributions, based on the transformation 

of the standard normal variable. Johnson proposed a system of distributions that are generated using 

normalization transformation. Let f (.) is the transformation function and γ, δ, λ, and ξ are parameters (δ and λ 

are positive), then the general form of Z is 

𝑍 = 𝛾 + δ𝑓 (
𝑥 − 𝜉

𝜆
) 

 The distributions possessing this transformation (or translation) are said to be Johnson system of 

distributions. The distribution can be bounded on the lower end, upper end or both ends. This family is further 

divided as SL (lognormal system), the SL system defined with the transformation 

𝑍 = 𝛾 + δ𝑙𝑛 (
𝑥−𝜉

𝜆
) , 𝑥 > 𝜉; 

The SU system defined based on the transformation 

Z = 𝛾 + δ sinh−1 (
𝑥−𝜉

𝜆
), −∞ < 𝑥 < ∞. 

The SB system of distributions defined by 

𝑍 = 𝛾 + δ𝑙𝑛 (
𝑥−𝜉

𝜉+𝜆−𝑥
) ,𝜉 < 𝑥 < 𝜉 + 𝜆 

 

3. EXPONENTIAL FAMILY: The probability distribution expressed in the form 

f (x, ) = exp {A(x)+ B() + C(x). D()} 

 where  is the parameter(s), then the distribution belongs to exponential family of distributions. The 

Exponential family is an application oriented and is widely used in unified family of distributions on finite 

dimensional Euclidean spaces parameterized by a finite dimensional parameter vector as  

f(X, ) = exp {𝐴(𝑋) + 𝐵(𝜃) + ∑ 𝐶𝑖(𝑋)𝐷𝑖(𝜃)}
𝑘
𝑖=1 . 

Where  is the vector of k- parameters with the exists of k-real valued functions D1, D2, … Dk, and B defined on 

Θ and Borel – measurable functions C1, C2, …  Ck and A on R
n
. 

 

Distribution 𝐀(𝐱) 𝐁(𝛉) 𝐂(𝐱) 𝐃(𝛉) 

Binomial log (
n

x
) Nlogq X log (

p

q
) 

Poisson −log(x!) −λ X logλ 

Negative Binomial 
log (

x + r − 1

r − 1
) 

Rlogp X logq 

Normal (When μ is known) 0 -log (σ√2π ) (x-μ)2 -1/2σ2 

Normal (when σ2 is known) -μ/2 -((x/2σ2)+(1/2)(log(2πσ2) X Μ 

Normal (μ, σ2) 0 -((x-2/2σ2)+(1/2)(log(2πσ2)) x,  x2 -1/2σ2, μ2/σ2 

Table 2. Some Exponential Family of Distributions  

 

4. POWER SERIES FAMILY: Noack (1950) introduced a family of Power series distributions. A probability 

distribution f (x, ) is said to be a ‘Power Series family of distributions’ if it can be expressed in the form  

   P [X = x] =
𝑎𝑥𝜃𝑥

∑ 𝑎𝑥𝜃𝑥

𝑥

,   x = 0,1, 2, … and  > 0.  

Some of the Power Series distributions are: Binomial, Poisson, Geometric, Negative Binomial, Logarithmic 

Series, etc. 

 

Distribution Probability function 𝒂𝒙 𝜽𝒙 𝒇(𝜽) 

Binomial 
(
𝑛

𝑥
) (

𝑝

1 − 𝑝
)
𝑥

[(1 − 𝑝)−𝑛]−1 (
𝑛

𝑥
) (

𝑝

1 − 𝑝
)
𝑥

 
(1 − 𝑝)−𝑛 

Poisson 
(
1

𝑥!
) (𝜆𝑥)(𝑒𝜆)

−1
 

1

𝑥!
 

𝜆𝑥 𝑒𝜆 

Geometric (1)(1 − 𝑝)𝑥(𝑝−1)−1 1 (1 − 𝑝)𝑥 𝑝−1 

Negative Binomial (−1)𝑥 (
−𝑟

𝑥
) (1 − 𝑝)𝑥(𝑝−𝑟)−1 (−1)𝑥 (

−𝑟

𝑥
) 

(1 − 𝑝)𝑥 𝑝−𝑟 

Logarithmic 
(
1

𝑥
) (𝑝𝑥)[−log (1 − 𝑝)]−1 

1

𝑥
 

𝑝𝑥 −log (1 − 𝑝) 

Table 3. Some Power Series Family of Distributions 
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5. T-X Family: Let f (t) be the probability density function and F(t) be its cumulative distribution function (cdf) 

of a r.v T defined on the range -∞ < a < t < b < ∞.  Let ‘c’ (a < c < b) be a function of F(x) of some baseline 

continuous r.v X, with distribution function: 𝐺(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑐

𝑎
. Distributions possess such property are said to 

be T-X family of distributions. Some of the existing continuous and discrete distributions are found to belong to 

the first generated distributions.  

Note: In case of t is discrete: 𝑔(𝑥) = 𝐺(𝑥) − 𝐺(𝑥 − 1) where 𝐺(𝑥) = ∑ 𝑝(𝑡)𝑐
𝑎  where 𝑝(𝑡) is Probability mass 

function. 

 

 Weibull – Exponential Weibull – Rayleigh Gumbel – Weibull 

𝒇(𝒕) 
𝑛

𝜃
(
𝑡

𝜃
)
𝑛−1

𝑒−
(
𝑡
𝜃
)
𝑛

 
𝑛

𝜃
(
𝑡

𝜃
)
𝑛−1

𝑒−
(
𝑡
𝜃
)
𝑛

 (
1

𝜎
)𝑒−

(𝑡−𝜐)
𝜎 𝑒𝑥𝑝 [−𝑒−

(𝑡−𝜐)
𝜎 ] 

𝒄 −log (1 − 𝐹(𝑥)) 
𝐹(𝑥)

1 − 𝐹(𝑥)
 𝑙𝑜𝑔 [

𝐹(𝑥)

1 − 𝐹(𝑥)
 ] 

𝑮(𝒙) 1 − 𝑒𝑥𝑝 [−𝛼 (
1 − 𝑒−𝜆𝑥

𝑒−𝜆𝑥
)

𝛽

] 
1 − 𝑒

[−𝛼(𝑒
𝜃
2
𝑥2
−1)

𝛽

]

 
exp {𝑒−

𝜐
𝜎 (𝑒

(
𝑥
𝜆
)
𝑎

− 1)
−
1
𝜎
} 

𝒈(𝒙) 

𝛼𝛽𝜆𝑒−𝜆𝑥 [
(1 − 𝑒−𝜆𝑥)

𝛽−1

(𝑒−𝜆𝑥)𝛽+1
] 

𝑒𝑥𝑝 [−𝛼 (
1 − 𝑒−𝜆𝑥

𝑒−𝜆𝑥
)

𝛽

] 

𝛼𝛽𝜃𝑥𝑒
𝜃
2𝑥

2

(𝑒
𝜃
2𝑥

2

− 1)
𝛽−1

 

𝑒
[−𝛼(𝑒

𝜃
2𝑥
2
−1)

𝛽

]

 

𝑎𝑒
𝜐
𝜎

𝜆𝜎
(
𝑥

𝜆
)
𝑎−1

𝑒
(
𝑥
𝜆
)
𝑎

(𝑒
(
𝑥
𝜆
)
𝑎

− 1)
−1−

1
𝜎

 

exp {𝑒−
𝜐
𝜎 (𝑒

(
𝑥
𝜆
)
𝑎

− 1)
−
1
𝜎
} 

Table 4. T-X family of distributions 

 

6 TRANSMUTED FAMILY: [14] Shaw and Buckley (2009) pioneered another prominent family of 

distributions by including a parameter  .  Let F(𝑥; 𝜃) be the cdf with a parameter , then the transmuted family 

of distributions with distribution  function G(𝑥; 𝜆, 𝜃) is defined as: 

  G(𝑥; 𝜆, 𝜃) = (1 + 𝜆)𝐹(𝑥; 𝜃) − 𝜆𝐹2((𝑥; 𝜃);   𝜃 > 0; |𝜆| ≤ 1, x ∈ ℝ 

Note: If  𝜆 = 0 , we obtain the baseline distribution, i.e., F(𝑥; 𝜃) = 𝐺(𝑥; 𝜃). 
 

Distribution 𝑭(𝒙) 𝑮(𝒙) 

Transmuted Burr 𝐹(𝑥) = 1 − (1 + 𝑥𝑐)−𝑘 
𝐺(𝑥) = 1 − (1 + 𝑥𝑐)−𝑘 + 𝜆

[1 − (1 + 𝑥𝑐)−𝑘 ][1 + 𝑥𝑐]−𝑘

2 − (1 + 𝑥𝑐)−𝑘 
 

Transmuted 

Gompertz 
𝐹(𝑥) = 1 − 𝑒𝑥𝑝 [−

𝑎

𝑏
(𝑒𝑏𝑥 − 1)] 

𝐺(𝑥) = [1 − 𝑒𝑥𝑝 [−
𝑎

𝑏
(𝑒𝑏𝑥 − 1)]] [1

+ 𝜆
𝑒𝑥𝑝 [−

𝑎
𝑏
(𝑒𝑏𝑥 − 1)]

2 − 𝑒𝑥𝑝 [−
𝑎
𝑏
(𝑒𝑏𝑥 − 1)]

] 

Transmuted 
Weibull 

𝐹(𝑥) = 1 − 𝑒−𝛼𝑥
𝛽
 

𝐺(𝑥) = 1 − 𝑒−𝛼𝑥
𝛽
+ 𝜆

[1 − 𝑒−𝛼𝑥
𝛽
 ]

2 − 𝑒−𝛼𝑥
𝛽
 
𝑒−𝛼𝑥

𝛽
 

Transmuted 

gamma 
𝐹(𝑥) =

𝛾(𝑎, 𝑏, 𝑥)

𝛤(𝑎)
 

𝛾(𝑎, 𝑏, 𝑥) = 𝑏𝑎∫ 𝑡𝑎−1𝑒−𝑏𝑡𝑑𝑡
𝑥

0

 

𝐺(𝑥) =
𝛾(𝑎, 𝑏, 𝑥)

𝛤(𝑎)
[1 + 𝜆

1 −
𝛾(𝑎, 𝑏, 𝑥)
𝛤(𝑎)

1 +
𝛾(𝑎, 𝑏, 𝑥)
𝛤(𝑎)

] 

Table 5. Transmuted family of distributions 
  

7. GENERALIZED TRANSMUTED FAMILY: Let f (t) be the pdf of a r.v 𝑇 ∈ [𝑎, 𝑏] for − ∞ < 𝑎 < 𝑏 < ∞  

and let c = [𝐺(𝑥)]𝛼 be a function of the cdf of a r.v X such that (i) a < c < b; (ii) c is differentiable; and                     

(iii) monotonically non- decreasing, then the Generalized transmuted family of distribution is defined as 
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F(𝑥) = 1 − {1 − λ[G(𝑥)]α}{1 − [G(𝑥)]α},    α > 0,  |λ| ≤ 1 

𝑓(𝑥) = 𝛼𝑔(𝑥) [𝐺(𝑥)]𝛼−1 {1 + 𝜆 − 2𝜆[𝐺(𝑥)]𝛼},   𝛼 > 0,  |𝜆| ≤ 1 

where 𝑔(𝑥) and 𝐺(𝑥) are the baseline pdf and cdf. 

 

Distribution 𝒈(𝒙) 𝑮(𝒙) 𝒇(𝒙) 

Generalized 

transmuted 
Normal 

1

𝜎√2𝜋
𝑒−

1
2
(
𝑥−𝜇
𝜎
)
2

 

 

1

2
[1 + 𝑒𝑟𝑓 (

𝑥 − 𝜇

𝜎√2
)] 

 

𝛼𝜙 (
𝑥 − 𝜇

𝜎
) [𝛷 (

𝑥 − 𝜇

𝜎
)]
𝛼−1

 

{1 + 𝜆 − 2𝜆 [𝛷 (
𝑥 − 𝜇

𝜎
)]
𝛼

} 

Generalized 
transmuted 

Exponential 

𝜃𝑒−𝜃𝑥 1 − exp (−𝜃𝑥) 𝛼𝜃 exp(−𝜃𝑥) (1 − exp(−𝜃𝑥))𝛼−1 
[1 + 𝜆 − 2𝜆(1 − exp(−𝜃𝑥))𝛼] 

Generalized 

transmuted 
Weibull  

𝜂

𝜎
(
𝑥

𝜎
)
𝜂−1

exp (−(
𝑥

𝜎
)
𝜂

) 1 − 𝑒𝑥𝑝 (−(
𝑥

𝜎
)
𝜂

) 𝛼
𝜂

𝜎
(
𝑥

𝜎
)
𝜂−1

exp (− (
𝑥

𝜎
)
𝜂

)(1

− 𝑒𝑥𝑝 (−(
𝑥

𝜎
)
𝜂

))

𝛼−1

[1 + 𝜆

− 2𝜆 (1 − 𝑒𝑥𝑝 (−(
𝑥

𝜎
)
𝜂

)  )
𝛼

] 

Table 6. Generalized Transmuted Family 

 

8. CUBIC TRANSMUTED FAMILY: [1] AL- Kadim and Mohammed (2017) proposed cubic transmuted 

family of distributions, by substituting the value of k=2 in a general transmuted family of distributions:                               

G(𝑥) = F(𝑥) + (1 − F(𝑥)) ∑ 𝜆𝑖
𝑘
𝑖=1 𝐹(𝑥)𝑖; 𝜃 > 0, x ∈ ℝ, with𝜆𝑖 ∈ [-1,1] for i = 1, 2,..., k and −k ≤ ∑ 𝜆𝑖

𝑘
𝑖=1 ≤ 1. 

Then the by setting k=2, a cubic transmuted family of distributions is defined with distribution function G(x) as 

𝐺(𝑥) = (1 + 𝜆1)𝐹(𝑥) + (𝜆2 − 𝜆1)𝐹
2(𝑥) − 𝜆2𝐹

3(𝑥);  𝜆1, 𝜆2 ∈ [−1,1]and − 2 ≤ 𝜆1 + 𝜆2 ≤ 1 

Note: The general transmuted family reduces to the base distribution for 𝜆𝑖 = 0 for all ‘i'. 

 

Cubic Transmuted 

Distribution 

𝑭(𝒙) 𝑮(𝒙) 

Normal  1

2
[1 + 𝑒𝑟𝑓 (

𝑥 − 𝜇

𝜎√2
)] 

(1 + 𝜆1)𝛷(𝑥) + (𝜆2 − 𝜆1)𝛷
2(𝑥) − 𝜆2𝛷

3(𝑥) 

Log-logistic 𝑥𝛽

𝛼𝛽 + 𝑥𝛽
 

𝑥𝛽 [𝜆1𝛼
𝛽(𝛼𝛽 + 𝑥𝛽) + 𝜆2𝛼

𝛽𝑥𝛽 + (𝛼𝛽 + 𝑥𝛽)
2
]

(𝛼𝛽 + 𝑥𝛽)3
 

Pareto 
1 − (

𝑘

𝑥
)
𝜃

 [(
𝑘

𝑥
)
𝜃

− 1] [−𝜆1 (
𝑘

𝑥
)
𝜃

+ 𝜆2 {(
𝑘

𝑥
)
𝜃

− 1} (
𝑘

𝑥
)
𝜃

− 1] 

Rayleigh  
1 − 𝑒

−
𝑥2

2𝜎2 (𝑒
−
3𝑥2

2𝜎2)(𝑒
𝑥2

2𝜎2 − 1) [𝜆1𝑒
𝑥2

2𝜎2 + 𝜆2 (𝑒
𝑥2

2𝜎2 − 1) + 𝑒
𝑥2

2𝜎2] 

Table 7. Cubic Transmuted Distribution 

 

9. KUMARASWAMY – G FAMILY: [13] Kumaraswamy (1980) proposed a two-parameter distribution on 

(0,1), called Kumaraswamy distribution, whose density function is   

  𝑔(𝑥; 𝛼, 𝛽) = 𝛼. 𝛽. 𝑥𝛼−1. (1 − 𝑥𝛼)𝛽−1 where 𝛼 > 0,  𝛽 > 0 and 0 < x < 1.  

with a distribution function 𝐺(𝑥; 𝛼, 𝛽) = 1 − (1 − 𝑥𝛼)𝛽.  

 For any baseline distribution function 𝐺(𝑥), [3] Cordeiro and Castro proposed the Kumaraswamy-G 

family of distributions with additional two shape parameters a, b > 0 as 

 𝑓(𝑥) = 𝑎𝑏𝑔(𝑥)𝐺𝑎−1(𝑥){1 − 𝐺𝑎(𝑥)}𝑏−1 and 𝐹(𝑥) = 1 − (1 − G𝑎(𝑥))𝑏 
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Distribution 𝑮(𝒙) 𝒇(𝒙) 

Kw – Weibull  1 − 𝑒𝑥𝑝{−(𝜆𝑥)𝑐} 𝑎𝑏𝑐𝜆𝑐𝑥𝑐−1𝑒𝑥𝑝{−(𝜆𝑥)𝑐}[1 − 𝑒𝑥𝑝{−(𝜆𝑥)𝑐}]𝑎−1{1
− [1 − 𝑒𝑥𝑝{−(𝜆𝑥)𝑐}]𝑎}𝑏−1 

Kw- Exponential 1 − 𝑒𝑥𝑝{−𝜆𝑥} 𝑎𝑏𝜆𝑒𝑥𝑝{−𝜆𝑥}[1 − 𝑒𝑥𝑝{−𝜆𝑥}]𝑎−1{1 − [1 − 𝑒𝑥𝑝{−𝜆𝑥}]𝑎}𝑏−1 

Kw – Gumbel 
1 − 𝑒𝑥𝑝 {−𝑒𝑥𝑝(−

(𝑥 − 𝜇)

𝜎
)} 

𝑎𝑏

𝜎
𝑒𝑥𝑝 {

𝑥 − 𝜇

𝜎
− 𝑒𝑥𝑝 (

𝑥 − 𝜇

𝜎
)} [1 − 𝑒𝑥𝑝 {−𝑒𝑥𝑝 (−

𝑥 − 𝜇

𝜎
)}]

𝑎−1

{1

− [1 − 𝑒𝑥𝑝 {−𝑒𝑥𝑝 (−
𝑥 − 𝜇

𝜎
)}]

𝑎

}
𝑏−1

 

Table 8. Kumaraswamy – G Family 

 

10 ALPHA POWER TRANSFORMATION: [6] Mahdavi and Kundu (2017) proposed Alpha Power 

Transform class of distributions to the baseline distribution with an additional parameter . The distribution 

function of this transformation class defined based on base line distribution function G(x) as  

𝐹(𝑥) = {
𝜃𝐺(𝑥) − 1

𝜃 − 1
   𝑖𝑓 𝜃 > 0,  𝜃 ≠ 1

 𝐺(𝑥)        𝑖𝑓 𝜃 = 1      

 

and the corresponding density function takes the form 

𝑓(𝑥) = {
log (𝜃)𝑔(𝑥)𝜃𝐺(𝑥)

𝜃 − 1
   𝑖𝑓 𝜃 > 0,  𝜃 ≠ 1

 𝑔(𝑥)           𝑖𝑓 𝜃 = 1      

 

 

Distribution 𝒇(𝒙) 𝑭(𝒙) 

Alpha  

Power Exponential 

Weibull 

{
 
 

 
 

𝑙𝑜𝑔𝛼

(𝛼 − 1) exp(𝜃𝑥𝛽)
𝜆𝜃𝛽𝑥𝛽−1(1 − 𝑒−𝜆𝑥

𝛽
)
𝜃−1

𝛼
(1−𝑒−𝜆𝑥

𝛽
)
𝜃

;

𝑥 > 0, 𝛽, 𝜆, 𝜃 > 0, 𝛼 ≠ 1

𝜆𝜃𝛽𝑥𝛽−1(1 − 𝑒−𝜆𝑥
𝛽
)
𝜃−1

𝑒−𝜃𝑥
𝛽
;

𝑥 > 0,  𝛼 = 1, 𝛽, 𝜆, 𝜃 > 0

 

{
  
 

  
 𝛼

(1−𝑒−𝜆𝑥
𝛽
)
𝜃

− 1

𝛼 − 1
 ;

𝑥 > 0, 𝛽, 𝜆, 𝜃 > 0, 𝛼 ≠ 1

(1 − 𝑒−𝜆𝑥
𝛽
)
𝜃

 ;

𝑥 > 0,  𝛼 = 1, 𝛽, 𝜆, 𝜃 > 0

 

Alpha  

Power 

transformation 
Lindley 

{
  
 

  
 
𝑙𝑜𝑔𝛼

(𝛼 − 1)
(
𝜃2

𝜃 + 1
) (1 + 𝑥) exp(−𝜃𝑥)𝛼1−(1+𝜃+

𝜃𝑥
𝜃+1;

𝑥, 𝛼, 𝜃 > 0, 𝛼 ≠ 1

(
𝜃2

𝜃 + 1
) (1 + 𝑥) exp(−𝜃𝑥) ;

𝑥, 𝜃, 𝛼 > 0, 𝛼 = 1

 

{
  
 

  
 𝛼

1−(
1+𝜃+𝜃𝑥
𝜃+1

)
− 1

𝛼 − 1
 ;

𝑥, 𝛼, 𝜃 > 0, 𝛼 ≠ 1

1 − (
1 + 𝜃 + 𝜃𝑥

𝜃 + 1
) ;

𝑥, 𝜃, 𝛼 > 0, 𝛼 = 1

 

Alpha  

Power transformed 

Pareto 

{
  
 

  
 

𝑙𝑜𝑔𝛼

(𝛼 − 1)

𝛽

𝑥𝛽+1
𝛼
(1−

𝑘
𝑥
)
𝛽

 ;  

𝛽, 𝛼, 𝑘 > 0, 𝑥 ≥ 𝑘, 𝛼 ≠ 1

𝛽

𝑥𝛽+1
𝛼
(1−

𝑘
𝑥
)
𝛽

 ;

𝛽, 𝛼, 𝑘 > 0, 𝑥 ≥ 𝑘, 𝛼 = 1

 

{
  
 

  
 𝛼

(1−
𝑘
𝑥
)
𝛽

− 1

𝛼 − 1
 ;

𝛽, 𝛼, 𝑘 > 0, 𝑥 ≥ 𝑘, 𝛼 ≠ 1

(1 −
𝑘

𝑥
)
𝛽

;

𝛽, 𝛼, 𝑘 > 0, 𝑥 ≥ 𝑘, 𝛼 = 1

 

Table 9. Alpha Power Transformation 
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