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ABSTRACT: In this paper, we propose the sum and product connectivity Gourava domination indices and
their corresponding exponentials of a graph. Furthermore, we compute these newly defined Gourava
domination indices their corresponding exponentials of some standard graphs, French windmill graphs,
friendship graphs, book graphs.
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I. Introduction
The graph G= (V(G), E(G)), where V(G) be the vertex set and E(G) be the edge set. dg (u) be the

degree of a vertex u. For undefined term and notation, we refer the books [1, 2]. Graph indices have their
applications in various disciplines of Science and Engineering. Recently some new graph indices were studied,
for example, in [3, 4, 5].

The domination degree dgy (u) of a vertex u [6] in a graph G is defined as the number of minimal
dominating sets of G which contains u.

The first and second Gourava domination indices [7] of a graph are defined as

GOD (G)= > [dg(w+dy(v)+dy (u)dy (V) ].

uveE(G)

uveE(G)
Recently some domination indices were studied in [8, 9, 10, 11, 12, 13, 14, 15, 16].

We propose the sum connectivity Gourava domination index of a graph and it is defined as
1
SGOD(G) = :
uveE(G) \/dd (u) + dg (V) + dq (U)dd (v)
We introduce the product connectivity Gourava domination index of a graph and it is defined as

PGOD(G)= )" .
quE(G)\/(dd (W) +dg (V)(dg (Wdgy ()
Considering the sum and product connectivity Gourava domination indices, we define the sum and product

connectivity Gourava domination exponentials of a graph G as
1

SGOD(G,x)= Y. 8 (Wd, (), (W)d, (V)
uveE(G)

1

PGOD(G, x) = Z X\/(dd(u)+dd(v))(dd(u)dd(v)).
uveE(G)
Recently, some domination parameters were studied in [17, 18, 19, 20, 21, 22, 23, 24].
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In this paper, we determine the sum and product connectivity Gourava domination indices of some
standard graphs, French windmill graphs and friendship graphs.

I1. Results for Some Standard Graphs

Proposition 1. If K, is a complete graph with n vertices, then

(i SGOD(Kn):n(;/_gl).
0 PGOD(Kn):n;nﬁl).

Proof: If K,, is a complete graph, then d¢(u) =1. From definition, we have

1

i SGOD (K, ) =
® ( n ) uveg(:Kn) \/dd (U) + dd (V) + dd (u)dd (V)

_n(n-1) _n(n-1)
2 flrlr(xD) 203

1
ii) PGOD(K, )=
(i) (Kn) uveg(:Kn)\/(dd (u) +dg (V))(dg (W) dg (V)

_n(n-1)  n(n-1)
2JLrDaxy) 22

Proposition 2. If S, ,; is a star graph with dq(u) =1, then

NG
n
N3

Proposition 3. If Sp+1’q+1 is a double star graph with dq(u) =2, then

() SGOD(S,,)=

(i) PGOD(S,)=

B p+q+1

-

) 1
(i) PGOD(SpH,qﬂ):%.

() SGOD(Sy1q.1)

Proposition 4. Let Knn be a complete bipartite graph with 2 < m< n. Then
mn

S Jmn+2m+2n+3

() SGOD(Ky,)
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3 mn
CJmen+2)m+n(n+1)

(i) PGOD(Kpy)

Proof: Let G=Kun, m, n=>2 with
dd (U) =m+1
=n+l1, forallueV(G).
From definition, we have

. ~ 1
O S6OD(Kna) = 2 e

mn
_\/(m+1+n+1)+(m+1)(n+1)

mn

CJmn+2m+2n+3

Z 1
wet (K, ) yJ(dg (W) +dy (V))(dg (Wdg (V)

(i) PGOD(Kp,) =

3 mn
CJm+ 1 n+D(m+D(n+1)

mn
Jmene2)(m+Dn+1)

In the following proposition, by using definition, we obtain the sum and product connectivity Gourava
domination exponentials of K, S5, Spi14:1 and Kmp .

Proposition 5. The sum and product connectivity Gourava domination exponentials of K, S5, Sy, 441 and
Kmn are given by

1

0 SGOD(Kn,X)= z X\/dd(u)+dd(v)+dd(u)dd(v)
uveE(K,)

1 1
_ n(nz_ D B _ n(ng_ 1) B

1
(i) SGOD(Sy.q,x)=nx3.
1
x)=(p+q+1)x2\ﬁ.

(ii)) SGOD(Sp.1401.

1
(iv) SGOD ( K x) — mnxmn+2m+2n+3
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1

() PGOD(Kyx)= 3 sl d e, ()
uveE(K,)

1 1
_Nn(n-1) Jenen _n-1) 7
2 2 .
1

(vi) PGOD(S,.;,x)=nx"2,
1
(Vi) PGOD(S 1 qe1,X)=(pP+0q+1)Xx4.

1
(viii) PGOD ( K X) — mnxV(m+n+2)(m+1)(n+1)

I11. Results for French Windmill Graphs

The French windmill graph F" is the graph obtained by taking m > 3 copies of K, n > 3 with a vertex in
common, see Figure 1. The French windmill graph F;" is called a friendship graph.

Figure 1. French windmill graph F"

Let F be a French windmill graph F," . Then

dy (U =1, ifuisin center

=(n —1)m_1, otherwise.
Theorem 1. Let F be a French windmill graph F". Then

m(n-1) N (mn(n-1)/2)-m(n-1)

SGOD(F) = '
\/1+ 2(n _1)(m—1) \/(n _1)(m—1) [2+(n _1)(m—1)]

Proof: In F, there are two sets of edges. Let E1 be the set of all edges which are incident with the center vertex
and E; be the set of all edges of the complete graph. Then

SGOD(F)= L
weE(F) ydg (W) +dg (V) +dg (W dy (V)
1 1
= +
uve%‘ZF) \/dd (u) + dd (V)+dd (U)dd (v) uveEzz(F) \/dd (U)+dd (V) + dd (U)dd (v)
m(n-1) N (mn(n-1)/2)-m(n-1)

G+ -0 21— -0 + (1= +(n =D (n—p™?
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- m(n-1) N (mn(n-1)/2)-m(n-1)
\/l-i— 2(n —1)(m_1) \/(n _1)(m—1) 2+ (n _1)(m—1)]

Corollary 1.1. Let F3m be a friendship graph. Then

_2m N m
V142" 2 i(2 4 2m 1)

SGOD(F,")

In the following theorem, by using definitions, we obtain the sum connectivity Gourava domination
exponentials of F" and F,".

Theorem 2 . The first Gourava domination polynomials of F" and F," are given by
1

(0 SGOD ( an , X) _ Z X\/dd(u)+dd(v)+dd(u)dd(v)

UVeE(Fn’“)
ﬁ (h—1)/2 (n-1) T D om0y
=m(n=Dx"""" +[(mn(n-1)/2)—m(n-1]x _
1 1 .

,ﬂ(uz"‘) I 1(3,m1)
(i) SGOD(F"x)= 3 x (@) _om ™, mx
uveE(Fg"‘)
Theorem 3. Let F be a French windmill graph F,". Then

m(n-1) +(mn(n—1)/2)—m(n—1)

\f(1+ -0 )™ (D" 2(n-)™

Proof: In F, there are two sets of edges. Let E; be the set of all edges which are incident with the center vertex
and E; be the set of all edges of the complete graph. Then

PGOD(F)=

1
PGOD(F) =
UVEZE;‘F) J(dg W) +dy (D)(dy (W dy (V)
1 1
= +
weép) J(dg () +dg (V) (dg (Wdy (V) WEEZZ(F) J(dg (W) +dg (V) (dg (W) dg (V)
_ m(n-1) . (mn(n-1)/2)-m(n-1)

a0 )1-0™  J(-0™ + (-0 (D™ (n-D™)

m(n-1) +(mn(n—1)/2)—m(n—1)

=™ (n-p™  (n-D"*\2(n-D™* '

Corollary 3.1. Let F3m be a friendship graph. Then

2m

m
= + :
S (s 2m0)  2miom

PGOD(F,")
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In the following theorem, by using definitions, we obtain the product connectivity Gourava domination
exponentials of F" and F," .

Theorem 4. The second Gourava domination polynomials of F" and F," are given by

1

@ PGOD(F"x)= Y A0 @+, )8, 3, W)
weE(F")

! 1
= m(n—2)x 0" 00" fmn(n-1) /2) - m(n - x0T
1
iy PGOD(F" x)= Y (0 W)+, (V)(d, (W, (V)
uveE(F3"‘)
1 1
— 2mx\/2m’1(1+2(m’1)) + mXZm’lx/Z;"‘.

IV. Results for GoK,

Theorem 5. Let H=GoK, where G is a connected graph with n vertices and m edges; and K, is a complete
graph. Then

(2m + np? + np)

(i) SGOD(H)= .
2(p+1)" [2+(p+1)""]
2
(i) PGOD(H)={ZM+ NP +1p)
2 ?2( p +1)3(n—1)
Proof: If H=GoKy, then dy (U)=(p+1)"". In F, there are w edges. Thus H has %(27“ +np? +np)
edges. Thus

1
(i) SGOD(H) =
| WE(H)Jdd @0, Wrd, Wdy V)

1
Jp+)" ™+ (p+1)" 4 (p+)" (p+)"?

=%(2m+np2 +np) +

(2m + np? + np)

2\,’( p+1)" 2+ (p+1)""] '

1

(i) PGOD(H) =
weE(H) \/’”(dd () +dg (W) (dg (Wdg (v))

1

\/[( p+ 1)”—1 + ( p +1)n—1:|( p +1)n—1 ( D+ 1)n_1

=%(2m +np? +np)
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_ (2m+np® +np)
2 ¢2( p +1)3(n—1)

In the following theorem, by using definitions, we obtain the sum and product connectivity Gourava
domination exponentials of H.

Theorem 6. The sum and product connectivity Gourava domination exponentials of H are given by

1

0] SGOD(H , X) — % (2m + np2 n np)x \/( p+1)"’1[2+( p+1)n71] |

1

(i) PGOD (H, x) =%(2m +np? + np)x Ve

V. Results for B,
The book graph B, n=3, is a cartesian product of star Sp+1 and path P,

For By, n=3, we have
dy (u)=3, ifuisthe center vertex,

= 2"141, otherwise.
Theorem 7. If B, n=>3, is a book graph, then

2n n

_ 1 + + .
B [raxe ) i) (2 1 3)

(i) SGOD(B,)

2n

1 + + n :
N \/3(2n—1+4)(2”‘1+1) \/2(2”*1+1)3

(i) PGOD(B,)

Proof: In By, there are three types of edges as follow:
E: = {uv € E(Bn) | da(u)=da(v)=3}, | B4l = 1.
E> = {uv € E(Bn) | da(u) = 3, da(v)= 2”‘1+1},| E,| = 2r.
Es = {uv € E(Bn) | da(u) = da(v)= 2"t +1}, |Es|=r.
(i) By definition, we have

z 1
weE () \dg (U) +dg (V) +dg (u)dg (v)
1 2n

NeEneel B+ (2 +1) +3(2 +1)]

SGOD(B, )=

D@D e D 1 0)]
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2n n

ﬁ V(7 +ax2m1) \/2“—1 02" +3)

(ii) By definition, we have

1
PGOD(B, )=
() uve%(: ) y(dg (W +dg (V)(dg (W dy (V)

_ 1 N 2n
N3B+3)@x3)]  \[(3+(27 +1)3(2" +1)]

n

J(2 1) (271 1) (27t 4D (27 L +1)

+

2n n

B4 3t a) (2t 1) \/2(2n71+1)

In the following theorem, by using definitions, we obtain the sum and product connectivity Gourava
domination exponentials of B,

Theorem 8. The sum and product connectivity Gourava domination exponentials of B, are given by

1 1 1
(i) SGOD(Bn ’ X) _ X"/]'=5 +onx 7+axn 1) N nx\/ 1) (2" 1+3)

1 1 !
(i) pGOD(B,,x)=x¥¥% + 2nx Va2 +a)2 1) 22

V1. CONCLUSION
In this study, we have defined the sum and product connectivity Gourava domination indices and their

corresponding exponentials of a graph. Also the sum and product connectivity Gourava domination indices and
their corresponding exponentials of some standard graphs, windmill graphs, book graphs are computed.
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