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I. INTRODUCTION 
Let  f  be a meromorphic function and g be an entire function defined in ℂ, the set of all finite complex numbers. 

The maximum modulus function corresponding to entire g is defined as 

 ( ) max | ( ) |:| | .gM r g z z r   

( )fM r cannot be defined for meromorphic function f,   as f is not analytic. In this situation, one may define 

another function ( ),fT r  known as Nevanlinna's Characteristic function of f, which is playing the same role as 

maximum modulus. All the standard notations and definitions in the theory of entire and meromorphic functions 

which are available in [4] and [1]. 

 

II. PRELIMINARIES (DEFINITIONS AND LEMMAS) 
 In this connection we just recall the following definitions and lemmas which are relevant: 

Definition 2.1 The order f  and lower order f of a meromorphic function f is defined by 
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Sato (1963) defined the generalized order and generalized lower order of an entire function. 

Definition 2.2 The generalized order 
[ ]m

f  and generalized lower order 
[ ]m

f of a meromorphic function f is 

defined by 
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 Let L≡L(r) be a positive continuous function increasing slowly i.e., L(ar)∼L(r) as r    for every positive 

constant a. Singh et.al. (1977) defined it in the following way: 

 

Definition  2.3[3]A positive continuous function L(r) is called a slowly changing function if for ε(>0), 

1 ( )

( )

L kr
k

k L r




  for ( )r r   and uniformly for k(≥1). 

If further, L(r) is differentiable, the above condition is equivalent to   
( )

lim 0.
( )r

rL r

L r


  

Definition  2.4[2] The L-order 
L

f  and the L-lower order 
L

f   of a meromorphic function f are defined as 

follows:  
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Definition  2.5 The generalized L-order 
[ ]m L

f  and the generalized L-lower order 
[ ]m L

f   of a meromorphic 

function f are defined as follows:  
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Definition  2.6[2]The L
-order 

L
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 of a meromorphic function f are defined as 
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-order 
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Definition 2.8 A polynomial function P(z) of degree n is defined by 𝑃 𝑧 = 𝑐0 + 𝑐1𝑧 + 𝑐2𝑧
2 +⋯ .+𝑐𝑛𝑧

𝑛 , 

𝑐𝑛 ≠ 0. 
 

Lemma 2.1 [1] If P(u) is a polynomial of degree p and f(z) is a meromorphic function, then 

T (r; P(f(z))) = pT(r; f(z)) + O(1) 

  

III. MAIN RESULTS 
 In this section we present the main results of the paper. 

Theorem 3.1 If f(z) be a meromorphic function and P(u) is a polynomial of degree p, then 

𝜌𝑃∘𝑓 = 𝜌𝑓   and 𝜆𝑃∘𝑓 = 𝜆𝑓 . 

 

Proof In view of Lemma 2.1, for a sequence of values of r tending to infinity, 

T (r; P(f(z))) pT (r; f(z))    

i.e., logT (r; P(f(z) ) )=logT (r; f(z) )+O(1)  
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Theorem 3.2 (Generalized case) : If f(z) be a meromorphic function and P(u) is a polynomial of degree p, then 

𝜌𝑃∘𝑓
[𝑚]

= 𝜌𝑓
[𝑚]

and 𝜆𝑃∘𝑓
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[𝑚]

. 
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Proof In view of Lemma 2.1,  for a sequence of values of r tending to infinity, 

T (r; P(f(z))) pT (r; f(z))    

i.e., logT (r; P(f(z) ) )=logT (r; f(z) )+O(1)
 

                                                  i.e., logT (r; P(f(z) ) ) logT (r; f(z) )  
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Theorem 3.3 If f(z) be a meromorphic function and P(u) is a polynomial of degree p, then 
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The following  theorem can be proved in the line of Theorem 3.2 with help of Definition 2.5, so the proof is 

omitted.

 
Theorem 3.4 (Generalized case) : If f(z) be a meromorphic function and P(u) is a polynomial of degree p, then 

𝜌𝑃∘𝑓
[𝑚]𝐿
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and 𝜆𝑃∘𝑓
[𝑚]𝐿

= 𝜆𝑓
[𝑚]𝐿

.
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Theorem 3.5 If f(z) be a meromorphic function and P(u) is a polynomial of degree p, then 
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Proof  In view of Lemma 1,  for a sequence of values of r tending to infinity, 
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The following  theorem can be proved in the line of Theorem 3.2 with help of Definition 2.7, so the proof is 

omitted.

 
Theorem 3.6(Generalized case) : If f(z) be a meromorphic function and P(u) is a polynomial of degree p, then 
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