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ABSTRACT: Construct a composite multi-layer radial basis function neural network to improve the Based on 

the real function approximation performance and operation accuracy, the high-precision composite multilayer 

radial basis function neural network is used to solve partial differential equations. 
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I. INTRODUCTION 
Numerical solution of partial differential equations (PDE) is one of the most computationally intensive 

fields in engineering and scientific applications [1]. The deep neural network (DNN) method has been applied in 

many research fields [2].There are many research,such as [3,4,5,6,7,8,9,10,11,12,16,17].But the solution 

accuracy is slightly worse [13]; The solution process takes a little longer [14]. By this,we construct a composite 

multi-layer radial basis function neural network which can provide a new and effective way with high 
computational accuracy, is better than that of the algorithm [15]. 

 

II. Classical BP neural network high-precision partial differential equation solving algorithm 
2.1 Composite multilayer radial basis function neural network 

The structure of the multi-layer radial basis function neural network includes several single-layer radial 

function networks [18,19].Denote the first layer network as 

1

1 1 1

1 0

1

( ) ( )

n

k k

k

f x w w x



  
, where the Gaussian 

function is represented by 

1
( )

k
x

, and w  represents the weight, that is, 

2

0
( ) ex p ( / )x x x c   

, where 

the center of the Gaussian function is represented by 0
x

, and the width coefficient and n -dimensional input 

samples are represented by c  and x  respectively. Divide the augmented sample 
( , )

i i i
x x a y 

 into m  

clusters by the K-mean method, where 
( 0 )a 

, the sample mean in each cluster is regarded as the center of the 

Gaussian function, and the optimization algorithm is used to obtain Width coefficient, and apply the regular 

least square method to obtain the weight of the network 0 1
( , , . . . , )

T

i m
w w w w

. The output of the first layer of 

the network is denoted as 1
( )f x

, the true value of the objective function is denoted as i
y

, and the residual is 

denoted as 

1

1
( )

i i i
e y f x 

. The objective function of the second layer network is 

1

i
e

, and the fitting is 

implemented by

2 2

2

1

( ) ( )

i
m

k k

k

f x w x



 
. The fitting method is similar to that of the first layer, and the output is 
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. By analogy, the multi-layer radial basis function neural network can be obtained: 
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The weight is determined by: 
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In order to further improve the performance of the real function approximation , each sample in the 

cluster is regarded as the center of a radial basis function [20], and each sample is related to a radial basis 

function. Correspondingly, these radial basis functions are simultaneously approximated to the real functions on 

the cluster, thereby further improving the accuracy of the multilayer radial basis function neural network. 

(1) Construct the first layer of composite network 

Through the augmented sample and K-mean method, the sample is divided into m1 clusters

1 1
(1 )

p p
C i n 

, and the division method is equivalent to the first layer of the multi-layer radial basis function 
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represents the sub-radial basis function neural network of cluster 1 p
C

. Taking all samples for x , the residual 
sum of squares can be expressed as: 
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It is possible to find 1 p
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 by the regular least square method. Let 1 p
G C V

 be the smallest and get the 

width coefficient 

k p

i
c

 to obtain the 1
m

 sub-radial basis function neural network 1
1 1 1 2 1

( ), ( ), ..., ( )
m

f x f x f x
. 

By taking all the samples for x , the N  equations 1 11
ˆ ( )y w f x 

 1 1
2 1 2 1

( ) ... ( )
m m

w f x w f x 
 are obtained, 

where 1 i N  ; let 

2

1

ˆ( ) m in

N

i i

i

R S S y y



  
, the least square solution of 1

1 1 2
( , , . . . , )

m
w w w w

 can 

be obtained, then the regression model can be expressed as: 
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(2) Construct a composite network of the k -th ( 2k  ) layer 

Perform calculation on the fitting error 
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where the radial basis function of the sub-network is expressed by 
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. This completes the construction of the k -th ( 2k  ) layer composite 
network. The number of network layers is determined in the same way as the multilayer radial basis function 

neural network. 

2.2 PDE solving of composite multilayer radial basis function neural network 

The partial differential operation unit is a composite multilayer radial basis function neural network. 
The composite multilayer radial basis function neural network and the composite multilayer radial basis 
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where the sum square error is expressed by 
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where the center, width and radius of the composite multilayer radial base are represented by 0
x

, c  

and r , respectively. 

Suppose the two-dimensional Poisson equation in   space is: 
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2

  and x  respectively; the known 

function and unknown function related to x  are represented by 
q

 and u  respectively. The boundary conditions 
that define the equation (17) are: 

1 1

2 2

( ) ,

( ) ,

u q x x

n u q x x

  


      (17) 

where the unit normal vector and gradient operator are represented by n  and   respectively; the 

function of known x  is represented by 1
q

 and 2
q

; the domain boundary is represented by 1


 and 2


, and 

1 2
    

, and 1 2
   

. The compound multilayer radial basis function neural network equations (1) 

and (15) will approximately replace the partial differential numerical solutions of equations (16) and (17). That 
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. The N -order derivative of the radial basis function is replaced by the 
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obtained [21]. Based on this, this type of approximate neural network architecture constructed by partial 
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and weight i
w

 of the composite multilayer radial basis, the composite multilayer radial basis function neural 

network structure of l -th (1 l K  ) layer is obtained, and the composite multilayer radial basis function 

neural network structure is obtained through the number of composite layers. The layered radial basis function 

neural network solves partial differential equations [23], the process is as follows: 
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(2) Construct a l -th -layer composite multi-layer radial basis function neural network structure, set 

0
m

 hidden layer neurons at the same time, and implement random assignment to the relevant connection 
weights. 

(3) Perform calculations on the value of the sum squared error g of the constructed network, which is 

the value of equation (18). 

(4) Fix the radial basis center 0
x

 and the width c , and use the sum square error to optimize the weight 

i
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. 

(5) Fix the weight i
w

, and use the sum square error to optimize the center 0
x

 and width c  of the radial 

basis. 

(6) Perform judgment on whether the sum squared error g is higher than the initial constant ε in each 

calculation. If it is higher than  , go to step (7), otherwise go to step (8). 

(7) When calculating the sum square error of each data sample point 
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, respectively, for the relevant 
weight, center and width value is adjusted, go to step (3). 

(8) Output the parameter values of the entire composite multilayer radial basis function neural network 

structure, that is, achieve high-precision solving of partial differential equations through the high-precision 

composite multilayer radial basis function neural network structure solution model. 
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