Quadratic Residues and a Simple Theorem

D.Bratotini and M.Lewinter

Date of Submission: 25-04-2024 Date of acceptance: 02-05-2024

Abstract

We produce infinite classes of solutions of the Diophantine equation, $c = \frac{ab+1}{b-a}$, where *a*, *b*, and *c* are natural numbers such that $a \neq b$. We use them to show that $\frac{1}{abc} = \frac{1}{a} - \frac{1}{b} - \frac{1}{c}$.

Theorem 1: Let *a*, *b*, and *c* be natural numbers such that $a \neq b$, and $c = \frac{ab+1}{b-a}$. Then $\frac{1}{abc} = \frac{1}{a} - \frac{1}{b} - \frac{1}{c}$

Proof: Multiplying both sides of (*) by *abc* yields
$$1 = bc - ac - ab = c(b - a) - ab$$
, which becomes $c(b - a) = ab + 1$. Then $c = \frac{ab + 1}{b - a}$.

Example 1: Let a = 27, b = 37, and c = 100. Since $\frac{ab+1}{b-a} = \frac{27 \cdot 37 + 1}{37 - 27} = \frac{999 + 1}{10} = 100 = c$, we have

$$\frac{1}{99900} = \frac{1}{27} - \frac{1}{37} - \frac{1}{100}$$
. (Verify!)

Example 2: Let a = 1, b = 2, and c = 3. Since $\frac{1 \cdot 2 + 1}{2 - 1} = 3 = c$, we have $\frac{1}{6} = \frac{1}{1} - \frac{1}{2} - \frac{1}{3}$.

Infinite Class of Solutions 1: If b - a = 1, we get $c = \frac{a(a+1)+1}{1} = a^2 + a + 1$, implying that there are

infinitely many solutions of (*) of the form

$$a = a$$
$$b = a + 1$$
$$c = a^{2} + a + 1$$

Infinite Class of Solutions 2: If b - a = 2 and a and b are odd, then ab + 1 is even, and, therefore, divisible by b - a. This generates infinitely many solutions.

Note that if b - a = 3, there are no solutions. If b - a = 3, then b = a + 3, in which case ab + 1 = a(a + 3) + 1 = a(

$$a^{2} + 3a + 1$$
. Then $c = \frac{a^{2} + 3a + 1}{3} = a + \frac{a^{2} + 1}{3}$. Since $a^{2} = 0$ or 1 (mod 3), we have $a^{2} + 1 = 1$ or 2 (mod 3),

and is, therefore, not divisible by 3.

(*)

Theorem 2: There are infinitely many positive integer values for which $b - a \neq 1$ or 2, and $c = \frac{ab+1}{b-a}$ is a

natural number.

We will need a definition and a preliminary fact to prove this.

Definition: a is a quadratic residue mod n if there exists an x such that $x^2 = a \pmod{n}$. Otherwise, a is a quadratic nonresidue.

Preliminary Fact: Let p be an *odd* prime. Then -1 is a quadratic residue mod p if $p = 1 \pmod{4}$. If $p = 3 \pmod{4}$, then -1 is a quadratic nonresidue mod p. [1][2]

Proof of Theorem 2: Let b - a = p, where $p = 1 \pmod{4}$. Then b = a + p, in which case $ab + 1 = a(a + p) + 1 = a^2 + ap + 1$. We will have a solution if and only if $a^2 + ap + 1 = 0 \pmod{p}$. This is equivalent to $a^2 + 1 = 0 \pmod{p}$, or $a^2 = -1 \pmod{p}$ which has a solution by the Preliminary Fact.

Example: The prime number, 5, satisfies $5 = 1 \pmod{4}$. Now b - a = 5. Then b = a + 5, in which case $ab + 1 = a(a + 5) + 1 = a^2 + 5a + 1$. We have a solution if and only if $a^2 + 5a + 1 = 0 \pmod{5}$. This is equivalent to $a^2 + 1 = 0 \pmod{5}$, or $a^2 = -1 \pmod{5}$ which has a solution, $a = 2 \pmod{5}$. If a = 2, we have b = 7, and

$$c = \frac{2 \cdot 7 + 1}{5} = \frac{15}{5} = 3. \quad \text{Also,} \quad \frac{1}{2 \cdot 7 \cdot 3} = \frac{1}{2} - \frac{1}{7} - \frac{1}{3}, \quad \text{or} \quad \frac{1}{42} = \frac{1}{2} - \frac{1}{7} - \frac{1}{3}. \quad \text{That} \quad \text{is,}$$
$$1 = 42 \left(\frac{1}{2} - \frac{1}{7} - \frac{1}{3}\right) = 21 - 6 - 14.$$

What happens if b - a = n, and *n* is composite? We will need a Second Preliminary Fact.

Second Preliminary Fact: Let *n* be a *composite* number. Then -1 is a quadratic residue mod *n* if for each *odd* prime divisor, *p*, we have $p = 1 \pmod{4}$. [1][2]

Using the Second Preliminary Fact, we obtain infinitely many solutions for which b - a = n, where *n* is composite and for each *odd* prime divisor, *p*, we have $p = 1 \pmod{4}$.

References

- [1]. M.Lewinter, J.Meyer, Elementary Number Theory with Programming, Wiley & Sons. 2015.
- [2]. D. Burton, Elementary Number Theory, McGraw-Hill, 2005.