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I. Introduction 

            The graph G= (V(G), E(G)), where V(G) be the vertex set and E(G) be the edge set.  
Gd u  be the 

degree of a vertex u. For undefined term and notation, we refer the books [1, 2]. Graph indices have their 

applications in various disciplines of Science and Engineering. Recently some new graph indices were studied, 

for example, in [3, 4, 5]. 

           The domination degree  
dd u  of a vertex u [6] in a graph G is defined as the number of minimal 

dominating sets of G which contains u. 

 

             

The first and second Gourava domination indices [7] of a graph are defined as    

 

             
 

1 .d d d d

uv E G

GOD G d u d v d u d v


      

               
 

2 .d d d d

uv E G

GOD G d u d v d u d v


 
 

Recently some domination indices were studied in [8, 9, 10, 11, 12, 13, 14, 15, 16]. 

 

           

We propose the sum connectivity Gourava domination index of a graph and it is defined as   

 

    
        

1
.

uv E G d d d d

SGOD G
d u d v d u d v


 


 

         

We introduce the product connectivity Gourava domination index of a graph and it is defined as   

                

 
          

1

uv E G d d d d

PGOD G
d u d v d u d v





 

      Considering the sum and product connectivity Gourava domination indices, we define the sum and product 

connectivity Gourava domination exponentials of a graph G as      

                

 
       

 

1

, .d d d dd u d v d u d v

uv E G

SGOD G x x
 



 
 

               
         

 

1

, .d d d dd u d v d u d v

uv E G

PGOD G x x




              

Recently, some domination parameters were studied in [17, 18, 19, 20, 21, 22, 23, 24].  
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In this paper, we determine the sum and product connectivity Gourava domination indices of some 

standard graphs, French windmill graphs and friendship graphs. 

 

II. Results for Some Standard Graphs 
  

 Proposition 1. If  nK  is a complete graph with n vertices, then         

 (i)          
( 1)

.
2 3

n

n n
SGOD K


    

(ii)          
( 1)

.
2 2

n

n n
PGOD K


    

Proof: If  nK  is a complete graph, then dd(u) =1. From definition, we have   

(i)        nSGOD K

 
        

1

nuv E K d d d dd u d v d u d v


 

  

                             

( 1) ( 1)
.

2 1 1 (1 1) 2 3

n n n n 
 

  
  

(ii)     nPGOD K
          

1

nuv E K d d d dd u d v d u d v




  

                            

( 1) ( 1)
.

2 (1 1)(1 1) 2 2

n n n n 
 

 
                          

Proposition 2. If 1 nS   is a star graph with dd(u) =1, then           

(i)       1 .
3

n

n
SGOD S             

(ii)       1 .
2

n

n
PGOD S    

 Proposition 3. If 1, 1 p qS    is a double star graph with dd(u) =2, then            

(i)       1, 1

1
.

2 2
p q

p q
SGOD S  

 
           

(ii)       1, 1

1
.

4
p q

p q
PGOD S  

 
       

Proposition 4.  Let Km,n   be a complete bipartite graph with 2 ≤ m≤ n. Then 

(i)       ,   .
2 2 3

m n

mn
SGOD

mn m
K

n
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(ii)     ,   .
( 2)( 1)( 1)

m n

mn
PGOD

m n m n
K 

   
   

Proof: Let G=Km,n , m, n≥2 with 

  
dd u = m+1 

           = n+1,   for all u∈ V(G). 

From definition, we have   

(i)       ,  m nKSGOD

  
        ,  

1

m nuv E d d dK dd u d v d u d v


 

  

                                  
( 1 1) ( 1)( 1)

mn

m n m n


     
  

                                 .
2 2 3

mn

mn m n


  
 

(ii)    ,  m nKPGOD   

          ,  

1

m nuv E d d d dK d u d v d u d v




     

                                 
( 1 1)( 1)( 1)

mn

m n m n


    
    

                                .
( 2)( 1)( 1)

mn

m n m n


   
                  

                         

    

         In the following proposition, by using definition, we obtain the sum and product connectivity Gourava 

domination exponentials of  ,nK 1 ,nS  1, 1p qS    and Km,n  . 

 

Proposition 5. The sum and product connectivity Gourava domination exponentials of  ,nK 1 ,nS  1, 1p qS    and 

Km,n    are given by  

 

(i)     
       

 

1

, d d d d

n

d u d v d u d v
n

uv E K

SGOD K x x
 



 
    

                               

1 1

1 1 (1 1) 3( 1) ( 1)
.

2 2

n n n n
x x

  
 

 

(ii)     
1

3
1, .nSGOD S x nx   

(iii)      
1

2 2
1, 1, 1 .p qSGOD S x p q x    

 

(iv)     
1

2 2 3
, , .mn m n

m nSGOD K x mnx   
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 (v)    
         

 

1

, d d d d

n

d u d v d u d v

n

uv E K

PGOD K x x




 
    

                                

1 1

(1 1)(1 1) 2( 1) ( 1)
.

2 2

n n n n
x x

 
 

 

(vi)     
1

2
1, .nPGOD S x nx   

(vii)      
1

4
1, 1, 1 .p qPGOD S x p q x    

 

(viii)         

1

2 1 1
, , .m n m n

m nPGOD K x mnx    
 

 

III. Results for French Windmill Graphs 
 

The French windmill graph m

nF  is the graph obtained by taking m  3 copies of Kn, n  3 with a vertex in 

common, see Figure 1. The French windmill graph 
3

mF  is called a friendship graph. 

 

 
Figure 1. French windmill graph m

nF  
 

   Let F be a French windmill graph m

nF . Then  

 
 

dd u =1,       if u is in center 

            =   1
1

m
n


 ,        otherwise. 

Theorem 1. Let F be a French windmill graph m

nF .  Then 

       
 

 

 
 

   

 
 

 
 1 1 1

  .        
( 1 / 2) 11

1 2 1

            

1

 

1

 

[2 ]
m m m

mn n m nm n
SGOD F

n n n
  

  
 

    

              

Proof: In F, there are two sets of edges. Let E1 be the set of all edges which are incident with the center vertex 

and E2 be the set of all edges of the complete graph. Then 

 

 
        

1

uv E F d d d d

SGOD F
d u d v d u d v


 


 

              
        1

1

uv E F d d d dd u d v d u d v


 


        2

1
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 1 1 1

( 1 / 2) 11
.

1 2 1 1 [2 1 ]
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Corollary 1.1.  Let 
3

mF be a friendship graph. Then 

 

        
 

 
3

1 1

2
.

1 2 2 2 2

m

m m m

m m
SGOD F

 
 

 

      

         In the following theorem, by using definitions, we obtain the sum connectivity Gourava domination 

exponentials of m

nF  and 
3 .mF  

 

Theorem 2 . The first Gourava domination polynomials of 
  

m

nF   
and 

3

mF  are given by  

(i)               

 

1

, d d d d

m

n

d u d v d u d vm
n

uv E F

SGOD F x x
 



 
    

 

                                
 

 
 

1

1
1 2 1

1
m

n

m n x


 

 
   

 
 

 
 

1

1 1
1 [2 1 ]1

[( 1 / 2) 1 ] .
m m

n n

mn n m n x
 

  

   
   

 
(ii)            

 

   

1 1

1 11 2 2 2 2

3

1

3 , 2
m m m

d d d d

m

d u d v d u d vm

uv E F

SGOD F x x mx mx
   



  
        

                                   

Theorem 3. Let F be a French windmill graph m

nF .  Then 

       
 

 

 
    

 

   

   1 11 1

( 1 / 2) 11
.

1 2 11 1 1
m mm m

mn n m nm n
PGOD F

n nn n
  

  
 

   

                       

Proof: In F, there are two sets of edges. Let E1 be the set of all edges which are incident with the center vertex 

and E2 be the set of all edges of the complete graph. Then 

   

 
          

1

uv E F d d d d

PGOD F
d u d v d u d v





          

      
          1

1

uv E F d d d dd u d v d u d v





  

          2

1
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         1 1 1 11 1

( 1 / 2) 11

1 1 1 11 1 1 1
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   1 1

( 1 / 2) 1
.

1 2 1
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 Corollary 3.1.  Let 
3

mF be a friendship graph. Then 
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2
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        In the following theorem, by using definitions, we obtain the product connectivity Gourava domination 

exponentials of  
m

nF   
and 

3

mF   .  

  

Theorem 4. The second Gourava domination polynomials of 
  

m

nF   
and 

3

mF  are given by  

 

(i)              

 

1

, d d d d

m

n

d u d v d u d vm
n

uv E F

PGOD F x x




 
    

                              
   

   
 1 1

1

1 1 11
m m

n nm n x
 

           1 1

1

1 2 1[( 1 / 2) 1 ] .
m m

n nmn n m n x
 

    
      

(ii)            

 3

1

3 , d d d d

m

d u d v d u d vm

uv E F

PGOD F x x




 
       

                                

  1 1 1

1 1

2 1 2 2 22 .
m m m m

mx mx
     

 

IV. Results for GoKp 
  

Theorem 5. Let H=GoKp, where G is a connected graph with n vertices and m edges; and Kp is a complete 

graph. Then  

(i)    

   

2

1 1

(2 )
.

2 1 2 1
n n

m np np
SGOD H

p p
 

 


    

          

(ii)  

 
 

2

3 1

(2 )
( ) .

2 2 1
n

m np np
PGOD H

p


 




 

Proof: If H=GoKp, then  
dd u =  

1
1

n
p


 . In F, there are 

( 1)
.

2

p p 
 edges. Thus H has 

21
(2 )

2
m np np   

edges. Thus 

(i)  
        

1

uv E H d d d d

SGOD H
d u d v d u d v


 

     

 

                       
21

(2 )
2

m np np  

       
1 1 1 1

1

1 1 1 1
n n n n

p p p p
   



       

                         

2

1 1

(2 )
.

2 1 2 1
n n

m np np

p p
 

 


      

(ii)  
          

1

uv E H d d d d

PGOD H
d u d v d u d v




   

       

       

2

1 1 1 1

1 1
(2 )

2
1 1 1 1

n n n n
m np np

p p p p
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2

3 1

(2 )
.

2 2 1
n

m np np

p


 



 

           In the following theorem, by using definitions, we obtain the sum and product connectivity Gourava 

domination exponentials of H. 

 

Theorem 6. The sum and product connectivity Gourava domination exponentials of H are given by 

 

(i)    
   

1 1

1

1 2 121
, (2 ) .

2

n n
p p

SGOD H x m np np x
 


        

 

(ii)    
 3 1

1

2 121
, (2 ) .

2

n
p

PGOD H x m np np x



  

 

V. Results for Bn 

 

The book graph Bn, n≥3, is a cartesian product of star Sn+1 and path P2. 

For Bn, n≥3, we have  

 
dd u = 3,   if u is the center vertex, 

          = 
12n

+1,   otherwise. 

 

Theorem 7. If Bn, n≥3, is a book graph, then 

 (i)   
     1 1 1

1 2
.

15 7 4 2 2 1 2 3
n

n n n

n n
SGOD B

  
 





 
 

(ii)   
     

31 1 1

1 2
.

54 3 2 4 2 1 2 2 1

n
n n n

n n
PGOD B

  

  

  

   
 

 Proof: In Bn, there are three types of edges as follow: 

          

 E1 = {uv  E(Bn) | dd(u)=dd(v)=3},                 | E1| = 1. 

           E2 = {uv  E(Bn) | dd(u) = 3, dd(v)= 
12n

+1},| E2| = 2r. 

           E3 = {uv  E(Bn) | dd(u) = dd(v)= 
12n

+1},     | E3| = r. 

 

(i)       By definition, we have 

 

        

 
        

1

n

n

uv E B d d d d

SGOD B
d u d v d u d v


 

       

                          
      1 1

1 2

3 3 3 3 3 2 1 3 2 1n n

n

 

 
       

   

                                1 1 1 12 1 2 1 2 1 2 1n n n n

n
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                             1 1 1

1 2
.

15 7 4 2 2 1 2 3n n n

n n

  
  

     

(ii)       By definition, we have 

      
          

1

n

n

uv E B d d d d

PGOD B
d u d v d u d v




  

  

                        
         1 1

1 2

3 3 3 3 3 2 1 3 2 1n n

n

 

 
     

   

                              1 1 1 12 1 2 1 2 1 2 1n n n n

n

   



         

                     
     

31 1 1

1 2
.

54 3 2 4 2 1 2 2 1
n n n

n n

  

  

      

           In the following theorem, by using definitions, we obtain the sum and product connectivity Gourava 

domination exponentials of Bn. 

 

Theorem 8. The sum and product connectivity Gourava domination exponentials of Bn are given by  

 

(i)        
    

1

17 4 2 1 1

11

2 1 2 315, 2 .
n

n n

nSGOD B x x nx nx
      

  

(ii)           
3

1 1 1

111

3 2 4 2 1 2 2 154, 2 .
n n n

nPGOD B x x nx nx
      

  

VI. CONCLUSION 
  In this study, we have defined the sum and product connectivity Gourava domination indices and their 

corresponding exponentials of a graph. Also the sum and product connectivity Gourava domination indices and 

their corresponding exponentials of some standard graphs, windmill graphs, book graphs are computed.    
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