
International Journal of Mathematics and Statistics Invention (IJMSI)

E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759

www.ijmsi.org Volume 10 Issue 6 || Nov.-Dec., 2022 || PP-07-13

DOI: 10.35629/4767-10060713 www.ijmsi.org 7 | Page

The Role of Number Theory to Cryptography

Xiaomeng (Christine) Zhu
Hefei No. 8 High School International Department

ABSTRACT:Cryptography refers to the field of computer science that studies and develops techniques that make

the exchange of secret messages secure. The goal of cryptography is to disguise messages, so they can not be

understood by any unintended party that may capture the messages. The algorithms used in cryptography are

based on Number Theory. In this article, we review the basics of this connection and how it leads to the RSA

algorithm.

-- -----

Date of Submission: 10-12-2022 Date of Acceptance: 25-12-2022

--- ----------

I. INTRODUCTION

Number theory is a classical area of mathematics [1]. Number theory is cryptography's [2] fundamental

building block. Number theory motivated the development of our robust encryption techniques and systems.

The encode and decode constitute the critical scheme of number theory. Encode and decode are a pair. Encode

means to transfer a piece of the sequence of characters in a particular way from one communication system to

another. The meaning of decode is to convert the received sequence of characters into a form that is

comprehensible to the recipient through an information system. The concept of encryption and decryption is

produced by encoding-decoding but with more meaningful and valuable real-life applications. Encrypt means

translating data or information that needs to be passed into code to prevent unauthorized access. Decryption

means to make the data or information received clear and understandable.

Consider the following scenario. When you are a student, maybe you want to talk to your friends in

class, but you don’t want to make a noise. Then you may have done things like John and Peter. John and Peter

are best friends and they are in the same classroom in school. Alice sits on a desk between them. John wants to

invite Peter to go to his house after school. They are not allowed to talk during class, but John is impatient, and

does not want to wait for recess. He writes a note and tells Alice to give the note to Peter. Even though she is not

supposed to, Alice reads the note. The note reads Dpnf ipnf bgus tdippm. Alice can not make sense of this

message and gives it to Peter. But Peter knows that John is trying to hide the content of his message. John and

Peter have agreed that they should change each letter in the message by the letter that comes before in the

alphabet when they send each other written messages. Thus, Peter changes D by C, p by o, n by m, f by e, etc.

After going through this exchange of letters, the original message sent by John, which was Dpnf ipnf bgus

tdippm, now reads Come home after school. Although Alice helps

John and Peter pass the note, she does not know the original message because she does not know how

they encrypt the sequence of irregular characters. This message transform process is a simple example of a

cryptographic algorithm.

But the above example is too simple, and it is very easy to break. We want ways to encode or encrypt

that are difficult to break. These algorithms are based on the mathematical field known as number theory.

Number theory is the study of properties of integers. Factoring very large numbers is very hard. By very hard we

mean that it would take the most powerful computers a very large number of years to factorizing very large

integers, even if they use the most advanced known algorithms. The basic cryptographic algorithm works

because of this fact.

To unlock the intercepted messages, a decoder is necessary. It was not until World War Ⅱ that

cryptography became widely used. Enigma is a famous machine that German Nazis heavily used in WW II [3].

The machine used three or more rotors which rotated at different rates as the user typed on the keyboard and

outputs the matched letter of cipher text with random and even unbreakable patterns. The unbreakable Enigma

machine was eventually broken by Turin, who designed the famous Turing machine to become one of our

original computer models. By deciphering the enemy’s code, the enemy’s real strategy was known in advance,

thus accelerating the process of the Second World War. Now modern cryptography is used everywhere, such as

credit card transactions on the internet, computer users access passwords, e-commerce, etc. RSA [4] is a very

popular cryptographic algorithm developed in the 1980s by MIT researchers. In this article we will explain the

RSA algorithm and number theory behind it.

RSA has been widely used in access control, personnel permission information and other fields. One of

the most recent applications that has been widely used in bank systems is digital signature which is based on

The Role of Number Theory to Cryptography

DOI: 10.35629/4767-10060713 www.ijmsi.org 8 | Page

RSA. Take the bank as an example, first determine the role: assume Thea is the person who goes to the bank to

withdraw money. She has a bank card in her hand, and only she knows the password of this bank card, so she

acts as the encryption agent. Flora is an executive in the bank, she is a decryptor. Flora first randomly

determines a KEY, which we call a secret key, but this key is always stored in the machine without being

published. Then, from this key, another key is computed, which we call the public key. The property of this

public key is that it is almost impossible to compute its own private key. Next, the public key is transmitted to

Iris through the network. When Thea receives the public key, the public key is used to encrypt the password set,

and the encrypted password is sent to Flora through the network. Finally, Flora uses the known private key to

decode the information sent over, so as to know the original password set by Thea. To determine whether Thea

can withdraw money from the bank. So that’s how RSA works in a bank.

In this article we explain the Number Theory behind the RSA algorithm.

II. ELEMENTS OF NUMBER THEORY

As explained in the introduction, the cryptographic algorithm we will describe in this article, RSA, is built

from Number Theory. In this section, we will explain the elements of number theory that are necessary to

understand how the RSA algorithm works.

Integer Division

We start with the following definition, that reminds the reader what it means for an integer to divide

another integer.

Definition: Let 𝑎 and 𝑏 be two integers. We say that 𝑏 divides 𝑎 if 𝑎 = 𝑏𝑐 for some integer 𝑐. In this

case, we also say that 𝑏 is a divisor of 𝑎, and 𝑎 is a multiple of 𝑏. The notation that indicates that 𝑏 divides 𝑎 is

𝑏|𝑎. To indicate that 𝑏 does not divide 𝑎 we write 𝑏∤𝑎.

For example, 6 divides 18 because18 = 6(3). The next theorem states what most of us implicitly know

about quotients and remainders when we carry out integer divisions.

Theorem 1: Let 𝑎 and 𝑏 be two integers. Assume 𝑏> 0. Then, there exists two unique integers, 𝑞 and 𝑟

such that 0 ≢𝑟<𝑏 and 𝑎 = 𝑞𝑏 + 𝑟, denote as a ≡ r mod b.

The number 𝑞 in the above theorem is known as the quotient of 𝑎 divided by 𝑏 and 𝑟 as the remainder.

We will denote 𝑞 by 𝑎//𝑏 and 𝑟 by 𝑎%𝑏. These are the commands in the programming language Python.

For example, the quotient of 20 divided by 6 is 3 and the remainder is 2, because 20 = 6(3) + 2 and 0

≢ 2 < 6. Using the notation introduced in the previous paragraph, 20//6 = 3 and 20%6 = 2. Note that 𝑏 divides 𝑎

if the remainder of 𝑎 divided by 𝑏 id 𝑎 divided by 0.

Greatest Common Divisor

Given two integers 𝑎 and 𝑏, the largest integer that divides both 𝑎 and 𝑏 is known as the greatest

common divisor between 𝑎 and 𝑏, and it is denoted by 𝑔𝑐𝑑(𝑎, 𝑏). For example, the greatest common divisor

between 18 and 12 is 6. Using the notation we just introduced, 𝑔𝑐𝑑(18, 12) = 6.

We will describe an algorithm to compute the greatest common divisor between two given integers 𝑎

and 𝑏. This algorithm is based on two facts. One of these facts is that 𝑔𝑐𝑑(𝑎, 0) = 𝑎 for all positive numbers 𝑎.

The second fact is the following Theorem.

Theorem 2: Let 𝑎 and 𝑏 be two integers with 𝑏≠0. Let 𝑟 be the remainder of 𝑎 divided by 𝑏. Then

𝑔𝑐𝑑(𝑏, 𝑟) = 𝑔𝑐𝑑(𝑎, 𝑏). Using the notation introduced in the above paragraph, 𝑔𝑐𝑑(𝑏, 𝑎%𝑏) = 𝑔𝑐𝑑(𝑎, 𝑏)

For example, the remainder of 20 divided by 8 is 4, i.e. 4 = 20%8. Thus, the above theorem says that

𝑔𝑐𝑑(8, 4) = 𝑔𝑐𝑑(20, 8). In fact, 𝑔𝑐𝑑(8, 4) = 𝑔𝑐𝑑(20, 8) = 4.

Euclidean Algorithm

Our next goal is to explain an algorithm to compute the greatest common divisor of two integers. This

algorithm is known as the Euclidean algorithm and is based on Theorem 2.

This algorithm takes as input two integers 𝑎 and 𝑏. If 𝑏 = 0, the algorithm returns 𝑎 as the greatest

common divisor between 𝑎 and 𝑏. As we previously discussed, we know this to be correct. On the other hand, if

𝑏≠0, the algorithm returns 𝑔𝑐𝑑(𝑏,𝑎%𝑏) as the greatest common divisor the greatest common divisor between 𝑎

and 𝑏. The correctness of the algorithm is implied by Theorem 2. It is also easy to check that the algorithm

eventually terminates.

Note that the algorithm calls itself. More precisely, to compute 𝑔𝑐𝑑(𝑎, 𝑏) we need to compute 𝑔𝑐𝑑(𝑏,

𝑎%𝑏) if 𝑏≠0. Algorithms of this type are called recurrent algorithms. The pseudo code of this algorithm is

The Role of Number Theory to Cryptography

DOI: 10.35629/4767-10060713 www.ijmsi.org 9 | Page

def greatest_commom_divisor(𝑎, 𝑏):

if 𝑏 = 0:

return a

return greatest_commom_divisor(𝑏, 𝑎%𝑏)

As an example, if 𝑎 = 20 and 𝑏 = 8, i.e we want to compute 𝑔𝑐𝑑(20, 8), the algorithm proceeds as follows

1. Since 8 ≠ 0, the algorithm calls itself to compute 𝑔𝑐𝑑(8, 4), because 4 = 20%8

2. To compute 𝑔𝑐𝑑(8, 4), and since 4=0̸, the algorithm calls itself to compute 𝑔𝑐𝑑(4, 0), because 0 = 8%4

3. The algorithm returns 4 as 𝑔𝑐𝑑(4, 0)

4. The algorithm returns 4 as 𝑔𝑐𝑑(8, 4)

5. The algorithm returns 4 as 𝑔𝑐𝑑(20, 8)

We will need more than simply computing the greatest common divisor of two numbers. More precisely,

we will need to compute the number 𝑢 that is described in the following theorem.

Theorem 3: Let 𝑎 and 𝑏 be two integers. There exists two integers 𝑢 and 𝑣 such that 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑢𝑎 + 𝑣𝑏.

For example, if 𝑎 = 20 and 𝑏 = 8, we know that 𝑔𝑐𝑑(20, 8) = 4, and possible values 𝑢 and 𝑣 are 𝑢 = 1 and 𝑣

=− 2, because 4 = (1)(20) + (− 2)(8). Note that the pair 𝑢 =− 1 and 𝑣 = 3 also works, because 4 = (− 1)(20) +

(3)(8).

Our next goal is to extend the Euclidean algorithm, that was described above, so that, instead of only

computing 𝑔𝑐𝑑(𝑎, 𝑏) when 𝑎 and 𝑏 are given as input, it also computes a pair 𝑢 and 𝑣 as in Theorem 3, i.e, such

that 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑢𝑎 + 𝑣𝑏

Note that the smallest positive number of the form 𝑎𝑢 + 𝑏𝑣, where 𝑢 and 𝑣 are integers is equal to 𝑔𝑐𝑑(𝑎,

𝑏). For our applications to cryptography, we will need 𝑢. Below, we will describe an algorithm to find 𝑢 and 𝑣.

Before we describe this algorithm, consider the following numerical example.

Assume 𝑎=60 and 𝑏=22. Our goal is to find 𝑢 and 𝑣 such that 22𝑢 + 60𝑣 = 𝑔𝑐𝑑(22, 60). We first perform

the Euclidean algorithm to compute the greatest common divisor. We find:

60 = 2 × 22 + 16

22 = 1 × 16 + 6

16 = 2 × 6 + 4
6 = 1 × 4 + 2

4 = 2 × 2 + 0

This shows that gcd(22,60) = 2

In order to get the Euclidean format, we need to reverse the process of above steps. So we get:

2 = 6 − 4

2 = (22 − 16) − (16 − 2 × 6)

2 = (22 − 16) − (60 − 2 × 22 − 2 × (22 − 16))

2 = 22 − 60 + 2 × 22 − (60 − 2 × 22 − 2 × 22 + 2 × 60 − 4 × 22)
2 = 22 − 60 + 2 × 22 − 60 + 2 × 22 + 2 × 22 − 2 × 60 + 4 × 22

2 = (−4)60 + 11(22)

In this case, u is 11 and v is -4 as indicated.

We now describe the algorithm that takes as input 𝑎 and 𝑏 and gives as output 𝑔𝑐𝑑(𝑎, 𝑏), 𝑢 and 𝑣,

where 𝑢 and 𝑣 satisfy 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑢𝑎 + 𝑣𝑏. We assume that 𝑏 is a positive integer. The algorithm is recursive on

𝑏. We will denote by 𝑎//𝑏 the quotient of 𝑎 divided by 𝑏. For example, 10//4 = 2. This algorithm results from the

following two observations:

1. If 𝑏 = 0, we have that 𝑔𝑐𝑑(𝑎,𝑏) = 𝑎, and the values𝑢 = 1and𝑣 = 0satisfy the requirement

𝑔𝑐𝑑(𝑎, 𝑏) = 𝑢𝑎 + 𝑣𝑏. (1)

This case, where 𝑏 = 0, is called the base case.

2. If𝑏>0.Let𝑞=𝑎//𝑏,and𝑟=𝑎%𝑏.Notethat0≢𝑟<𝑏.Let𝑢'and𝑣'be integers such that 𝑔𝑐𝑑(𝑏, 𝑟) = 𝑢′𝑏 +
 𝑣′𝑟. Note that 𝑟 = 𝑎 − 𝑞𝑏. Thus, theequation

𝑔𝑐𝑑(𝑏, 𝑟) = 𝑢′𝑏 + 𝑣′𝑟(2)

becomes

𝑔𝑐𝑑(𝑏, 𝑟) = 𝑢′𝑏 + 𝑣′(𝑎 − 𝑞𝑏) = 𝑣′𝑎 + (𝑢′ − 𝑞𝑣′) (3)

Note also that𝑔𝑐𝑑(𝑎,𝑏) = 𝑔𝑐𝑑(𝑏,𝑟). Thus, 𝑢 = 𝑣' and 𝑣 = 𝑢' − 𝑞𝑣' satisfy

𝑔𝑐𝑑(𝑎, 𝑏) = 𝑢𝑎 + 𝑣𝑏 (4)

The above observations lead to the recursive algorithm below. The input are the two integers 𝑎 and 𝑏,

and the output is a triplet 𝑔𝑐𝑑(𝑎, 𝑏), 𝑢, 𝑣, where as explained above, 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑢𝑎 + 𝑣𝑏.

The Role of Number Theory to Cryptography

DOI: 10.35629/4767-10060713 www.ijmsi.org 10 | Page

def extended_euclidean_algorithm(𝑎, 𝑏):

if 𝑏 == 0:

return 𝑎, 1, 0

else:

𝑑, 𝑢', 𝑣' = extended_euclidean_algorithm(𝑏, 𝑎%𝑏)

𝑣 = 𝑢' − (𝑎//𝑏)𝑣'

𝑢 = 𝑣'

return 𝑑, 𝑢, 𝑣

Let 𝑎 and 𝑏 be two positive integers. Let 𝑑 = 𝑔𝑐𝑑(𝑎, 𝑏). Let 𝑢 and 𝑣 be two integers such that 𝑑 =
 𝑢𝑎 + 𝑣𝑏. The above algorithm allows us to find such 𝑢 and 𝑣. However, in our applications to cryptography,

we will want 𝑢 to be non-negative. Let 𝑘beaninteger. 𝑢′ = 𝑢 +
𝑘𝑏

𝑑
and𝑣′ = 𝑣 −

𝑘𝑎

𝑑
.Notethatboth𝑢'and𝑣'are

integers. Note also that 𝑢′𝑎 + 𝑣′𝑏 = 𝑢𝑎 + 𝑣𝑏 = 𝑑 . Thus,If𝑢< 0,wereplace𝑢and 𝑣 by 𝑢 +
𝑏

𝑑
and 𝑣 −

𝑎

𝑑
,respectively,togetnewsolutionsof𝑑 = 𝑢𝑎 + 𝑣𝑏,with𝑢 larger than the original value found. We repeat this

step till we obtain 𝑢 and 𝑣 integers such that 𝑑 = 𝑢𝑎 + 𝑣𝑏 with 𝑢 positive. The resulting pseudocode is

def extended_euclidean(𝑎, 𝑏):

if 𝑏 == 0:

return 𝑎, 1, 0

else:

𝑑, 𝑢', 𝑣' = extended_euclidean(𝑏, 𝑎%𝑏)

𝑣 = 𝑢' − (𝑎//𝑏)𝑣' 𝑢 = 𝑣'

while 𝑢< 0:

𝑢 = 𝑢 + 𝑏/𝑑

𝑣 = 𝑣 − 𝑎/𝑑

return 𝑑, 𝑢, 𝑣

Modular Arithmetic

The most basic feature that the RSA algorithm used is modular arithmetic. It utilized the features of the

field that a number (after some operations) divides a number and the remainder will create a cycle. In these

regularities, the cycle is the same for every certain number of operations. Such transformation is called

congruence.

Definition: We say that 𝑎 is congruent to 𝑏 modulo 𝑚(𝑎 and 𝑏 are two integers, and 𝑚 be another

integer), and we write: 𝑎 = 𝑏 (𝑚𝑜𝑑𝑚), if 𝑚 divides 𝑎 − 𝑏.

Example: 7 ≡ 2 (𝑚𝑜𝑑 5)

Observation: 𝑎 ≡ (𝑎 % 𝑚) (𝑚𝑜𝑑𝑚)

Example: 72 ≡ 2 (𝑚𝑜𝑑 7)

If 𝑎 divided by 𝑚 leaves a remainder of 𝑟, then 𝑎 is congruent to 𝑟 modulo 𝑚. Note that the remainder

satisfies 0 ≢𝑟<𝑚, so every integer is congruent, modulo 𝑚, to a number between 0 and 𝑚 − 1. Also, it is not

always possible to divide congruences. In other words, if 𝑎𝑐 ≡ 𝑏𝑐 (𝑚𝑜𝑑𝑚) . It need not be true that 𝑎≡
𝑏(𝑚𝑜𝑑𝑚) .

Example: 15 × 2 (𝑚𝑜𝑑 10) ≡ 20 × 2 (𝑚𝑜𝑑 10), but 15 ≢ 20 (𝑚𝑜𝑑 10).

Note that, if 𝑥 ≡ 𝑦(𝑚𝑜𝑑𝑚) and 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚), we have that

𝑎 + 𝑥 ≡ 𝑏 + 𝑦(𝑚𝑜𝑑𝑚) (5)

and

𝑎𝑥 ≡ 𝑏𝑦 (𝑚𝑜𝑑𝑚) (6)

Example: 7 ≡ 2(𝑚𝑜𝑑 5) 𝑎𝑛𝑑 9 ≡ 4 (𝑚𝑜𝑑 5). So we can get 63 ≡ 8(𝑚𝑜𝑑5)

In addition to the congruence, the prime number has an essential feature called breakability, which is

measured by calculating the Euler 𝜙 (phi) function. This function is defined in the next subsection. While the

The Role of Number Theory to Cryptography

DOI: 10.35629/4767-10060713 www.ijmsi.org 11 | Page

value of the 𝜙 function is greater, it indicates that the number has larger breakability and is more likely to be

chosen as an encryption quotient.

Solving the Equation 𝒂𝒙 ≡ 𝒄(𝒎𝒐𝒅𝒎) for 𝑥

Assume that we are given integers 𝑎, 𝑐 and 𝑚, with 𝑚 positive. The goal of thissection is to find a non-

negative integer 𝑥 such that 𝑎𝑥 ≡ 𝑐(𝑚𝑜𝑑𝑚) and 𝑥<𝑚.

Observation: Let 𝑑 = 𝑔𝑐𝑑(𝑎, 𝑚). Assume 𝑑 divides 𝑐. Let 𝑢 and 𝑣 be integers such that 𝑢𝑎 + 𝑣𝑚 = 𝑑.

Let 𝑥 =
𝑢𝑐

𝑑
 %𝑚. Then, 𝑥 is a non-negative integer, 𝑎𝑥≡𝑐(𝑚𝑜𝑑𝑚) and 𝑥<𝑚.

To understand the validity of the above observation, first note that, since 𝑑 divides 𝑐, the number 𝑐/𝑑 is

an integer. Thus, 𝑢𝑐/𝑑 is also an integer. Next, note that 𝑥 =
𝑢𝑐

𝑑
 %𝑚 ≡

𝑢𝑐

𝑑
(𝑚𝑜𝑑 𝑚), from where we have

that 𝑎𝑥 = 𝑎
𝑢𝑐

𝑑
 %𝑚 ≡

𝑎𝑢𝑐

𝑑
(𝑚𝑜𝑑𝑚). Since 𝑚≡0(𝑚𝑜𝑑𝑚) and 𝑑 divides 𝑐, we have that

𝑚𝑐

𝑑
≡ 0(𝑚𝑜𝑑𝑚) and

thus, we also have that
𝑣𝑚𝑐

𝑑
≡ 0(𝑚𝑜𝑑𝑚). This last equation and the previous equation 𝑎𝑥 ≡

𝑎𝑢𝑐

𝑑
(𝑚𝑜𝑑𝑚) imply

that 𝑎𝑥 ≡
𝑎𝑢𝑐

𝑑
 +

𝑣𝑚𝑐

𝑑
(𝑚𝑜𝑑𝑚). Thus, pulling

𝑐

𝑑
 as a common factor in the right hand side of the last equation, we

get that 𝑎𝑥 ≡
 𝑎𝑢 + 𝑣𝑚 𝑐

𝑑
(𝑚𝑜𝑑𝑚). But recall that 𝑢𝑎 + 𝑣𝑚 = 𝑑. Thus, we get that 𝑎𝑥≡𝑐(𝑚𝑜𝑑𝑚), which was

what we wanted to prove.

The last observation leads to the following pseudocode that takes as input three integers, 𝑎, 𝑐 and 𝑚,

such that 𝑚 is positive, 𝑔𝑐𝑑(𝑎, 𝑚) divides 𝑐, and gives as output a non-negative integer 𝑥 such that 𝑎𝑥≡
𝑐(𝑚𝑜𝑑𝑚) and 𝑥<𝑚.

def ax_eq_c_mod_m(𝑎, 𝑐, 𝑚):

𝑑, 𝑢, 𝑣 = extended_euclidean_algorithm(𝑎, 𝑚)

return (𝑢𝑐/𝑑)%𝑚

Example: Let 𝑎 = 5, 𝑐 = 4 and 𝑚 = 17. We have that 𝑔𝑐𝑑(𝑎, 𝑚) = 𝑔𝑐𝑑(5, 17) = 1. Thus, the condition

that 𝑔𝑐𝑑(𝑎, 𝑚) divides 𝑐 is satisfied. We first apply what we called the extended Euclidean algorithm to find 𝑢

and 𝑣 such that 𝑢5 + 𝑣17 = 1. We find 𝑢 = 7 and 𝑣 =− 2. The above observation says that a non-negative

solution 𝑥 to 5𝑥≡4(𝑚𝑜𝑑 17) that is smaller than 17 should be 𝑥 = (7)(4)%17 = 11. In fact, 5(11) = 55 ≡
4(𝑚𝑜𝑑 17).

Euler Phi Function

Definition: We say that 𝑎 and 𝑏 are coprime if 𝑔𝑐𝑑(𝑎, 𝑏)≡1. Let 𝑚 be a positive integer. We define

𝜙(𝑚) to be the number of positive integers smaller than m that are coprime with m.

Example: Let 𝑚≡7, note that all the positive integers smaller than 7 are coprime with 7. This implies

that 𝜙(7)≡6.

Observation: If 𝑚 is a prime number, then all the positive numbers smaller than 𝑚 are coprime with 𝑚.

Thus, 𝜙(𝑚)≡𝑚 − 1.

Example: As mentioned in the last example, 𝜙(7)≡6. This illustrates the formula 𝜙(𝑚)≡𝑚 − 1 for 𝑚

prime.

On the other hand, let’s consider a case where 𝑚 is not prime. For example, let 𝑚 = 6. The positive

integers smaller 6 that are coprime with 6 and 1 and 5. Thus, 𝜙(6)≡2.

Observation: Let 𝑝 and 𝑞 be two different primes, then 𝜙(𝑝𝑞)≡(𝑝 − 1)(𝑞 − 1).

The above observation results from the fact that the positive numbers that are smaller than 𝑝𝑞 and that

are not coprime with 𝑝𝑞 are 𝑝, 2𝑝, ..., (𝑞 − 1)𝑝 and 𝑞, 2𝑞, ..., (𝑝 − 1)𝑞. These two lists do not have any numbers

in common. The first list has 𝑞 − 1 numbers. The second list has 𝑝 − 1. Thus, the number of positive integers

smaller than 𝑝𝑞 that are coprime with 𝑝𝑞 is𝑝𝑞 − 1 − (𝑞 − 1) − (𝑝 − 1) = (𝑝 − 1)(𝑞 − 1), which shows that 𝜙(𝑝𝑞)

≡(𝑝 − 1)(𝑞 − 1).

While the above formula can be generalized to compute 𝜙(𝑚), where 𝑚 is not the product of two

different integers, we will only need to consider a case more general than the one in the above observation.

Example: 𝜙(15)≡(3 − 1)(5 − 1) = 8, which can be verified directly since the positive integers smaller

than 15 that are comprime with 15 are 1, 2, 4, 7, 8, 11, 13, 14.

The Role of Number Theory to Cryptography

DOI: 10.35629/4767-10060713 www.ijmsi.org 12 | Page

Fermat’s Euler Theorem

The RSA algorithm is based on the following theorem as Fermat’s little theorem

Theorem: Let 𝑎 and 𝑚 be coprime integers. Then, 𝑎𝜙 𝑚 ≡ 1 𝑚𝑜𝑑𝑚 .
Example: Let 𝑎 = 7 and 𝑚 = 15. Note that 𝑔𝑐𝑑(7,15) = 1. In other words, 𝑎 = 7and 𝑚 = 15 satisfy the

hypothesis of Fermat’ s little theorem. Note also that 𝜙(15) = 8. Thus, this theorem tell us that 78 ≡

1 𝑚𝑜𝑑 15 . Let’s verify that this is the case with direct computations. 78 = 72 4 = 494 , and 49 ≡
 4 (𝑚𝑜𝑑 15) . Thus,78 ≡ 44 (𝑚𝑜𝑑15). But 44 = 42 2 = 162 . Since 16 ≡ 1(𝑚𝑜𝑑15), we have that 44 ≡
12 = 1 (𝑚𝑜𝑑 15)

Solvingthe Equation 𝒙𝒌 ≡ 𝒃(𝒎𝒐𝒅𝒎) for 𝑥

Assume that we are given positive integers 𝑘, 𝑏 and 𝑚, with 𝑚 positive. The goal ofthis section is to

find a non-negative integer 𝑥 such that 𝑥𝑘 ≡ 𝑏(𝑚𝑜𝑑𝑚) and 𝑥<𝑚.

Observation: Let 𝑘, 𝑏 and 𝑚 be three positive integers that satisfy the following:

1. 𝑚 = 𝑝𝑞 with 𝑝 and 𝑞 prime numbers.

2. 𝑔𝑐𝑑(𝑏,𝑚) = 1

3. 𝑔𝑐𝑑(𝑘, (𝑝 − 1)(𝑞 − 1)) = 1

Let 𝑢 and 𝑣 be integers such that 𝑢𝑘 + 𝑣(𝑝 − 1)(𝑞 − 1) = 1 and 𝑢 positive. Let . 𝑥 = 𝑏𝑢 % 𝑚. Then,

𝑥 is a non-negative integer smaller than 𝑚 and 𝑥 satisfies

𝑥𝑘 ≡ 𝑏(𝑚𝑜𝑑𝑚) (7)

Example: Let 𝑘 = 3, 𝑏 = 2 and 𝑚 = 15. Note that the condition 𝑔𝑐𝑑(𝑏,𝑚) = 1 becomes 𝑔𝑐𝑑(2, 15) = 1,

which is correct. Note that 𝑚 = 𝑝𝑞 with 𝑝 = 3 and 𝑞. Note that we have (𝑝 − 1)(𝑞 − 1) = 8. We use Euclidean

algorithm to find 𝑢 and 𝑣, with 𝑢 positive, such that 𝑢𝑘 + 𝑣(𝑝 − 1)(𝑞 − 1) = 1. We obtain 𝑢 = 3 and 𝑣 =− 1. We

compute now 𝑥 = 𝑏𝑢 %𝑚 = 23%15 = 8 . The observation says that 𝑥 = 8 is asolution of 𝑥3 ≡
2(𝑚𝑜𝑑 15). In fact, 83 = 828 = (64)8 ≡ (4)8(𝑚𝑜𝑑 15) = 32(𝑚𝑜𝑑 15) ≡ 2(𝑚𝑜𝑑 15).

To prove the validity of this observation, note the following:

a. 1 = 𝑢𝑘 + 𝑣(𝑝 − 1)(𝑞 − 1)

b. 𝜙(𝑚) = (𝑝 − 1)(𝑞 − 1)

c. 𝑏𝜙(𝑚) ≡ 1(𝑚𝑜𝑑𝑚)

Thus,wehavethat

𝑏 = 𝑏1 = 𝑏𝑢𝑙+𝑣(𝑝−1)(𝑞−1) = 𝑏𝑢 𝑘 𝑏 𝑝−1 𝑞−1
𝑣

= 𝑏𝑢 𝑘 𝑏𝜙 𝑚
𝑣
 (8)

This last equation and the above facts imply that 𝑏 ≡ 𝑏 (𝑚𝑜𝑑𝑚) . Thus, 𝑥 = 𝑏𝑢 %𝑚 satisfies 𝑥𝑘 ≡
𝑏(𝑚𝑜𝑑𝑚) and 𝑥<𝑚.

Factoring Large Integers Is Hard

Let 𝑚 be a positive integer. Suppose we want to factorize 𝑚. That means, we want to find the sequence 𝑘1,

𝑘2,..., 𝑘𝑛, where each 𝑘𝑖 is a prime number and 𝑘𝑖≢𝑘𝑖+1 for all 𝑖.A straightforward algorithm to find this

sequence of primes is to initially by set 𝑖 = 1 and 𝑘 = 2. At each step, we compute 𝑚%𝑘. It is easy to check that,

having 𝑚%𝑘 = 0, implies that 𝑘 is prime. Thus, if 𝑚%𝑘 = 0, we set 𝑘𝑖 = 𝑘, keep the value

of 𝑘 the same, replace 𝑚 by 𝑚/𝑘, and we increase 𝑖 by 1. On the other hand, if 𝑚%𝑘≠0, we increase 𝑘 by one,

and keep both 𝑖 and 𝑚 the same. We stop once 𝑚 = 1. The table below illustrates this algorithm. In this table, we

factorize 45, to find that 45 = 3 * 3 * 5.

Table 1. Illustration of the standard algorithm to factorize integers. Factorization of45.

𝑚 𝑘 𝑖 𝑘1, 𝑘2, ., 𝑘𝑛 𝑚%𝑘

45 2 1 1

45 3 1 0

15 3 2 3 0

5 3 3 3,3 2

5 4 3 3, 3 1

5 5 3 3, 3 0

1 5 4 3,3,5

The Role of Number Theory to Cryptography

DOI: 10.35629/4767-10060713 www.ijmsi.org 13 | Page

The algorithm we have just described is simple and it is the standard way we all factorize integers. The

important fact to note is that this algorithm is not fast. This means that computational time execute the algorithm

increases fast with 𝑚. This means that factorizing very large becomes prohibitively computationally expensive.

In other words, we cannot factorize very large integers with this algorithm. In fact, we cannot factorize very

large integers with any algorithm. Nobody has discovered an efficient algorithm to factorize very large integers.

This is the key fact that makes the RSA algorithm that we will describe in the next section secure.

III. RSA ALGORITHM

Assume we have two parties, the sender and the receiver. The sender wants to send a message to the

receiver. This message may be text, but any text can be converted into a positive integer, so assume the message

the sender wants to send the receiver is a positive integer 𝑥. We think of 𝑠 as a large integer, but that is

irrelevant.

Assume this message 𝑥 is a secret. In other words, neither the sender nor the receiver wants anyone else

to know the value of the number 𝑥. The challenge is that the medium through which the message travels from

the sender to the receiver is not secured. Thus, before sending the number 𝑥, the sender changes this number to a

different number that we call 𝑏. We call this number 𝑏 the encoded message. The sender sends this number 𝑏 to

the receiver, who receives 𝑏. Note that other parties may also get a hold of this number 𝑏. Nevertheless, 𝑏 is a

useless number. The valuable information or number is 𝑏. As we will explain in this section, the RSA algorithm

allows only the receiver to recover 𝑥 from 𝑏. The other parties that intercepted the number 𝑏can not recover the

original number 𝑥. This makes the RSA algorithm a secure means of sending messages.

The RSA algorithm works as follows:

1. Both the sender and the receiver agree on two large prime numbers, 𝑝 and 𝑞.Nobody else

knowsthese numbers.

2. Let 𝑥 be the message (number) the sender wants to send the receiver. Onlythe sender knows the

number 𝑥.

3. Let 𝑘 be a positive integer such that 𝑘 = 𝑔𝑐𝑑(𝑘, (𝑝 − 1)(𝑞 − 1)) = 1.Everyone knows 𝑘. This

number 𝑘 is known as the public key.

4. While only the sender and the receiver know 𝑝 and 𝑞, everyone knows thenumber 𝑚 = 𝑝𝑞.

5. The sender computes 𝑏 = 𝑥𝑘 𝑚𝑜𝑑𝑚 and send 𝑏 to the receiver. Everyonecan see 𝑏.

6. The receiver recovers the original message 𝑥 by solving 𝑏 = 𝑥𝑘(𝑚𝑜𝑑𝑚) for 𝑥 with the algorithm

described in the previous section. The receiver can easily solve for 𝑥 because the receiver knows 𝑝 and 𝑞. No

one lease can solve for 𝑥 because no one else knows 𝑝 and 𝑞 and factorizing large numbers, such as 𝑚, is

computationally prohibitively expensive.

IV. CONCLUSION

Number Theory is a classical and old field of mathematics that has attracted the efforts of famous

mathematicians. This field is the building block of Cryptography. In this article, we have explained the

mathematics behind the RSA algorithm.

The field of cryptography is percolating to everyone's lives. Most recently, cryptocurrencies are

becoming more and more popular and are threatening to disrupt the currency system as we know it.

Cryptography is a fascinating subject at the intersection of mathematics and computer science. At this point, it is

difficult to tell the impact that cryptography, and thus, indirectly, mathematics, will end up having on society,

but it certainly promises to be a fascinating and interesting tale.

REFERENCES
[1]. Silverman, J.H., 2014. A friendly introduction to number theory. Pearson.

[2]. Hoffstein, J., Pipher, J., Silverman, J.H. and Silverman, J.H., 2008. An introduction to mathematical cryptography (Vol. 1). New

York:springer.

[3]. Davies, D., 1997. A brief history of cryptography. Information Security Technical Report, 2(2), pp.14-17.

[4]. Mahajan, P. and Sachdeva, A., 2013. A study of encryption algorithms AES, DES and RSA for security. Global Journal of

Computer Science and Technology.

