Quadratic Residues and a Simple Theorem

D.Bratotini and M.Lewinter

Abstract

We produce infinite classes of solutions of the Diophantine equation, $c=\frac{a b+1}{b-a}$, where a, b, and c are natural numbers such that $a \neq b$. We use them to show that $\frac{1}{a b c}=\frac{1}{a}-\frac{1}{b}-\frac{1}{c}$.

Theorem 1: Let a, b, and c be natural numbers such that $a \neq b$, and $c=\frac{a b+1}{b-a}$. Then

$$
\begin{equation*}
\frac{1}{a b c}=\frac{1}{a}-\frac{1}{b}-\frac{1}{c} \tag{}
\end{equation*}
$$

Proof: Multiplying both sides of $\left(^{*}\right)$ by $a b c$ yields $1=b c-a c-a b=c(b-a)-a b$, which becomes $c(b-a)=$ $a b+1$. Then $c=\frac{a b+1}{b-a}$.

Example 1: Let $a=27, b=37$, and $c=100$. Since $\frac{a b+1}{b-a}=\frac{27 \cdot 37+1}{37-27}=\frac{999+1}{10}=100=c$, we have $\frac{1}{99900}=\frac{1}{27}-\frac{1}{37}-\frac{1}{100} .($ Verify! $)$

Example 2: Let $a=1, b=2$, and $c=3$. Since $\frac{1 \cdot 2+1}{2-1}=3=c$, we have $\frac{1}{6}=\frac{1}{1}-\frac{1}{2}-\frac{1}{3}$.
Infinite Class of Solutions 1: If $b-a=1$, we get $c=\frac{a(a+1)+1}{1}=a^{2}+a+1$, implying that there are infinitely many solutions of $\left({ }^{*}\right)$ of the form

$$
\begin{gathered}
a=a \\
b=a+1 \\
c=a^{2}+a+1
\end{gathered}
$$

Infinite Class of Solutions 2: If $b-a=2$ and a and b are odd, then $a b+1$ is even, and, therefore, divisible by $b-a$. This generates infinitely many solutions.

Note that if $b-a=3$, there are no solutions. If $b-a=3$, then $b=a+3$, in which case $a b+1=a(a+3)+1=$ $a^{2}+3 a+1$. Then $c=\frac{a^{2}+3 a+1}{3}=a+\frac{a^{2}+1}{3}$. Since $a^{2}=0$ or $1(\bmod 3)$, we have $a^{2}+1=1$ or $2(\bmod 3)$, and is, therefore, not divisible by 3 .

Theorem 2: There are infinitely many positive integer values for which $b-a \neq 1$ or 2 , and $c=\frac{a b+1}{b-a}$ is a natural number.

We will need a definition and a preliminary fact to prove this.
Definition: a is a quadratic residue $\bmod n$ if there exists an x such that $x^{2}=a(\bmod n)$. Otherwise, a is a quadratic nonresidue.

Preliminary Fact: Let p be an odd prime. Then -1 is a quadratic residue $\bmod p$ if $p=1(\bmod 4)$. If $p=3(\bmod$ 4), then -1 is a quadratic nonresidue $\bmod p$. [1][2]

Proof of Theorem 2: Let $b-a=p$, where $p=1(\bmod 4)$. Then $b=a+p$, in which case $a b+1=a(a+p)+1=$ $a^{2}+a p+1$. We will have a solution if and only if $a^{2}+a p+1=0(\bmod p)$. This is equivalent to $a^{2}+1=0$ $(\bmod p)$, or $a^{2}=-1(\bmod p)$ which has a solution by the Preliminary Fact.

Example: The prime number, 5 , satisfies $5=1(\bmod 4)$. Now $b-a=5$. Then $b=a+5$, in which case $a b+1$ $=a(a+5)+1=a^{2}+5 a+1$. We have a solution if and only if $a^{2}+5 a+1=0(\bmod 5)$. This is equivalent to $a^{2}+$ $1=0(\bmod 5)$, or $a^{2}=-1(\bmod 5)$ which has a solution, $a=2(\bmod 5)$. If $a=2$, we have $b=7$, and $c=\frac{2 \cdot 7+1}{5}=\frac{15}{5}=3 . \quad$ Also, $\quad \frac{1}{2 \cdot 7 \cdot 3}=\frac{1}{2}-\frac{1}{7}-\frac{1}{3}, \quad$ or $\quad \frac{1}{42}=\frac{1}{2}-\frac{1}{7}-\frac{1}{3} . \quad$ That \quad is, $1=42\left(\frac{1}{2}-\frac{1}{7}-\frac{1}{3}\right)=21-6-14$.

What happens if $b-a=n$, and n is composite? We will need a Second Preliminary Fact.
Second Preliminary Fact: Let n be a composite number. Then -1 is a quadratic residue $\bmod n$ if for each odd prime divisor, p, we have $p=1(\bmod 4)$. [1][2]
Using the Second Preliminary Fact, we obtain infinitely many solutions for which $b-a=n$, where n is composite and for each odd prime divisor, p, we have $p=1(\bmod 4)$.

References

[1]. M.Lewinter, J.Meyer, Elementary Number Theory with Programming, Wiley \& Sons. 2015.
[2]. D. Burton, Elementary Number Theory, McGraw-Hill, 2005.

