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ABSTRACT: This paper aimed at determining all subgroups representations ofthe Symmetric group S5 up to 

Isomorphism using Sylow’s theorem and Lagrange’s theorem. It was vividly described and derived 156 

subgroups of S5 and their conjugacy class size and Isomorphism class. The generated representations are used 

as actions on signal space which produced output for every corresponding input signal. Hence, the subgroup 

representations act on the signal space by conjugation. The derived subgroups can be used to determine the 

number of Fuzzy subgroups of the symmetric group S5 for further research. 
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I. INTRODUCTION 
Given any set X= {x1,...,xn},the set Sym(X) of all permutations of X is a group under composition, and 

the subset Alt(X) of even permutations of X is a group under composition. Since the elements of X are in 

definite order, we think of Sym(X) as Sn and Alt(X) as An. The Dihedral group Dnis considered as a group of 

permutations of a regular n-gon, since the rigid motions of the vertices determine the new position of then-gon. 

Hence, theSymmetric Groups Sn, Alternating Groups An and Dihedral Groups Dnfor n ≥ 3, all behave as 

permutations on certain sets. If the vertices of the n-gon is labeled in a definite manner by the numbers from 1 to 

n,thenDn can be viewedas a subgroup of Sn. 

Let G be a group (finite or infinite) and let X be a set.Then an action of G on X can be defined as a 

functionG  X X denoted by (g, x)  g · xsuch thate · x = x and (gh) · x= g · (h · x).In fact, an action of G 

onXis equivalent to a group homomorphism (also a representation) ρ: G  A(X). Equivalently,given an action 

G XX, define a group homomorphism ρ: G  A(X) by the rule ρ(g) = σ: XX, where σ(x) = g · xand given 

a representation (called a group homomorphism) ρ: G  A(X), define an action G · XX by the rule g · x= 

ρ(g)(x).The basic idea of group action is that the elements of the group are viewed as permutations of a set in 

such a way that composition of the corresponding permutations matches multiplication in the original group. 

 

II. PRELIMINARIES 
Definition 2.1: Let G be a group and let N be a proper normal subgroup of G. Then N is called maximal 

subgroup of G if there does not exists any proper normal subgroup M of G such that NMG [1]. 

Definition 2.2: A subgroup N of G is said to be a normal subgroup of G if for every g G and nN, gng
−1∈ N 

[2]. 

Definition 2.3: A homomorphism :GK from a group G to a group K is a function with the property that 

(g1g2) = (g1)(g2) for all g1, g2 G, where  denotes the group operation on G and on K [3]. 

Definition 2.4: An isomorphism :GK between two groups G and K is a homomorphism that is also a 

bijection mapping G onto K. Two groups G and K are isomorphic if there exists an isomorphism mapping G 

onto K, written as GK. While an automorphism is an isomorphism mapping a group onto itself [4]. 

Theorem 2.5: (Lagrange’s Theorem) If G is a finite group and H is a subgroup of G, then order of H is a divisor 

of order of G [5]. 

Theorem 2.6: If G is a finite group and xG, then order of x is a divisor of order of G [2]. 

Theorem 2.7: (Cauchy’s Theorem) Let G be a finite group and let p be a prime number that divides the order of 

G. Then G contains an element of order p [6]. 

Theorem 2.8:(Cayley): Every finite group G can be embedded in a symmetric group[6]. 

Theorem 2.9: (The First Sylow Theorem) Let G be a finite group and let |G| = p
n
m where n ≥ 1, p is a prime 

number and (p, m) = 1. Then G contains a subgroup of order p
k
 for each k where 1 ≤ k ≤ n [7]. 

Definition 2.10: Let G be a finite group and let |G| = p
n
m where n ≥ 1, p is a prime number and (p, m) = 1. The 

subgroup of G of order p
n
 is called the sylow p−subgroup of G [8]. 
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Theorem 2.11: Let G be a group of order pq, where p and q are distinct primes and p < q. Then G has only one 

subgroup of order q. This subgroup of order q is normal in G [8]. 

Definition 2.12: A non-trivial group G is said to be simple if the only normal subgroups of G are the whole of G 

and the trivial subgroup {e} whose only element is the identity element e of G [6]. 

Definition 2.13: Let X be a non-empty set and G be a group. A left action of G on the set X is a defined as a 

map G X X given by (g, x) gx such that 

i. ix = x for all xX and 

ii. (g1g2)x = g1(g2x) for all x X and g1, g2G. 

Under these considerations, the set X is called a G-set. 

Theorem 2.14:The action of any group G on a set X is the same as group homomorphism from G to Sym(X), 

the group of permutations of X. 

Definition 2.15: (Signal Space): If signal can be represented by n-tuple, then it can be treated in much the same 

way as n-dimensional vector space. Hence, the n-dimensional Euclidean space is called Signal space. 

 

III. METHODOLOGY 
 In this section, the method used in generating the subgroups representations of a finite group Sn, n = 5 

is presented. Let G = S5.Then the one-headed group Gis the group of permutations of the set S = {1, 2, 3, 4, 5}, 

i.e., the set of all bijections SS :  defined by 5,;)(  jiaa ji . The collection of all such bijections 

give rise to a group of order 120 as follows: 

G = {i, 1, 2, ..., 10, 1, 2, ..., 20, 1, 2, ..., 30, 1, 2, ..., 15, 1, 2, ..., 24, 1, 2, 

..., 20}. 

The elements are listed as follows: 

i = (1) = the identity permutation; 

1 = (4 5), 2 = (3 5), 3 = (3 4), 4 = (2 5), 5 = (2 3), 6 = (2 4), 7 = (1 5), 8 = (1 4), 9 = (1 3), 10 = (1 2); 

1 = (1 2 3), 2 = (1 3 2), 3 = (1 2 4), 4 = (1 4 2), 5 = (1 2 5), 6 = (1 5 2), 7 = (1 3 4), 8 = (1 4 3), 9 = (1 4 

5), 10 = (1 5 4), 11 = (1 3 5), 12 = (1 5 3), 13 = (2 3 4), 14 = (2 4 3), 15 = (2 3 5), 16 = (2 5 3), 17 = (2 4 5), 

18 = (2 5 4), 19 = (3 4 5), 20 = (3 5 4); 

1 = (2 3 4 5), 2 = (2 5 4 3), 3 = (2 3 5 4), 4 = (2 4 5 3), 5 = (2 4 3 5), 6 = (2 5 3 4), 7 = (1 2 3 4), 8 = (1 4 3 

2), 9 = (1 2 3 5), 10 = (1 5 3 2), 11 = (1 2 4 3), 12 = (1 3 4 2), 13 = (1 2 4 5), 14 = (1 5 4 2), 15 = (1 2 5 3), 16 

= (1 3 5 2), 17 = (1 2 5 4), 18 = (1 4 5 2), 19 = (1 3 4 5), 20 = (1 5 4 3), 21 = (1 3 5 4), 22 = (1 4 5 3), 23 = (1 3 

2 4), 24 = (1 4 2 3), 25 = (1 3 2 5), 26 = (1 5 2 3), 27 = (1 4 3 5), 28 = (1 5 3 4), 29 = (1 4 2 5), 30 = (1 5 2 4); 

1 = (2 4)(3 5), 2 = (2 5)(3 4), 3 = (2 3)(4 5), 4 = (1 3)(2 4), 5 = (1 3)(2 5), 6 = (1 4)(2 3), 7 = (1 4)(2 5), 8 = 

(1 5)(2 3), 9 = (1 5)(2 4), 10 = (1 4)(3 5), 11 = (1 5)(3 4), 12 = (1 2)(3 4), 13 = (1 2)(3 5), 14 = (1 3)(4 5), 15 = 

(1 2)(4 5); 

1 = (1 2 3 4 5), 2 = (1 3 5 2 4), 3 = (1 4 2 5 3), 4 = (1 5 4 3 2), 5 = (1 2 3 5 4), 6 = (1 3 4 2 5), 7 = (1 5 2 4 

3), 8 = (1 4 5 3 2), 9 = (1 2 4 5 3), 10 = (1 4 3 2 5), 11 = (1 5 2 3 4), 12 = (1 3 5 4 2), 13 = (1 2 4 3 5), 14 = 

(1 4 5 2 3), 15 = (1 3 2 5 4), 16 = (1 5 3 4 2), 17 = (1 2 5 4 3), 18 = (1 5 3 2 4), 19 = (1 4 2 3 5), 20 = (1 3 4 5 

2), 21 = (1 2 5 3 4), 22 = (1 5 4 2 3), 23 = (1 3 2 4 5), 24 = (1 4 3 5 2); 

1 = (1 2 3)(4 5), 2 = (1 3 2)(4 5), 3 = (1 2 4)(3 5), 4 = (1 4 2)(3 5), 5 = (1 2 5)(3 4), 6 = (1 5 2)(4 5), 7 = (1 

3 4)(2 5), 8 = (1 4 3)(2 5), 9 = (1 4 5)(2 3), 10 = (1 5 4)(2 3), 11 = (1 3 5)(2 4), 12 = (1 5 3)(2 4), 13 = (1 5)(2 

3 4), 14 = (1 5)(2 4 3), 15 = (1 4)(2 3 5), 16 = (1 4)(2 5 3), 17 = (1 3)(2 4 5), 18 = (1 3)(2 5 4), 19 = (1 2)(3 4 

5), 20 = (1 2)(3 5 4); 

Now, the order of an element x of a group G is the least positive integer n for which x
n
 = i, the identity element 

of G.Here,x
n
 represents xxx … xn-times. Then writing the elements ofG in the form x

n
, we classify them 

according to their order as follows:Note that the order of each xG divides the order of G (Theorem 2.6).  

 

Table 1: Order of elements of G 
 

Order 

 

Elements 

Formula 

Calculating 
Element Order 

1 I LCM{1} 

2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 

15 

LCM{2,1} 

3 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 LCM{3,1} 

4 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

23, 24, 25, 26, 27, 28, 29, 30 

LCM{4,1} 

5 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 

22, 23, 24 

LCM{5,1} 

6 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 LCM{2,3} 
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3.1SUBGROUP PRESENTATIONS OF G 

 According to Lagrange’s theorem (Theorem 2.5), the order of any non-trivial subgroup of G divides the 

order of G. Hence, allthe subgroup representations of Gare determinedand their isomorphism class as analysed 

by Samaila, 2013 [9]. 

Obviously, the only subgroup of G of order 1 is the trivial subgroup G1 = {i}, whose only element is the identity 

element. 

 

3.1.1 Subgroups of order 2 

Let H be arbitrary subgroup of Gof order 2. Since 2 is a prime number, H is cyclic. Hence, H is generated by an 

element of G of order 2. Thus all subgroups of G of order 2, isomorphic to the cyclic group Z2 are: 

 Hk = {i, j : 1  j  10} = j; 2  k  11, (for each j, Hk S2), and 

 Hk = {i, j : 1  j  15} = j; 12  k  26, (subgroups generated by double 

transpositions in S5). 

 

3.1.2 Subgroups of order 3 

Subgroups of G of order 3 are generated by the elements of G of order 3. Thus, these subgroups of order 3, 

isomorphic to the cyclic group Z3 are 

 Lk = {i, j, j+1 : j
-1

 = j+1; 1  j  19} = j = j+1; 27  k  36. 

Note that if j
-1

 = j+1, then j = j+2 for the next k. Lk is cyclic since 3 is prime. 

 

3.1.3 Subgroups of order 4 

Let M be arbitrary subgroup of G of order 4. Then by Theorem 2.5, elements of M must have order 1, 2 or 4. 

Hence if M consists of elements of order 4, then M is generated by an element of order 4. Thus, we obtained 

 Mk = {i, j, (j+1)/2, j+1 : j
-1

 = j+1; j = 1, 3, ..., 29} = j = j+1; 37  k  51. 

There are also subgroups of G of order 4 generated by pair of disjoint transpositions in G as follows: 

M52 = {i, 2, 6, 1}, M53 = {i, 3, 4, 2}, M54 = {i, 1, 5, 3}, M55 = {i, 6, 9, 4}, M56 = {i, 4, 9, 5}, M57 = 

{i, 5, 8, 6}, M58 = {i, 4, 8, 7}, M59 = {i, 5, 7, 8}, M60 = {i, 6, 7, 9}, M61 = {i, 2, 8, 10}, M62 = {i, 3, 

7, 11}, M63 = {i, 3, 10, 12}, M64 = {i, 2, 10, 13}, M65 = {i, 1, 9, 14}, M66 = {i, 1, 10, 15}. 

Furthermore, 5 other subgroups of G of order 4 are generated by double transpositions on four elements, i.e. Mk 

for 67  k  71. 

 

3.1.4 Subgroups of order 5 

Let N be a subgroup of S5 of order 5. Since 5 is a prime number, the subgroup N is cyclic and is generated by an 

element of S5 of order 5. Hence, there are 6 such subgroups given by 

 Nk = {i, j, j+1, j+2, j+3} = j = j+1 = j+2 = j+3; 72  k  77. 

 

3.1.5 Subgroups of order 6 

If P is an arbitrary subgroup of G of order 6, then we generates from the ’
s
, the following subgroups, 

isomorphic to the cyclic group Z6; 

 Pk = {i, 2j-1, 2j, j, 2j-1, 2j : 2j
-1 

= 2j-1, 2j
-1

 = 2j-1; 1  j  10} 

     = 2j = 2j-1; 78  k  87. 

Again by Sylow’s theorem (Theorem 2.9), since 6 = 2  3, other subgroups of G of order 6 can be generated 

from the product of the elements of G of order 2 with those elements of order 3. i.e. ’
s
 and ’

s
 given by 

{i, 1, 1, 2, 1, 2}, {i, 3, 2, 4, 3, 4}, ..., {i, 19, 10, 20, 19, 20}. 

Hence, 

 Pk = {i, 2j-1, j, 2j, 2j-1, 2j : 2j
-1

 = 2j-1; 2j
-1

 = 2j-1; 1j 10}; 88  k  97.  

Also, S3 is obviously a subset of S5.Thus, there are subgroups generated by each of the following set of 

elements: 

(1 2 3), (1 2 4), (1 2 5), (1 3 4), (1 3 5), (1 4 5), (2 3 4), (2 3 5), (2 4 5) and (3 4 5). 

Hence, we generate 10 such subgroups of S5 of order 6, isomorphic to S3 i.e. Pk such that 98  k  107. 

 

3.1.6 Subgroups of order 8 

Since 8 is a multiple of 2 and 4, elements of the subgroup of order 8 must have orders 2 or 4, except the identity. 

Consider the set of permutations 

 Q = {i, (2 3 4 5), (2 5 4 3), (2 4)(3 5), (2 4), (3 5), (2 3)(4 5), (2 5)(3 4)}, i.e. 

 Q = {i, 1, 2, 1, 6, 2, 3, 2} 

Obviously, this is a subgroup of S5 of order 8. To see this, let us construct a multiplication table of Q Q as 

follows. 
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Table 2: Multiplication table of Q Q. 
 i 1 2 1 6 2 3 2 

i i 1 2 1 6 2 3 2 

1 1 1 i 2 3 2 2 6 

2 2 i 1 1 2 3 6 2 

1 1 2 1 i 2 6 2 3 

6 6 2 3 2 i 1 2 1 

2 2 3 2 6 1 i 1 2 

3 3 6 2 2 1 2 i 1 

2 2 2 6 3 2 1 1 i 

 

 Clearly, from Table 2 above, the set Q is a subgroup of S5 of order 8. By constructing such subgroups 

from the combinations of j’
s
, j’

s
 and j’

s
, 15 subgroups of S5 of order 8, isomorphic to the Dihedral group D8 

are obtained. i.e. Qk such that 108  k 122. 

 

3.1.7 Subgroups of order 10 

Let R be arbitrary subgroup of S5 of order 10. Now, consider the elements (1 2 3 4 5) of order 5 and the 

transposition (2 5)(3 4) of order 2 (since 10 = 2  5). Then 

 Rk = (1 2 3 4 5), (2 5)(3 4) = 1, 2 

= {i, (1 2 3 4 5), (2 5)(3 4), (1 3 5 2 4), (1 4 2 5 3), (1 5)(2 4), (1 4)(2 3),   (1 5 4 3 2), (1 3)(4 5), (1 2)(3 5)}. i.e.  

 Rk = {i, 1, 2,2, 3, 9,6,4, 14,13} 

is a subgroup of S5 of order 10. By constructing similar subgroups, 6 subgroups of S5 of order 10, isomorphic to 

the Dihedral group D5 are obtained. i.e. Rk, 123  k 128. 

 

3.1.8 Subgroups of order 12 

Since 12 = 2
2
 3, the direct product of S2 and S3 in S5 is a subgroup of S5. Hence, if T is a subgroup of S5 of 

order 12, then 

 T = {i, 10, 1, 1, 2, 5, 1, 9, 15, 3, 2, 14} 

is a subgroup of S5 of order 12. Hence,10 such subgroups of order 12. i.e. Tk; 129  k  138, isomorphic to the 

direct product of S2 and S3are obtained. 

Similarly, A4 is obviously a subgroup of S5, and each of the elements (1 2 3 4), (1 2 3 5), (1 2 4 5), (1 3 4 5) and 

(2 3 4 5) generate A4. Thus, there are 5 such subgroups i.e. Tk; 139  k  143 isomorphic to A4. 

 

3.1.9 Subgroups of order 20 

The composition of elements of S5 of order 5 with those elements of order 4 formed subgroups of S5 of order 20 

(20 = 5  4). Hence, if U is an arbitrary subgroup of S5 of order 20, then 

 U = (1 2 3 4 5), (2 3 5 4) 

is a subgroup generated by two elements 1 and 3. By considering similar elements, 6 such subgroups of order 

20 are obtained. i.e. Uk; 144  k  149, isomorphic to D10. 

 

3.1.10 Subgroups of order 24 

 Each of the following subset of S5 consisting of four elements generates subgroup of S5 of order 24. i.e. 

(1 2 3 4), (1 2 3 5), (1 2 4 5), (1 3 4 5) and (2 3 4 5). Hence, if V is any arbitrary subgroup of S5 generated by 

any of the above elements, then V is a subgroup of order 24, i.e. Vk; 150  k  154, isomorphic to S4. 

 

3.1.11 Subgroup of order 60 

The only subgroup of S5 of order 60 is the alternating group A5, consisting of all the even permutations in S5. 

Such subgroup is unique. Hence, 

 A5 = (1 2 3 4 5), (1 2 3) = 1, 1, i.e. 

A5 = {i, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6,7, 8, 

9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

23, 24}. 

 

3.1.12 Subgroup of order 120 

Every group is a subgroup of itself. Hence, the whole group S5 is a subgroup of S5 of order 120. 

 There are seven conjugacy classes corresponding to the unordered partitions of {1, 2, 3, 4, 5}. Now 

since cycle type determine conjugacy class and the length of a cycle is found to be the number of elements in 
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that cycle, we notice that any conjugate of a k-cycle is again a k-cycle [10]. This is also supported by the 

following theorem: 

 

Theorem 9: The conjugacy classes of any Sn are determined by cycle type. That is, if  has cycle type (k1, k2, 

…, kl), then any conjugate of  has cycle type (k1, k2, …, kl), and if  is any other element of Sn with cycle type 

(k1, k2, …, kl), then  is conjugate to [10]. 

For the proof of Theorem 9, see [11]. We therefore use this information to derive the following table, classifying 

the size of conjugacy class of elements of S5. 

 

Table 4: Size of Conjugacy classes of elements of S5 
Element 

Partition 

Verbal 

description of 

cycle type 

Representative element 

with the cycle type 

Size of 

conjugacy 

class 

Formula Calculating 

Size of Con-jugacy Class 

i 

1 + 1 + 1 + 1 + 1 five fixed points (1) the identity element 1 
)!5)(1(

!5
5

 

j 

2 + 1 + 1 + 1 

transposition: 

one 2-cycle, 
three fixed point 

(1 2) 10 
)]!3)(1)][(!1)(2[(

!5
31

 

j 

2 + 2 + 1 

double 
transposition: 

two 2-cycles, one 

fixed point 

(1 2)(3 4) 15 
)]!1)(1)][(!2)(2[(

!5
12

 

j 

3 + 1 + 1 
one 3-cycle, two 
fixed points 

(1 2 3) 20 
)]!2)(1)][(!1)(3[(

!5
21

 

j 

3 + 2 
one 3-cycle, one 

2-cycle 
(1 2 3)(4 5) 20 

)]!1)(2)][(!1)(3[(

!5
11

 

j 

4 + 1 
one 4-cycle, one 
fixed point 

(1 2 3 4) 30 
)]!1)(1)][(!1)(4[(

!5
11

 

j 

5 one 5-cycle (1 2 3 4 5) 24 
)!1)(5(

!5
1

 

Total    120 5! 

 

 The sum of the conjugacy classes is equal to the order of the group S5. The center of a group G is 

defined to be the set of those elements that commute with every other element of G, given by Z(G) = {x : xg = 

gx for all gG}. Observed that the center of S5 is the trivial subgroup { i}, consisting of the identity 

permutation. Hence, S5 is centreless. S5 is also almost simple group since it contains a centralizer-free simple 

normal subgroup, i.e. A5. The Alternating group A5 is simple. Hence, A5 is the unique maximal normal subgroup 

of S5. 

 

IV. THE ACTIONS OF GROUP REPRESENTATIONS ON SIGNAL SPACE 

 Let },...,,{),( 21 nX    be a signal space where  is the representative of the functions over X 

and let Sn withn 2. Then the group Sn acts on the space Xby permuting its elements as follows: 

),...,,(),...,,)(( )()2()1(21 nn               4.1. 

Every elementSn satisfy )(ii    in ),...,,( 21 n . 

 

Lemma 4.1: The function defined in Equation 4.1 is a group action of Sn on the signal space X. 

Proof: Obviously,  i . Next, we show that   )()(  for all nS , . Now, 

),...,,)((),...,,))((( )()2()1(21 nn     

),...,,( ))(())2(())1(( n   

),...,,( ))(()2)(()1)(( n   

),...,,)()(( )()2()1( n  . 
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Hence, the result follows. 

 

Lemma 4.2:Let nS ,  and 
n

nX  },...,,{),( 21   be a signal space. Then .    

Proof:Let nS ,  and 
n

nw  ),...,,( 21   be arbitrary element of X. 

Then 

 ))(()( ww     

  ),...,,(( 21 n   

  ),...,,( )()2()1( n   

  ),...,,( 21 n  where )(i   

   ),...,,( )()2()1( n   

   ),...,,( ))(())2(())1(( n   

   ),...,,( ))(()2)(()1)(( n   

   ),...,,( 21 n   

   )(w . 

Since w is arbitrary, the result is true for all wX. 

 

Lemma 4.3: With G = Sn, let X be defined as above and Y be a signal space not necessarily isomorphic to X. 

Let ),( YX be the collection of all maps from X to Y, i.e. YX : . Then the action of G on ),( YX  is 

given by the rule 

  )())(( gwwg   .        

 4.2 

Proof: Obviously, gw is the action of gG on wXand  g  is a function from X to Y. To find a group action 

of G on ),( YX , note that G acts on X from the left. Now, replace g with g
-1

 in Equation 4.2 and set 

)())(( 1wgwg   , then 

  ))(()))((( 1

1221 wggwgg    

    ))(( 1

1

1

2 wgg    

    ))(( 1

1

1

2 wgg    

    ))(( 1

21 wgg    

    ))()(( 21 wgg  . 

Hence,   )()( 2121 gggg  is a group action of G on ),( YX . 

 

Example 4.4: Suppose G = Sn and choosen = 5. Then G = S5 and .},,,,{ 5

54321  X  

Now, from 

   ),,,,)((),,,,))((( )5()4()3()2()1(54321     

and Section 3,  

   ),,,,)((),,,,))((( )5()2()3()1()4(15432113    

      ),,,,( )2()5()1()4()3(  . 

But 1813   in Gand 

   ),,,,(),,,,)(( )2()5()1()4()3(5432118   . 

Hence, ))(()))()(()))((( 181313 www   . 
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Example 4.5:Again, let 
5

54321 ),,,,(  w . Then )()( ww    . 

To see this, pick G152 , . Then 

 ),,,,(),,,,( 2543154321 15152
    

    ),,,,( 52413  . 

Now, 11152    in Gand 

),,,,(),,,,( 524135432111
   . 

Thus, )()(
11152

ww    . 

Now, the elements of the group G act on the signal space X as functions. Hence ingeneral, if X is any signal 

space and G is any subgroup of XS , then X is a G-set under the group action 

   ))(())(,( tt    

for all G and (t)X. 

 

Lemma 4.6:Let |G| = n such that GX. Then G acts on X by the left regular representation given by 

)())(())(,( ttt    . 

Proof: Since   is a left multiplication, 

 )()()()( ttitti i    

where i is the identity element of G. Also, 

 ))(())(()()()()( ttttt    . 

This established the result. 

 

Lemma 4.7:Let |G| = n such that GX and let Kbe a subgroupof G.Then X is aK-set under conjugation. i.e., an 

action XXK   of K on X defined by 

  
1))(())(,(  tt   

for all K and (t)X. 

Proof:Clearly, the first axiom for group action is satisfied. Next, observed that 

  
1)))((())(,(   tt  

   )))((( 11   t  

   
11)))(((   t  

   )))(,(,( t  

which shows that the second condition is also satisfied as required. 

 

Example 4.8: Signals are regarded as functions on some discrete groups, usually identified with the group of 

integers Z, or its subgroups Zp of integer’s modulo p, i.e.  : ZpZp. Let p = 2. Then Zp is isomorphic to S2. 

Now, a binary symmetric channel is described as a model consisting of a transmitter which is capable of sending 

a binary signal together with a receiver. 

Then one possible coding scheme is to send a signal several times so as to compare the received signals with 

one another. Suppose that the signal to be encoded is (1 1 0 1 0 0) into a binary 4n-tuple, let Sn. Then  : 

Z2Z2 encode (1 1 0 1 0 0) into a binary 4n-tuple as 

 )010000110100111101001101()110100(  . 

The decoded signal depends on the function Sn. The function is also required tobe one-to-one in order that 

two signals will not be encoded into the same image.  

 

V. CONCLUSION 
 From abstract point of view, the symmetric group Sn is generally not a nilpotent group since it has no 

central series. Thus, the group S5 is centerless and one-headed since the Alternating group A5 is its unique 

maximal normal subgroup. The generated subgroup representations of S5appear to be useful in signal processing 

andfor studying its Fuzzy subgroups. It is therefore concluded that the subgroup representations of Sn play an 

important role in signal processing.Other properties such as isomorphism classes of Sylow subgroups and the 
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corresponding Sylow numbers and fusion systems, extended automorphism group and the lattice structure of S5 

that are not treated in this article, are recommended for further studies. 
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