
International Journal of Mathematics and Statistics Invention (IJMSI)

E-ISSN: 2321- 4767 P-ISSN: 2321-4759

www.ijmsi.org Volume 8 Issue 9 || September, 2020 || PP 20-34

DOI: 10.35629/4767-08092034 www.ijmsi.org 20 | Page

On Desktop Application for Some Selected Methods in Ordinary

Differential Equations and Optimization Techniques

1
Buah, A. M.,

2
Alhassan, S. B. and

3
Boahene,B. M.

1
 Department of Mathematical Sciences, University of Mines and Technology, Tarkwa, Ghana

2
 Department of Mathematical Sciences, University of Mines and Technology, Ghana

3
 Department of Mathematical Sciences, University of Mines and Technology, Ghana

ABSTRACT-Numerical methods are algorithms used to give approximate solutions to mathematical problems.

For many years, problems solved numerically were done manually, until the software was developed to solve

such problems. The problem with some of this softwareis that, though some are free, the environment they offer

is not user friendly. With others, it would cost you a fortune to get access to them and some suffer execution time

and overall speed. In this research, a desktop application with a friendly user interface, for solving some

selected methods in numerical methods for Ordinary Differential Equations (ODEs) and sequential search

methods in optimization techniques has been developed using Visual C++. The application can determine the

error associated with some of the methods in ODEs if the user supplies the software with the exact solution. The

application can also solve optimization problems (minimization problems) and return the minimum function

value and the point at which it occurs.

KEYWORDS:ODEs, optimization, desktop application

--- ----------

Date of Submission: 11-11-2020 Date of Acceptance: 27-11-2020

-- ---------------

I. INTRODUCTION
A Differential Equation (DE) is an equation involving a function and its derivatives [1]. Differential

equations are called Partial Differential Equations (PDEs) or Ordinary Differential Equations (ODEs) according

to whether or not they contain partial derivatives. Often, many systems described by these equations are so

complex that a purely analytical solution to the equation is not manageable. In such cases, numerical techniques

are employed to obtain approximate solutions.Optimization techniques deal with finding the best solution to a

given problem from a set of feasible solutions. The concept of optimization (minimization or maximization) is

fundamental in life; what is desirable, what brings pleasure and comfort is maximized and what is undesirable is

minimized. ODEs and Optimization techniques are applied in solving real-life problems in engineering,

operations research, and economics.

Most of the techniques for solving optimization problems and ODEs based on numerical

approximations were developed before programmable computers existed [2]. As programmable computers have

increased in speed and decreased in cost, complex systems of ODEs and optimization techniques can be solved

with simple programs written to run on a common PC. Many such programs exist. For instance, SAS, ADMB,

CUTEr, Scilab, and CPLEX are used to solve problems in optimization techniques and COPASI, MATLAB,

GNU Octave, and Sage Math for solving ODEs. The problem with some of these applications is that, though

they are free, the environment they offer is not user friendly. With others, it would cost you a fortune to get

access to them and some suffer execution time and overall speed.This project seeks to offer a free program for

solving ODEs and optimization problems with a friendly Graphical User Interface (GUI), faster execution time,

and overall speed.

II. PRELIMINARIES
Numerical methods are laid down rules used to solve mathematical problems. This involves only the

operation of arithmetic [4].These rules might sometimes include some kind of test to see whether some

conditions have been satisfied and if not the set of rules are applied again.Many problems that suffice in the

field of engineering cannot be solved by analytical techniques. The knowledge of numerical methodology is

essential for determining approximate solutions to such problems. Numerical methods, in one form or another,

have been studied for several centuries. Some examples are Newton's method of approximating the solution of

an algebraic or transcendental equation, the Gaussian elimination method for solving linear systems of

equations, the Euler, Modified Euler, and Runge-Kutta’s methods for solving initial-value problems.

Since the arrival of computers, the potential of these methods has been realized and the entire chapter

of numerical methods has changed. Iterative methods can be used with much greater speed. Large systems of

On Desktop Application for Some Selected Methods in Ordinary Differential ..

DOI: 10.35629/4767-08092034 www.ijmsi.org 21 | Page

equations can also be solved numerically. Many non-linear equations that were intractable in the past can now

be solved approximately by numerical methods. As a result of these possibilities, mathematical modeling is now

more realistic and a new field of numerical simulation has been opened up.

2.1 Numerical Methods forOrdinary Differential Equations

A Differential Equation (DE) is an equation involving a function and its derivatives.

Examples are:

(i) 𝑦 , 𝑥 = 7𝑥

(1)

(ii) 𝑦 ,, 𝑥 = 7𝑦 , 𝑥 − 6𝑥2
(2)

(iii)
𝑑2𝑦

𝑑𝑥2
3

+ 2
𝑑𝑦

𝑑𝑥

5

= 7

(3)

Differential equations are classified according to the highest derivative which occurs in them. Thus

Equation (1) is a first-order differential equation, and Equation (2) and (3) are second-order differential

equations. Differential equations are called Partial Differential Equations (PDEs) or Ordinary Differential

Equations (ODEs) according to whether or not they contain partial derivatives [5].

Some numerical methods for ODEs include Taylor’s method, Euler’s Method, Modified Euler’s

method, Merson’s method, Runge-Kutta-Fehlberg method, Runge-Kutta method, Adams-Moulton-Bashforth

predictor/corrector method, Shooting method, Picard’s method, and Finite deference method. Four of these

methods are considered in this work.

2.1.1. Euler’s Method

This is the simplest numerical method for solving initial value problems. This method is not an efficient

numerical method, but many of the ideas involved in the numerical solutions of differential equations are

introduced most simply with it.

Given 𝑦′ = 𝑓 𝑥, 𝑦 , ℎ, 𝑦0 , 𝑥0 𝑎𝑛𝑑 𝑥𝑛 , Euler’s method is given as Equation (4):

1 (,)n n n ny y hf x y (4)

2.1.2. Modified Euler’s Method

The source of error in Euler’s method is its failure to take into account, the curvature of the solution curve at a

point (𝑥𝑖 , 𝑦𝑖) when using the tangent line approximation to the curve to estimate 𝑦𝑖+1. An improvement can be

obtained by using a two-stage process to arrive at a modified gradient 𝑓 𝑥𝑖 , 𝑦𝑖 that can be used in Euler’s

method in place of 𝑓(𝑥𝑖 , 𝑦𝑖). The formula for computing 𝑦𝑛+1
𝑝

 and 𝑦𝑛+1
𝑐 is given as Equation (5) and (6).

Algorithm:

1. Compute 𝑦𝑛+1
𝑝

= 𝑦𝑛 + ℎ𝑓(𝑥𝑛 + 𝑦𝑛)

(5)

2. Compute 𝑦𝑛+1
𝑐 = 𝑦𝑛 +

ℎ

2
 𝑓 𝑥𝑛 , 𝑦𝑛 + 𝑓(𝑥𝑛+1 , 𝑦𝑛+1

𝑝
)

(6)

2.1.3. Fourth Order Runge-Kutta Method

The Runge-Kutta’s method for solving first-order differential equations is widely used and provides a high

degree of accuracy. Again, as with the two previous methods, Runge-Kutta’s method is a step-by-step process

where results are tabulated for a range of values of x [6]. Although several intermediate calculations are needed

at each stage, the method is fairly straightforward.

To solve the differential equation 𝑦′ 𝑥 = 𝑓(𝑥, 𝑦), with the Runge-Kutta’s method given 𝑦 = 𝑦0, 𝑥 = 𝑥0 and a

step size h, the following steps are followed.

1. 𝑘1 = 𝑓(𝑥𝑛 , 𝑦𝑛)
(7)

2. 𝑘2 = 𝑓(𝑥𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
ℎ𝑘1)

(8)

3. 𝑘3 = 𝑓(𝑥𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
ℎ𝑘2)

(9)

4. 𝑘4 = 𝑥𝑛 + ℎ, 𝑦𝑛 + ℎ𝑘3

(10)

On Desktop Application for Some Selected Methods in Ordinary Differential ..

DOI: 10.35629/4767-08092034 www.ijmsi.org 22 | Page

5. Evaluate Equations (7), (8), (9) and (10)

6. Use the values determined from the evaluation to calculate Equation (11):

7. 𝑦𝑛+1 =
ℎ

6
 𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4

(11)

2.1.4. Adams-Bashforth Predictor-Corrector Method

The Adams-Bashforth predictor-corrector method is one of the best multistep methods which make use of

information at the four preceding mesh points 𝑥𝑛 , 𝑥𝑛−1, 𝑥𝑛−2 𝑎𝑛𝑑 𝑥𝑛−3to calculate y at the next mesh point

𝑥𝑛+1.Before this method can be used, it is necessary to compute 𝑦1 , 𝑦2 , 𝑎𝑛𝑑 𝑦3 by some starting method of high

accuracy like the Runge-Kutta method.

The predictor formula for the method is given by Equation (12)

𝑦𝑛+1
𝑝

= 𝑦𝑛 +
ℎ

24
 55𝑦𝑛

′ − 59𝑦𝑛−1
′ + 37𝑦𝑛−2

′ − 9𝑦𝑛−3
′

(12)

and the corrector formula is given by Equation (13)

𝑦𝑛+1
𝑐 = 𝑦𝑛 +

ℎ

24
 9𝑦𝑛+1

′ + 19𝑦𝑛
′ − 5𝑦𝑛−1

′ + 𝑦𝑛−2
′

(13)

2.2. Numerical Optimization

Optimization is essentially about finding the best solution to a given problem from a set of feasible solutions.

The optimization technique is a very old subject of great interest; examples can be found, searching deep into

human history, for example, the need for finding the best way to produce food yielded, finding the best piece of

land for producing, as well as the best ways of treatment of the chosen land and the chosen seedlings to get the

best results [7].Manufacturers always try to find the best ways of getting maximum income out of the minimum

expenses from the very beginning of manufacturing.

In the simplest case, this means solving problems in which one seeks to minimize or maximize a real function

by systematically choosing the values of the real or integer variables from within an allowed set.

Methods of numerical optimization include:

Bisection method, Newton’s method, Davis-Swapy-Campey (DSC) method, Powel’s method, Coggin’s method,

Extrema condition method, Davidon’s cubic search method, Exhaustive search method, Dichotomous search

method, Two-point-equal search method, Three-point-equal search method, and Fibonacci search method.

Four of these methods are considered in this project.

2.2.1. Dichotomous Search Method

The Dichotomous Search Method computes the midpoint
𝑎+𝑏

2
, and then moves slightly to either side of the

midpoint to compute two test points:
𝑎+𝑏

2
± 𝜀 where ε is a very small number.

The objective is to place the two test points as close together as possible. The procedure continues until it gets

within some small interval containing the optimal solution.

Steps:

1. Initialize: Choose a small number ε > 0, such as 0.01. Select a small t such that

0 < t < b – a, called the length of uncertainty for the search. Calculate the number of

Iterations, n, can be calculated using Equation (14)

𝑛 =
ln(

𝑏−𝑎

𝑡
)

𝑙𝑛2
 (14)

2. Fork = 1 to n, do steps 3 and 4

3. 𝑥1 =
𝑎+𝑏

2
 −

𝜀

2
and𝑥2 =

𝑎+𝑏

2
 +

𝜀

2

4. If 𝑓 𝑥1 < 𝑓 𝑥2 then 𝑏 = 𝑥2 else a = 𝑥1, k+=1return to step3.

5. Let 𝑥∗ =
𝑎+𝑏

2
, 𝑚𝑖𝑛 = 𝑓(𝑥∗)

2.2.2. Two-Point Equal Search Method

In this method, 𝑥1𝑎𝑛𝑑 𝑥2 are chosen in such a way that the interval [a, b] is divided into three equal intervals as

shown in Fig 1.

On Desktop Application for Some Selected Methods in Ordinary Differential ..

DOI: 10.35629/4767-08092034 www.ijmsi.org 23 | Page

Fig 1 Two-Point Equal Search Method

Steps:

1 Initialize a, b, and t, where t refers to the interval of uncertainty

2 While 𝑏 − 𝑎 ≥ 𝑡, evaluate Equation (15) and (16)

𝑥1 = 𝑎 +
𝑏−𝑎

3
 (15)

𝑥2 = 𝑏 −
𝑏−𝑎

3
 (16)

Evaluate 𝑓 𝑥1 and 𝑓 𝑥2 and if f 𝑥1 ≤ 𝑓 𝑥2 , then, a = a and b = 𝑥2

else, a = 𝑥1and b = b.

3 If 𝑓 𝑥1 ≤ 𝑓 𝑥2 then 𝑥∗ = 𝑥1else 𝑥∗ = 𝑥2and 𝑚𝑖𝑛 = 𝑓(𝑥∗)

2.2.3. Three-Point Equal Search Method

The three-point equal search method (interval halving method) involves dividing the interval of uncertainty into

four equal parts as demonstrated in Figure 2.

Fig 2 Three-Point Equal Search Method

 Figure 2 shows a region in the interval (a, b). Three points divide the search space into four regions.

The fundamental rule for region elimination is used to eliminate a portion of the search space based on function

values at the three chosen points. 𝒙𝟏 , 𝒙𝒎 , 𝒙𝟐 are three search points. Two of the function values are compared at

a time and some region is eliminated.

 Algorithm:

1. Choose a lower bound a and an upper bound b and a small value ε for the desired accuracy.

Set 𝑥𝑚 =
𝑎+𝑏

2
, 𝐿0 = 𝐿 = 𝑏 − 𝑎.

2. Set 𝑥1 = 𝑎 +
𝐿

4
 , 𝑥2 = 𝑏 −

𝐿

4
. Compute 𝑓 𝑥1 𝑎𝑛𝑑 𝑓(𝑥2).

3. If 𝑓 𝑥1 < 𝑓 𝑥𝑚 , set 𝑏 = 𝑥𝑚 , 𝑥𝑚 = 𝑥1. Go to step 5, else go to step 4.

4. If 𝑓 𝑥2 < 𝑓 𝑥𝑚 , set 𝑎 = 𝑥𝑚 , 𝑥𝑚 = 𝑥2. Go to step 5, else 𝑎 = 𝑥1 , 𝑏 = 𝑥2 go to step 5.

5. Calculate L = b – a. If |L| < ε, terminate. Else go to step 2.

2.2.4. Fibonacci Search Method

Here, the search interval is reduced according to the Fibonacci numbers Fn = Fn−1 + Fn−2.

Where n = 2, 3, 4 ... and F0 = F1 = 1.

Fig 3 Fibonacci Search Method

On Desktop Application for Some Selected Methods in Ordinary Differential ..

DOI: 10.35629/4767-08092034 www.ijmsi.org 24 | Page

Algorithm:

1. Choose a lower bound a and an upper bound b. Set L= b - a. Assume the desired number of function

evaluations to be n. Set k = 2

2. Compute 𝐿𝑖
∗ =

𝐹𝑛−𝑘

𝐹𝑛−(𝑘−2)
 𝐿 , set 𝑥1 = 𝑎 + 𝐿𝑖

∗ 𝑎𝑛𝑑 𝑥2 = 𝑏 − 𝐿𝑖
∗ , i = 1,2,3 … n-1

3. Compute one of 𝑓(𝑥1) or 𝑓(𝑥2) which was not evaluated earlier and use the fundamental region

elimination rule to eliminate a region. That is, if 𝑓 𝑥1 < 𝑓(𝑥2), the point to right (𝐿𝑘
∗ in Fig 2). Set new a and b.

4. If k = n, terminate the search. Else, set k = k + 1 and go to step 2.

2.3. Microsoft Visual C++

Microsoft Visual C++ (often abbreviated to MSVC) is an integrated development environment (IDE)

product from Microsoft for the C, C++, and C++/CLI programming languages [8]. MSVC is proprietary

software; it was originally a standalone product but later became a part of Visual Studio and made available in

both trialware and freeware forms. It features tools for developing and debugging C++ code, especially code

written for the Windows API, DirectX, and NET.

Many applications require redistributable Visual C++ runtime library packages to function correctly.

These packages are often installed independently of applications, allowing multiple applications to make use of

the package while only having to install it once. These Visual C++ redistributable and runtime packages are

mostly installed for standard libraries that many applications use.

Fig 4 Microsoft Visual C++ Redistributable Package

2.4. C++/CLI

C++/CLI is a separate programming language that can be viewed as an extension to C++ syntax, but at the same

time, it’s one of the programming languages of the .NET platform, just like C# or Visual Basic .NET. It is

designed and implemented by Microsoft, so it is not portable to Linux or other systems. It requires Microsoft

Visual C++ IDE to compile and debug code, so there is no alternative compiler like GNU Compiler Collection

(GCC) available for this language. The good news is that the language is supported in Visual Studio 2005, 2008,

and 2010, including corresponding versions of the free Visual C++ Express Edition.

2.5. Mean Absolute Percentage Error (MAPE)

MAPE also is known as Mean Absolute Percentage Deviation (MAPD), is a measure of prediction accuracy of a

forecasting method in statistics, for example in trend estimation [9]. It usually expresses the accuracy as a ratio

defined by Equation (17):

MAPE ==
1

𝑛

𝐴𝑡−𝐹𝑡

𝐴𝑡
 𝑛

𝑡=1 (17)

 where 𝐴𝑡 is the actual value and 𝐹𝑡 is the forecasted value.

The MAPE is also sometimes reported as a percentage by multiplying it by 100. The difference between 𝐴𝑡 and

𝐹𝑡 is divided by the actual value, 𝐴𝑡 again. The absolute value in this calculation is summed for every forecasted

value and divided by the number of fitted points, n. Multiplying by 100% makes it a percentage error [10].

III. MAIN RESULTS
3.1. Introduction

This section presents the developed software and how to use it. The application has two tabs, one for Ordinary

Differential Equations (ODEs) and the other for Optimization techniques.

To use the software, you have to;first, install it on your computer as shown in Figure 5.

On Desktop Application for Some Selected Methods in Ordinary Differential ..

DOI: 10.35629/4767-08092034 www.ijmsi.org 25 | Page

Fig 5 Installing the Software

3.2. Launching the Software

When the application is launched (opened) by locating the icon on your desktop and clicking on it, you

will be welcomed by the welcome screen (loader), after which the main window containing the two tabs will

open. ODE is the active tab when the main window opens. This reveals the four methods under ODEs

implemented in this project. To use the optimization techniques window, simply click on the tab named

Numerical Optimization, located at the top-left corner of the main window, and all the methods will reveal.

To use any of the methods, you just have to locate its tab and on the left pane, click on the method’s

name and it will open within that same window.

Fig 6 Welcome Screen

Fig 7 the Software's Icon

On Desktop Application for Some Selected Methods in Ordinary Differential ..

DOI: 10.35629/4767-08092034 www.ijmsi.org 26 | Page

Fig 8 ODEs Tab

Fig 9 Optimization Tab

3.3. Ordinary Differential Equations tab

This tab contains the Euler’s Method, Modified Euler’s method, Fourth-order Runge-Kutta’s method, and

Adams-Bashforth’s method. To use any of these methods, you simply have to click on its name and it will open

and ready to accept inputs.

Fig 10 Definition of Labels for the ODEs Tab

On Desktop Application for Some Selected Methods in Ordinary Differential ..

DOI: 10.35629/4767-08092034 www.ijmsi.org 27 | Page

Table 1Definition of labels for ODEs tab
Number Name Description

1 Tab heading Indicates the current tab you are working on

2 Minimize, maximize and close box Minimizes maximizes and closes the application

3 Euler’s method button Opens the Euler’s method in the panel labeled 7

4 Modified Euler’s method button Opens the Modified Euler’s method in the panel labeled 7

5 Fourth-order Runge-Kutta method button Opens the Fourth order Runge-Kutta method in the panel

labeled 7

6 Adams-Bashfort method button Opens the Adams-Bashfort method in the panel labeled 7

7 Panel Contains the selected method

3.2.1 Euler’s Method

Figure 4.7 shows the interface of Euler’s Method. It takes an equation of the form f(x,y), 0x , 0y , h and nx ,

from the user, where f(x,y) is the differential equation, 0x (lower range) and 0y are initial conditions for the

differential equation, h is the step size and nx is the upper range. The interface for the Euler’s method is the

same as that for the Modified Euler and fourth-order Runge-Kutta’s method.

Fig 11 Definition of Labels for Euler's Method

Table 2 Definition of Controls and Labels for the Euler's Method
Number Name Description

1 Close button Closes the current method you are working on.

2 Text boxes
This is where the user inputs the equation, 0x , 0y , h and

nx respectively.

3 Label Displays the current method’s name.

1
2

5

4

6
7

8 9 10
11

3

On Desktop Application for Some Selected Methods in Ordinary Differential ..

DOI: 10.35629/4767-08092034 www.ijmsi.org 28 | Page

4 List view This is where the solution is displayed.

5 Checkbox
It toggles the exact equations’ textbox (8) active and

inactive.

6 Clear inputs button Clears the content of the textboxes.

7 Button clear result Clears the list view (4).

8 Textbox
This is where you input the exact equation for the differential

equation.

9 Label
This is where the Mean Absolute Percentage Error (MAPE)
is displayed in percentage.

10 Label
Displays the time taken (in seconds) to solve the given

equation.

11 Button solve
Solves the differential equation and displays the result in the
list view (4).

Fig 12 Solved Example with Euler’sMethod

3.3.1. Modified Euler’s Method

The interface of the modified Euler’s method is similar to that of Euler’s method. Figure 16 and 17 shows the

interface for the modified Euler’s method and example respectively.

Fig 13 Interface of the Modified Euler's Method

On Desktop Application for Some Selected Methods in Ordinary Differential ..

DOI: 10.35629/4767-08092034 www.ijmsi.org 29 | Page

Fig 14 Solved Example with Modified Euler's Method

3.3.2. Fourth Order Runge-Kutta Method

Fig 15 Interface of the Runge-Kutta method

Fig 16 Solved Example with the Runge-Kutta Method

3.3.3. Adams-Basford Predictor-Corrector Method

The interface for this method is almost the same as the Euler, Modified Euler, and Runge-Kutta method. The

interface has additional labels; y1, y2, and y3, which are the first-three y-values from the Runge-Kutta method.

On Desktop Application for Some Selected Methods in Ordinary Differential ..

DOI: 10.35629/4767-08092034 www.ijmsi.org 30 | Page

Fig 17 Interface of the Adams Method

Fig 18 Solved Example with Adam’s Method

3.3 Numerical Optimization’s Tab

This tab contains on the left side, the Dichotomous search method, two-point equal search method, three-point

equal search method, and the Fibonacci search method.

3.3.1 Dichotomous Search Method

This tab has the same number of methods (4) as that of the ODEs tab. To use any of the methods, click on it and

it will open in the left panel.

On Desktop Application for Some Selected Methods in Ordinary Differential ..

DOI: 10.35629/4767-08092034 www.ijmsi.org 31 | Page

Figure 19 Interface of Dichotomous Search Method

Table 3Definition of Labels for the Dichotomous Search Method
Number Name Description

1 Close button Closes the current method opened.

2 Textboxes

This is where the user inputs the function, a, b, epsilon, and the

percentage the initial interval is to be minimized too.

3 List view Displays the result

4 Buttons This is where the user changes the method of interest.

5 Clear input button Clears the textboxes and gives focus to the first textbox.

6 Clear result button Clears the content of the list view.

7 Label Displays the value of x where the minimum functional value occurs.

8 Label Displays the minimum functional value

9 Label

Shows the time taken in seconds to solve and display the results in the

list view.

10 Solve button Solves the given function.

Fig 20 Solved Example with the Dichotomous Search Method

1 2 3

11

9 8 6 7
4 5

On Desktop Application for Some Selected Methods in Ordinary Differential ..

DOI: 10.35629/4767-08092034 www.ijmsi.org 32 | Page

3.3.2 Two-Point Equal Search Method

This has the same controls and labels as that of the Dichotomous method, except for the fact that it does not

make use of epsilon in the computation, hence that textbox is missing.

Fig 21 Interface Two-Point Equal Search Method

Fig 22 Solved Example with the Two-Point Equal Search Method

3.3.3 Three-Point Equal Search Method

The interface for the three-point method and the two-point method use the same controls and labels.

Fig 23 Interface of Three-Point Equal Search Method

On Desktop Application for Some Selected Methods in Ordinary Differential ..

DOI: 10.35629/4767-08092034 www.ijmsi.org 33 | Page

Fig 24 Solved Example with the Three-Point Equal Search Method

3.3.4 Fibonacci Search Method

The interface for this method is a bit different in that, in addition to the controls, it has a button that triggers a

form that helps the user to determine the number of applications by generating Fibonacci numbers. Given r% as

the percentage the initial interval is to be reduced to, we calculate 𝐹𝑛 >
1

𝑟%
 and choose the corresponding n as

the number of applications.

Fig 25 Interface of Fibonacci Search Method

Fig 26 Solved Example with the Fibonacci Search Method

On Desktop Application for Some Selected Methods in Ordinary Differential ..

DOI: 10.35629/4767-08092034 www.ijmsi.org 34 | Page

Fig 27 Fibonacci number Generator

IV CONCLUSION

In conclusion, a desktop application for some selected methods in Ordinary Differential Equations and

sequential search methods in Optimization techniques have been developed. The time is taken by each of the

methods used to execute (solve) given functions has also been shown. The error associated with methods like

Euler, Modified Euler, and the fourth-order Runge-Kutta can also be determined if the user supplies the

application with the exact solution of the differential equation. Mean Absolute Percentage Error (MAPE) as a

measure of predicting accuracy of a forecasting method was used to determine how much (in percentage) these

methods vary from the exact solution.

Knowledge in programming is not required to be able to use the application since the interface is quite

simple and self-explanatory.

REFERENCES
[1]. Jeffery, A. (2002), “Advanced Engineering Mathematics”, pp. 1123.
[2]. Smith, J.D. (2004), “Three Applications of Optimization in Computer Graphics”.

[3]. Bondarev, A.E.E., Galaktionov, V.A., and Chechetkin, V.M., (2011),“Analysis of the Development Concepts and Methods of

Visual Datare Presentation in Computational Physics”, Computational Mathematics And Mathematical Physics, 51(4), pp.624-636.
[4]. Salleh, S., Zomaya, A.Y. and Bakar, S.A. (2007), “Computing For Numerical Methods Using Visual C++”.

[5]. Butcher, J.C. and Goodwin, N., (2008), “Numerical Methods for Ordinary Differential Equations”, Vol. 2. New York: Wiley.

[6]. Hussain, K., Ismail, F. and Senu, N. (2016), “Solving Directly Special Fourth-Order Ordinary Differential Equations Using Runge–
Kutta Type Method”. Journal of Computational and Applied Mathematics, 306, pp.179-199.

[7]. Pardalos, P. (Eds.) (2008). “Encyclopedia of Optimization. Boston: Springer”. International Journal of Business Information

Systems pp. 1538–1542
[8]. Johnson, B., Young, M. and Skibo, C., (2002),“Inside Microsoft Visual Studio”. NET. Microsoft Press.

[9]. Hyndman, Rob J., and Anne B. (2006), "Another Look at Measures of Forecast Accuracy". International Journal of Forecasting,

Vol 22, No.4, pp. 679-688.
[10]. Khair, U., Fahmi, H., Al Hakim, S. and Rahim, R. (2017), “Forecasting Error Calculation with Mean Absolute Deviation and Mean

Absolute Percentage Error”. In Journal Of Physics: Conference Series, Vol. 930, No. 1, IOP Publishing.

AUTHOR’S PROFILE

Second Author

Alhassan Sani Bukari (2020) is a student in the Department of Mathematical Sciences, University of Mines and
Technology, Ghana. Email: bukarisani@gmail.com

Third Author

BoaheneBoahemaa Martha (2020) is a student in the Department of Mathematical Sciences, University of Mines

and Technology, Ghana. Email: boahenemartha7@gmail.com

First Author

BoahAhobaMasha (2020) is an assistant lecturerand a PHD candidate in the Department of Mathematical Sciences,

University of Mines and Technology, Ghana. Email: mabuah@umat.edu.gh

