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Abstract  
Tuberculosis is a disease that has been around for many centuries and despite all the various strategies 

employed to control the disease, it is still around and has continued to be one of the health challenges to the 

human races. Various mathematical models have been developed adopting different control strategies. This 

work combines control strategies of vaccination; early detection and treatment in developing the model. The 

existence and uniqueness of the solution of the equations were determined using Picard’s theorem to establish 

that the equations of the model are continuous, satisfy Lipchitz condition and are bounded  thereby showing that 

the model equation exist and is unique. Hence it is worthwhile to undertake analyses of the model equations. 
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I. BACKGROUND 

Tuberculosis is caused by the bacillus mycobacterium tuberculosis. It has plagued humankind since 

time immemorial and is presently the second deadliest disease. It is estimated that a third of the world 

population is infected with one form of the disease or another and about 1.6 million deaths occurred as a result 

of the disease in 2016. [11]. 

Although the disease is fatal, only a small proportion of individuals exposed to the disease develop 

active tuberculosis (approximately 10%) [5], the remaining 90% remain in latency stage for various durations. It 

affects almost every part of the human organ but the pulmonary type accounts for about 80% [6]. The two ways 

of progression to the infectious state are endogenous reactivation and exogenous reinfection [3]. 

Tuberculosis is both preventable and curable. Vaccination with Bacillus Calmatte-Guerine (BCG) at 

birth is one of the prevention measures but the vaccination wanes with time. The disease can be treated in two 

ways. The treatment of latent tuberculosis is known as chemoprophylaxis, while the treatment of active 
tuberculosis is called therapeutics. Generally, treatment of tuberculosis lasts for a long period. [2].  

Many researchers have studied the transmission dynamics of tuberculosis with exogenous reinfection 

using mathematical modeling such as [4], [10], [7], [3] among others. Others such as [8] studied the 

transmission of the disease with vaccination and screening but without exogenous reinfection. This model is an 

extension of the work of [4] and [10] by incorporating vaccination and early detection. In addition to the 

assumptions by [10] and [4], the model further assumes that, as a result of vaccination, some susceptible 

individuals move to the vaccinated compartment due to the immunity conferred on them. When vaccination 

wanes, the individuals become susceptible. Early detected exposed individuals are treated as such they move to 

treated compartment and unsuccessfully treated individuals return to the exposed compartment.        

                                             

II. MODEL DESCRIPTION 
The population is partitioned into six compartments; Susceptible S(t), Vaccinated V(t), Exposed E(t), 

Early detected Ed(t), Infected I(t) and Treated T(t). The susceptible compartment grows as a result of newborns 

by the population bN, waning of vaccination of the vaccinated class , and successful treatment of individuals 

from the treated compartment ,  and loses through contact with the infectious population at the rate c and 

natural death rate  . The vaccinated compartment grows as a result of vaccination of the susceptible population 
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 and loses   through waning of vaccinated individual and natural death rate  . Individuals are recruited in to 

the exposed compartment from the susceptible compartment as a result of contact with infectious individual c

and treatment failure  and  loses through  exogenous reinfection ,c early detection of exposed individuals 

, progression to the infected compartment k and natural death . The early detected compartment is made up 

individuals that are moved from the exposed compartment ,  and loses due to movement to the treated 

compartment q and natural death .  The infected class gains through the progression of individuals from the 

exposed class k and exogenous reinfection c and loses through , natural death, treatment r and disease 

induced death d. The treated compartment is made up of those who came in from the early detected class q and 

from the infected class r while it loses through successful treatment ,  unsuccessful treatment  and natural 

death . Thus the description can be represented by the following diagram and system of differential equations 

below: 

 

Model Diagram 

The model assumptions and description above is represented by the diagram below in figure 1.   
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Figure 1: Schematic Representation of the Model 
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     With the initial conditions; 
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Dimensionless Transformations 
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Then we have 
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Differentiating (1.9) gives 
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Differentiating 
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S
s   yields   
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Substituting (1.1) and (1.10) into (1.11) gives 

   distvsbcsibs         

 (1.13)  

Applying the same procedure transforms equations (1.1)-(1.6) as given by equation (1.14) below 
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evse                                                                                  (1.16)         

Substituting (1.16) into (1.14) yields 

  distvsbcsibs  
                             

(1.17) 
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Substituting (1.23) into (1.17)-(1.21) gives 
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  divvbsv  
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III. EXISTENCE AND UNIQUENESS OF SOLUTIONS OF THE MODEL EQUATIONS 

           In this section we establish the conditions for the existence and uniqueness of the transformed model 

equations (1.24-1.27) using the following method in [9].  

    Theorem 2.1: Picard’s Theorem 
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  The model equations will be transformed into the form (2.1) and the theorem above will be 
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The model equations are now of the form (2.1). 

Suppose the function  xtf ,  is defined and continuous in x  and satisfies a Lipchitz condition in the closed 

and bounded region  

Let  
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We shall prove using Picard’s theorem that the solution of (1.24)-(1.27) exists and is unique, by proving the 

following: 
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Noting that 1,,,,, 
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Thus, there exists a unique solution for the IVP in some interval
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IV. DISCUSSION AND CONCLUSION 

In this paper, a mathematical model for the transmission dynamics of tuberculosis with exogenous 

reinfection was formulated using the approach by [4] and [10] incorporating vaccination and early detection and 

ascertained the existence and uniqueness of its solution. It is shown that the system of equations represent a 

useful mathematical model of a physical system by carrying out a classical qualitative proof of the existence and 
uniqueness of the solution to the governing system of model equations. This therefore has shown that it is 

worthwhile to undertake the analyses of the model equations since the solution exists and is unique. 
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