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I. INTRODUCTION 

A general planar motion as given by 

(1.1)                                                           y1 = xcosθ − y sinθ + a 

                                                                        y2 = xsinθ + y cosθ + b 

If θ, a and b are given by the functions of time parameter t, then this motions is called as one parameter motion. 

One parameter planar motion given by (1.1) can be written in the form 

 

(
Y
1
) = (

A C
0 1

) (
X
1
) 

or 

(1.2)                                      Y = AX + C,   Y = [y1y2]
T, X = [xy]T , C =  [a b]T 

where A ∈ SO(2), and Yand Xare the position vectors of the same point B, respectively, for the fixed and moving 

systems, and C is the translation vector. By taking the derivates with respect to t in (1.2), we get 

(1.3)                                                               Ẏ = ȦX + AẊ + Ċ 

(1.4)                   Va = Vf + Vr 

where the velocites Va = Ẏ,Vf = ȦX + Ċ,    Vr = AẊare called absolute, sliding, and relative velocites of the points 

B, respectively. the solution of the equation Vf = 0 gives us the pole points on the moving plane. The locus of 

these points is called the moving pole curve, and correspondingly the locus of pole points on the fixed plane is 

called the fixed pole curve. by taking the derivates with respect to t in (1.3), we get 

(1.5)                                                  Ÿ = ÄX + 2ȦẊ + AẌ + C̈ 

(1.6)                                ba = br + bc + bf 

where the velocites 

(1.7)                                                                ba = Ÿ, 

(1.8)                                                                        bf = ÄX + C̈, 

(1.9)                                                                 br =  AẌ, 

(1.10)                                                                        bc = 2ȦẊ, 
are called absolute acceleration, sliding acceleration, relative acceleration and Coriolis accelerations, respectively. 

The solution of the equation 

(1.11)                                                               ÄX + C̈ = 0 

gives the acceleration pole of the motion.  

 

 

II. HOMOTHETIC MOTION IN EUCLIDEAN PLANE 

Definition 2.1. The transformation given by the matrix 

 

F = (
hA C
0 1

) 
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is called Homothetic motion in E4. Here h =  hI4 is a scalar matrix, A ∈ SO(4) and C = C ∈ IR1
4 [1]. 

Definition 2.2. Let J ⊂ IR  be an open interval let O ∈ J . The transformation F(t) =  E4 → E4 given by 

F(t) = (
h(t)A(t) C(t)

0 1
) 

is called one-parameter homothetic motion in E4,where the function h: J → IR the matrix A ∈ SO(4) and the 4 × 

1 type matrix C are differentiable with respect to [1]. Since h is scalar we have B−1 = h−1A−1 =
1

h
AT for XϵE4, 

the geometric plane of the points is a curve in E4 [3]. We will denote this curve by 

(2.1)                                                           Y(t) = B(t)X(t) + C(t) 

differentiating with respect totwe obtain [3]; 

(2.2)                                                      
dY

dt
=

dB

dt
X + B

dX

dt
+

dC

dt
   

Definition 2.3. Equation of the general motion in E4 

(2.3)                                                         Y(t) = B(t)X(t) + C(t) 

where A = A(t) ∈ SO(4) and C = C(t) ∈ IR1
4 [1]. Differentiating this equation with respect to 𝑡 we have 

 

(2.4)                    
𝑑𝑌

𝑑𝑡
=

𝑑𝐵

𝑑𝑡
𝑋 + 𝐵

𝑑𝑋

𝑑𝑡
+

𝑑𝐶

𝑑𝑡
 

 

  

Here  

𝑉𝑎 =
𝑑𝑌

𝑑𝑡
 ,  𝑉𝑟 = 𝐵

𝑑𝑋

𝑑𝑡
   and  𝑉𝑓 =

𝑑𝐵

𝑑𝑡
𝑋 +

𝑑𝐶

𝑑𝑡
 

 

and are called absolute velocity, relative velocity and sliding velocity of the motion, respectively [1]. We deonte 

motions in 𝐸4 by 𝐸
𝐸′⁄  where 𝐸′is fixed plane and 𝐸 is the moving plane with respect to 𝐸′. If te matrix 𝐴and 𝐶 

are the functions of the parameter 𝑡𝜖𝐼𝑅 this motion is called a one parameter motion and denoted by 𝐵1 =
𝐸

𝐸′⁄  [1]. 

Definition 2.4. The velocity vector of the point 𝑋 with respect to the Euclidean plane 𝐸 (moving space) i.e. the 

vectorial velocity of 𝑋 while it is drawing its orbit in 𝐸 is called relative velocity of the point 𝑋 and denoted by 

𝑉𝑟  [1]. 
Definition 2.5. The velocity vector of the point 𝑋with respect to the fixed plane 𝐸′ is called the absolute velocity 

of 𝑋 and denoted by 𝑉𝑎. Thus we obtain the relation 

(2.5)                                                                  𝑉𝑎 = 𝑉𝑓 + 𝑉𝑟  

If 𝑋 is a fixed point in the moving plane 𝐸, since 𝑉𝑟 = 0, then we have 𝑉𝑎 = 𝑉𝑓 The quality (2.5) is said to be the 

velocity law the motion 𝐵1 = 𝐸
𝐸′⁄ [3]. 

 

 

III. POLES OF ROTATING AND ORBIT 

 
 The point in which the sliding velocity 𝑉𝑓 at each moment 𝑡 of a fixed point 𝑋 in 𝐸 in the one-parameter 

homothetic motion 𝐵1 = 𝐸
𝐸′⁄  are fixed points in moving and fixed plane. These points are called the pole points 

of the motion. 

Theorem 3.1. In a motion 𝐵1 = 𝐸
𝐸′⁄  whose angular velocity is non zero, there exists a unique point which is 

fixed in both planes at every moment 𝑡. 
Proof. Since the point 𝑋 ∈  𝐸 is fixed in 𝐸 then 𝑉𝑟 = 0 and since 𝑋 is also fixed in 𝐸′ then 𝑉𝑓 = 0. Hence for this 

type of points if  𝑉𝑓 = 0 then 

(3.1)                                 𝐵̇𝑋 + 𝐶̇ = 0  

and 

(3.2)                                                                            𝑋 = −𝐵̇−1𝐶̇  

Indeed,since 

𝐵 = [

ℎ 𝑐𝑜𝑠 𝜑 −ℎ 𝑠𝑖𝑛 𝜑 0 0
ℎ 𝑠𝑖𝑛 𝜑 ℎ 𝑐𝑜𝑠 𝜑 0 0

0 0 ℎ 𝑐𝑜𝑠 𝜑 −ℎ 𝑠𝑖𝑛 𝜑
0 0 ℎ 𝑠𝑖𝑛 𝜑 ℎ 𝑐𝑜𝑠 𝜑

] 

 

and 



Fırst And Second Acceleratıon Poles In Unitary Geometry Homothetıc Motıons 

www.ijmsi.org                                                         40 | Page 

𝐵̇ =

[
 
 
 
 
ℎ̇ 𝑐𝑜𝑠 𝜑 − ℎ𝜑̇ 𝑠𝑖𝑛 𝜑̇ −ℎ̇𝑠𝑖𝑛𝜑 − ℎ𝜑̇ 𝑐𝑜𝑠 𝜑 0 0

ℎ̇𝑠𝑖𝑛𝜑 + ℎ𝜑̇ 𝑐𝑜𝑠 𝜑 ℎ̇ 𝑐𝑜𝑠 𝜑 − ℎ𝜑̇𝑠𝑖𝑛𝜑 0 0

0 0 ℎ̇ 𝑐𝑜𝑠 𝜑 − ℎ𝜑̇ 𝑠𝑖𝑛 𝜑̇ −ℎ 𝑠𝑖𝑛 𝜑̇ − ℎ𝜑̇ 𝑐𝑜𝑠 𝜑

0 0 ℎ̇ 𝑠𝑖𝑛 𝜑̇ + ℎ𝜑̇ 𝑐𝑜𝑠 𝜑 ℎ̇ 𝑐𝑜𝑠 𝜑 − ℎ𝜑̇ 𝑠𝑖𝑛 𝜑̇ ]
 
 
 
 

 

 

then 

 

Thus 𝐵̇ is regular and 

 

𝐵̇−1 =
1

(ℎ̇2 + ℎ2𝜑̇2)2
[

𝐾 𝑐𝑜𝑠 𝜑 − 𝑀 𝑠𝑖𝑛 𝜑 −𝐾 𝑠𝑖𝑛 𝜑 − 𝑀 𝑐𝑜𝑠 𝜑 0 0
𝐾 𝑠𝑖𝑛 𝜑 + 𝑀 𝑐𝑜𝑠 𝜑 𝐾 𝑐𝑜𝑠 𝜑 − 𝑀 𝑠𝑖𝑛 𝜑 0 0

0 0 𝐾 𝑐𝑜𝑠 𝜑 − 𝑀 𝑠𝑖𝑛 𝜑 −𝐾 𝑠𝑖𝑛 𝜑 − 𝑀 𝑐𝑜𝑠 𝜑
0 0 𝐾 𝑠𝑖𝑛 𝜑 + 𝑀 𝑐𝑜𝑠 𝜑 𝐾 𝑐𝑜𝑠 𝜑 − 𝑀 𝑠𝑖𝑛 𝜑

] 

 

Hence there exists a unique solution 𝑋of the equation 𝑉𝑓 = 0. This point 𝑋 is called pole point in moving plane. 

For this reason (3.2) leads to 

(3.6)                                                        𝑋 = −𝐵̇−1𝐶̇ 

 

𝑋 = 𝑃 =
−1

(ℎ̇2 + ℎ2𝜑̇2)2

[
 
 
 

𝑐1̇(𝐾 𝑐𝑜𝑠 𝜑 − 𝑀 𝑠𝑖𝑛 𝜑) + 𝑐2̇(𝐾 𝑠𝑖𝑛 𝜑 + 𝑀 𝑐𝑜𝑠 𝜑)

−𝑐1̇(𝐾 𝑠𝑖𝑛 𝜑 + 𝑀 𝑐𝑜𝑠 𝜑) + 𝑐2̇(𝐾 𝑐𝑜𝑠 𝜑 − 𝑀 𝑠𝑖𝑛 𝜑)

𝑐3̇(𝐾 𝑐𝑜𝑠 𝜑 − 𝑀 𝑠𝑖𝑛 𝜑) + 𝑐4̇(𝐾 𝑠𝑖𝑛 𝜑 + 𝑀 𝑐𝑜𝑠 𝜑)

−𝑐3̇(𝐾 𝑠𝑖𝑛 𝜑 + 𝑀 𝑐𝑜𝑠 𝜑) + 𝑐4̇(𝐾 𝑐𝑜𝑠 𝜑 − 𝑀 𝑠𝑖𝑛 𝜑)]
 
 
 

 

 

where 𝐾 = ℎ̇3 + ℎ2ℎ̇𝜑̇2, 𝑀 = ℎℎ̇2𝜑̇ + ℎ3𝜑̇3and the pole point in the  fixed plane is  
(3.7)                                                               𝑃′ = 𝐵𝑃 + 𝐶 

setting these values in their planes and calculating we have 

 

𝑌 = 𝑃′ =
1

(ℎ̇2 + ℎ2𝜑̇2)2
[

−𝑐1̇ℎ𝐾 − 𝑐2̇ℎ𝑀
𝑐1̇ℎ𝑀 − 𝑐2̇ℎ𝐾

−𝑐3̇ℎ𝐾 − 𝑐4̇ℎ𝑀
𝑐3̇ℎ𝑀 − 𝑐4̇ℎ𝐾

] + [

𝑐1

𝑐2

𝑐3

𝑐4

] 

 

or as a vector 

 

(3.8) 
𝑌 = 𝑃′ = (𝑊(−𝑐1̇ℎ𝐾 − 𝑐2̇ℎ𝑀) + 𝑐1,𝑊(𝑐1̇ℎ𝑀 − 𝑐2̇ℎ𝐾) + 𝑐2,𝑊(−𝑐3̇ℎ𝐾 − 𝑐4̇ℎ𝑀) + 𝑐3,𝑊(𝑐3̇ℎ𝑀 − 𝑐4̇ℎ𝐾)

+ 𝑐4) 

 

where 𝑊 =
1

(ℎ̇2+ℎ2𝜑̇2)2
 . 

 

Corollary 3.2. If 𝜑(𝑡) = 𝑡 then we obtain 

 

𝑃 = 𝑋 =
−1

(ℎ̇2 + ℎ2)4

[
 
 
 

𝑐1̇(𝑈 𝑐𝑜𝑠 𝜑 − 𝑉 𝑠𝑖𝑛 𝜑) + 𝑐2̇(𝑈 𝑠𝑖𝑛 𝜑 + 𝑉 𝑐𝑜𝑠 𝜑)

−𝑐1̇(𝑈 𝑠𝑖𝑛 𝜑 + 𝑉 𝑐𝑜𝑠 𝜑) + 𝑐2̇(𝑈 𝑐𝑜𝑠 𝜑 − 𝑉 𝑠𝑖𝑛 𝜑)

𝑐3̇(𝑈 𝑐𝑜𝑠 𝜑 − 𝑉 𝑠𝑖𝑛 𝜑) + 𝑐4̇(𝑈 𝑠𝑖𝑛 𝜑 + 𝑉 𝑐𝑜𝑠 𝜑)

−𝑐3̇(𝑈 𝑠𝑖𝑛 𝜑 + 𝑉 𝑐𝑜𝑠 𝜑) + 𝑐4̇(𝑈 𝑐𝑜𝑠 𝜑 − 𝑉 𝑠𝑖𝑛 𝜑)]
 
 
 

 

 

where 𝑈 = ℎ̇3 + ℎ2ℎ̇, 𝑉 = ℎℎ̇2 + ℎ3. 

 

Corollary 3.3. If 𝜑(𝑡) = 𝑡 and ℎ(𝑡) = 1, then we obtain 

(3.3)             𝐶 =  [𝑐1𝑐2𝑐3𝑐4]
𝑇 

implies that 

 

(3.4) 

and 
𝐶̇ = [𝑐1̇𝑐2̇𝑐3̇𝑐4̇]

𝑇  

(3.5) 𝑑𝑒𝑡𝐵̇ = (ℎ̇2 + ℎ2𝜑̇2)2 ≠ 0. 
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𝑋 = 𝑃 = [

𝑐1̇𝑠𝑖𝑛𝜑 − 𝑐2̇𝑐𝑜𝑠𝜑
𝑐1̇𝑐𝑜𝑠𝜑 + 𝑐2̇𝑠𝑖𝑛𝜑
𝑐3̇𝑠𝑖𝑛𝜑 − 𝑐4̇𝑐𝑜𝑠𝜑
𝑐3̇𝑐𝑜𝑠𝜑 + 𝑐4̇𝑠𝑖𝑛𝜑

] 

 

Corollary 3.4. If 𝜑(𝑡) = 𝑡, then we obtain 

 

𝑌 = 𝑃′ =
−1

(ℎ̇2 + ℎ2)4
[

−𝑐1̇ℎ𝑈 + 𝑐2̇ℎ𝑉
−𝑐1̇ℎ𝑉 + 𝑐2̇ℎ𝑈
𝑐3̇ℎ𝑈 + 𝑐4̇ℎ𝑉

−𝑐3̇ℎ𝑉 + 𝑐4̇ℎ𝑈

] + [

𝑐1

𝑐2

𝑐3

𝑐4

] 

 

Corollary 3.5. If 𝜑(𝑡) = 𝑡 and ℎ(𝑡) = 1, then we obtain 

 
(3.9)                                           𝑌 = 𝑃′ = (−𝑐2̇ + 𝑐1, 𝑐1̇ + 𝑐2, −𝑐4̇ + 𝑐3, 𝑐3̇ + 𝑐4) 

 

Here we assume that 𝜑̇(𝑡) ≠ 0 for all 𝑡. That is, angular velocity is not zero. In this case there exists a unique pole 

points in each of the moving and fixed planes of each moment 𝑡. 

Definition 3.6. The point P = (p1,p2,p3,p4) is called the instantanious rotation center or the pole at moment 𝑡 of the 

one parameter Euclidean motion 𝐵1 = 𝐸
𝐸′⁄ [4]. 

Theorem 3.7. The following relation exists between the pole ray from the pole 𝑃 to the point 𝑋, and the sliding 

velocity vector 𝑉𝑓 at each moment 𝑡. 

 

(3.10)                                                            ‖𝑉𝑓‖𝑐𝑜𝑠𝜑 =
ℎ̇

ℎ
‖𝑃′𝑌‖ 

 

Proof. The pole point in the moving plane 

 

(3.11)  

implies that 
𝑌 =  𝐵𝑋 +  𝐶, 

(3.12) 𝑋 = 𝐵−1(𝑌 − 𝐶), 

  

(3.13) 

and 
𝑉𝑓 = 𝐵̇𝑋 + 𝐶̇, 

(3.14) 𝐵̇𝑋 + 𝐶̇ = 0 

leads to 

(3.15)                                                  𝑋 = 𝑃 = −𝐵̇−1𝐶̇ 

Now Let’s find pole points in the fixed plane. Then we have from equation 𝑌 =  𝐵𝑋 +  𝐶 

 
(3.16)                                                                   𝑌 =  𝐵𝑋 +  𝐶, 
  

(3.17)                                                          𝑌 = 𝑃′ = 𝐵(−𝐵̇−1𝐶̇) + 𝐶. 

Hence, we get 

(3.18)                                                       𝑃′ − 𝐶 = −𝐵𝐵̇−1𝐶,̇  

(3.19)                                                     𝐶̇ = −𝐵̇𝐵−1(𝑃′ − 𝐶) 

If we substitute this values in the equation 𝑉𝑓 = 𝐵̇𝑋 + 𝐶̇, we have 𝑉𝑓 = 𝐵̇𝐵−1𝑃′𝑌. Now let us calculate the value 

of 𝐵̇𝐵−1𝑃′𝑌 here since 𝑃′𝑌 = (𝑦1 − 𝑝1, 𝑦2 − 𝑝2, 𝑦3 − 𝑝3, 𝑦4 − 𝑝4), then 
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𝑉𝑓 = (
ℎ̇

ℎ
(𝑦1 − 𝑝1) − 𝜑(̇ 𝑦2 − 𝑝2),  𝜑(̇ 𝑦1 − 𝑝1) +

ℎ̇

ℎ
(𝑦2 − 𝑝2),    

ℎ̇

ℎ
(𝑦3 − 𝑝3) − 𝜑(̇ 𝑦4 − 𝑝4), 

𝜑̇(𝑦3 − 𝑝3) +
ℎ̇

ℎ
(𝑦4 − 𝑝4)) 

 

hence we obtain 

(3.21)                          〈𝑉𝑓 , 𝑃
′𝑌〉 =

ℎ̇

ℎ
[(𝑦1 − 𝑝1)

2 + (𝑦2 − 𝑝2)
2 + (𝑦3 − 𝑝3)

2+(𝑦4 − 𝑝4)
2] 

(3.22)                                                             ⟨𝑉𝑓 , 𝑃
′𝑌⟩ =

ℎ̇

ℎ
‖𝑃′𝑌‖2 

on the other hand we know that 

 
(3.23)                                                        ⟨𝑉𝑓 , 𝑃

′𝑌⟩ = ‖𝑉𝑓‖. ‖𝑃′𝑌‖. 𝑐𝑜𝑠𝜑. 

 

This from the equelities in (3.22) and (3.23) we have that 

  

(3.24)                                                                   ‖𝑉𝑓‖𝑐𝑜𝑠𝜑 =
ℎ̇

ℎ
‖𝑃′𝑌‖ 

 

Corollary 3.8. The pole ray from the pole 𝑃 to the point 𝑋, when the scalar matrix ℎ is constant, is perpendicular 

to the sliding velocity vector 𝑉𝑓 at each instant moment 𝑡. 

Theorem 3.9. The length of the sliding velocity vector 𝑉𝑓 is 

 

(3.25) 

‖𝑉𝑓‖ = √((
ℎ̇

ℎ
)

2

+ 𝜑̇2)‖𝑃′𝑌‖ 

Proof. 

𝑉𝑓 = (
ℎ̇

ℎ
(𝑦1 − 𝑝1) − 𝜑(̇ 𝑦2 − 𝑝2),  𝜑(̇ 𝑦1 − 𝑝1) +

ℎ̇

ℎ
(𝑦2 − 𝑝2),    

ℎ̇

ℎ
(𝑦3 − 𝑝3) − 𝜑(̇ 𝑦4 − 𝑝4), 

𝜑̇(𝑦3 − 𝑝3) +
ℎ̇

ℎ
(𝑦4 − 𝑝4)) 

hence 

  

(3.27)                                                        ‖𝑉𝑓‖ = √((
ℎ̇

ℎ
)

2

+ 𝜑̇2) ‖𝑃′𝑌‖ 

 

Corollary 3.10. If the scalar matrix is ℎ is constant, then length of the sliding velocity vector is 

  

(3.28)                                                                     ‖𝑉𝑓‖ = |𝜑̇|‖𝑃′𝑌‖ 

 

Corollary 3.11. There is a relation among the pole ray from the pole 𝑃 to the point 𝑋, the sliding velocity vector 

𝑉𝑓 and angular velocity 𝜑̇(𝑡) ≠ 0 at each moment 𝑡. 

  
(3.29)                                                         ℎ(𝑡) = 𝑒𝑥𝑝 (∫(𝑐𝑜𝑡𝜃(𝑡)𝜑̇(𝑡)𝑑𝑡) 

 

proof. By the using of equations (3.24) are (3.27), we have 

 

(3.30)                                                            
1

𝑐𝑜𝑠𝜃
(

ℎ̇

ℎ
) = √((

ℎ̇

ℎ
)

2

+ 𝜑̇2) 

 

 

therefore we get 

  
(3.31)                                                       ℎ(𝑡) = 𝑒𝑥𝑝 (∫(𝑐𝑜𝑡𝜃(𝑡)𝜑̇(𝑡)𝑑𝑡) 
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Definition 3.12. In Euclidean motion𝐵1 = 𝐸
𝐸′⁄  the geometric place of the pole points 𝑃 in the moving plane 𝐸 

is called the moving pole curve of the motion 𝐵1 = 𝐸
𝐸′⁄  and is denoted by (𝑃). the geometric place of the pole 

points P in the fixed plane 𝐸′is called fixed and is denoted by 𝑃′[2]. 
 

Theorem 3.13. The velocity on the curve (𝑃) and (𝑃′) of every moment𝑡of the rotating pol 𝑃 which draws the 

pole curves in the fixed and moving planes are equal to each other. In other words, two curves are always tangent 

to each other. 

 

Proof. The velocity of the point 𝑋 ∈  𝐸 while drawing the curve (P) is 𝑉𝑟  and the velocity of this point while 

drawing the curve (𝑃′) is 𝑉𝑎. Since 𝑉𝑓 = 0 then 𝑉𝑎 = 𝑉𝑟 

 

Definition 3.14. If two curves 𝛼 and 𝛼 ′ are tangent to each other of each moment 𝑡 and if length of the ways 

𝑑𝑠 and 𝑑𝑠′of the point drawing these two curves at moment 𝑑𝑡 on these curves are the same then α and α´ are said 

to be revolving by sliding on each other. Here ℎ is the coeffcient of rolling [2]. 
 

Theorem 3.15. In the one parameter planer Euclidean motion 𝐵1 = 𝐸
𝐸′⁄  the moving pole curve (P) of the space 

E revolves by sliding on the fixed pole curve (𝑃′) of the space 𝐸′.´ 

 

Proof. Acording to the definition of ray element of a curve ray of (P) is 𝑑𝑠 = ‖𝑉𝑟‖ and those of (𝑃) is 𝑑𝑠′ = ‖𝑉𝑎‖. 

Since for (P) and (𝑃′), 𝑉𝑎 = 𝑉𝑟  then  𝑑𝑠 = ℎ𝑑𝑠′. According to this theorem we way define a Euclidean motion 

without mentioning the time. A Euclidean motion 𝐵1 = 𝐸
𝐸′⁄  is obtained by a moving pol curve (𝑃)  of E 

revolving without sliding on a fixed pol curve (𝑃′)  . 

 

Definition 3.16. Absolute accelaration vector of the point X with respect to the xed Euclidean plane 𝐸′ is 𝑉𝑎 . This 

vector is denoted by 𝑏𝑎 . Since then 𝑉𝑎 = 𝑌̇, then 𝑏𝑎 =𝑉̇ = 𝑌̈ [1]. 

 

Definition 3.17. Let 𝑋be a fixed point the moving Euclidean plane 𝐸.The accelaration vector of the point X with 

respect to the fixed Euclidean plane  𝐸′is called as sliding accelaration vector and denoted by𝑏𝑓 . Since in the 

accelaration of the sliding accelaration 𝑋 is a fixed point of 𝐸, then 𝑏𝑓 = 𝑉𝑓̇ = 𝐵̈𝑋 + 𝐶̈ [4, 5]. 

 

 

IV. ACCELERATIONS AND UNION OF ACCELERATIONS 

 Assume that the Euclidean motion 𝐵1 = 𝐸
𝐸′⁄  of the moving euclidean plane E with respect to the fixed 

Euclidean plane 𝐸′exists. In this motion, let us consider a point 𝑋 moving with respect to the plane 𝐸, and thus 

moving respect to the plane 𝐸′. We had obtained the velocity formulas concering the motion of 𝑋, now we will 

obtain the acceleration formules the acceleration of the point 𝑋. 

Definition 4.1. The vector 𝑏𝑟 = 𝑉̇𝑟 = 𝐵̈𝑋 which is obtained by differenttiating the relative velocity vector 𝑉𝑟 =
𝐵𝑋̇ of the point 𝑋 with respect to the moving plane 𝐸 is called the relative accelaration vector of 𝑋 in 𝐸 and denote 

by 𝑏𝑟 . Since when taking the derivative 𝑋 is considered as a moving point in 𝐸, the matrix 𝐴 is taken as constant 

[6]. 
Theorem 4.2. Let 𝑋 be a point in the moving Euclidean plane which moves with respect to a parameter 𝑡. Hence 

we have that 

                                                                             𝑏𝑎 = 𝑏𝑟 + 𝑏𝑐 + 𝑏𝑓,  

 

Here , 𝑏𝑐 = 2𝐵̇𝑋̇ is called Corilois acceleration. 

 

Corollary 4.3. If a point 𝑋 ∈  𝐸 is constant,then the sliding acceleration of the point 𝑋 is equal to the absolute 

acceleration of 𝑋. 

 Proof. Note that 

𝑉𝑎 = 𝐵̇𝑋 + 𝐵𝑋̇ + 𝐶̇ 

differentiating the both sides we have 

 
(4.3)                                                              𝑉𝑎̇ = 𝐵̈𝑋 + 2𝐵̇𝑋̇ + 𝐵𝑋̈ + 𝐶̈ 

since the point 𝑋 is constant its derivativeis zero. Hence 
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(4.4)  

𝑉𝑎̇ = 𝐵̈𝑋 + 𝐶̈ = 𝑏𝑓 

Theorem 4.4. We have the following relation between the Coriolis acceleration vector 𝑏𝑐 and relative velocity 

vector 𝑉𝑟  

 

(4.5)                                                        ⟨𝑏𝑐 , 𝑉𝑟⟩ = 2ℎℎ(̇𝑥1̇
2 + 𝑥2̇

2 + 𝑥3̇
2 + 𝑥4̇

2) 

  

Proof. Since 

(4.6)                                    𝑏𝑐 = 2𝐵̇𝑋̇ = (𝑚𝑥1̇ − 𝑛𝑥2̇, 𝑛𝑥1̇ + 𝑚𝑥2̇, 𝑚𝑥3̇ − 𝑛𝑥4̇, 𝑛𝑥3̇ + 𝑚𝑥4̇) 

(4.7)                     𝑉𝑟 = 𝐵𝑋̇ = (𝑥1̇ℎ𝑐𝑜𝑠𝜑 − 𝑥2̇ℎ𝑠𝑖𝑛𝜑, 𝑥1̇ℎ𝑠𝑖𝑛𝜑 + 𝑥2̇ℎ𝑐𝑜𝑠𝜑, 𝑥3̇ℎ𝑐𝑜𝑠𝜑 − 𝑥4̇ℎ𝑠𝑖𝑛𝜑, 
 𝑥3̇ ℎ𝑠𝑖𝑛𝜑 + 𝑥4̇ℎ𝑐𝑜𝑠𝜑) 

   

(4.8)                                                  ⟨𝑏𝑐 , 𝑉𝑟⟩ = 2ℎℎ(̇𝑥1̇
2 + 𝑥2̇

2 + 𝑥3̇
2 + 𝑥4̇

2) 

 

where 𝑚 = ℎ̇𝑐𝑜𝑠𝜑 − ℎ𝜑̇𝑠𝑖𝑛𝜑, 𝑛 = ℎ̇𝑠𝑖𝑛𝜑 + ℎ𝜑̇𝑐𝑜𝑠𝜑. 

 

Corollary 4.5. If h is a constant,then Coriolis acceleration 𝑏𝑐 is perpendicular to the relative velocity vector 𝑉𝑟  at 

each instant moment 𝑡. 

 

 

V. FIRST AND SECOND ACCELERATION POLES 

The solution of the equation 𝑉𝑓̇ = 0 gives the first order acceleration pole. 𝑉𝑓̇ = 𝐵̈𝑋 + 𝐶̈ = 0 implies 𝑋 = 𝑃1 =

−𝐵̈−1𝐶̈. 

Now calculating the matrices −𝐵̈−1 and 𝐶̈ and setting these in 𝑋 = 𝑃1 = −𝐵̈−1𝐶̈ we obtain 

 

𝑋 = 𝑃1 =
−1

𝑆

[
 
 
 

𝑐1̈(𝑘1𝑐𝑜𝑠𝜑 − 𝑘2𝑠𝑖𝑛𝜑) + 𝑐2̈(𝑘2𝑐𝑜𝑠𝜑 + 𝑘1𝑠𝑖𝑛𝜑)

−𝑐1̈ (𝑘2𝑐𝑜𝑠𝜑 + 𝑘1𝑠𝑖𝑛𝜑) + 𝑐2̈(𝑘1𝑐𝑜𝑠𝜑 − 𝑘2𝑠𝑖𝑛𝜑)

𝑐3̈(𝑘1𝑐𝑜𝑠𝜑 − 𝑘2𝑠𝑖𝑛𝜑) + 𝑐4̈(𝑘2𝑐𝑜𝑠𝜑 + 𝑘1𝑠𝑖𝑛𝜑)

−𝑐3̈ (𝑘2𝑐𝑜𝑠𝜑 + 𝑘1𝑠𝑖𝑛𝜑) + 𝑐4̈(𝑘1𝑐𝑜𝑠𝜑 − 𝑘2𝑠𝑖𝑛𝜑)]
 
 
 

 

 

Here, 𝑃1is called first order pole curve in the moving plane. Denoting the pole curve in fixed plane by 𝑃′
1we get 

(5.1  
𝑃′

1 = 𝐵𝑃1 + 𝐶 
 

Hence 

𝑌 = 𝑃′
1 =

−1

(ℎ̇2 + ℎ2𝜑̇2)2
[

−𝑐1̈ℎ𝑘1 − 𝑐2̈ℎ𝑘2

𝑐1̈ℎ𝑘2 − 𝑐2̈ℎ𝑘1

−𝑐3̈ℎ𝑘1 − 𝑐4̈ℎ𝑘2

𝑐3̈ℎ𝑘2 − 𝑐4̈ℎ𝑘1

] + [

𝑐1

𝑐2

𝑐3

𝑐4

] 

 

where 

 
 

then 

(5.2)       

implies that  
𝐶 =  [𝑐1𝑐2𝑐3𝑐4]

𝑇, 

and 

(5.3)      𝐶̇ = [𝑐1̇𝑐2̇𝑐3̇𝑐4̇]
𝑇  

(5.4)                                    𝑑𝑒𝑡𝐵̈ = (𝑘1
2 + 𝑘2

2)2 = 𝑆2 ≠ 0. 

Thus 𝐵̈ is regular and 
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𝐵̈−1 =
1

𝑆
(

𝑘1𝑐𝑜𝑠𝜑 − 𝑘2𝑠𝑖𝑛𝜑 𝑘2𝑐𝑜𝑠𝜑 + 𝑘1𝑠𝑖𝑛𝜑 0 0
−𝑘2𝑐𝑜𝑠𝜑 − 𝑘1𝑠𝑖𝑛𝜑 𝑘1𝑐𝑜𝑠𝜑 − 𝑘2𝑠𝑖𝑛𝜑 0 0

0 0 𝑘1𝑐𝑜𝑠𝜑 − 𝑘2𝑠𝑖𝑛𝜑 𝑘2𝑐𝑜𝑠𝜑 + 𝑘1𝑠𝑖𝑛𝜑
0 0 −𝑘2𝑐𝑜𝑠𝜑 − 𝑘1𝑠𝑖𝑛𝜑 𝑘1𝑐𝑜𝑠𝜑 − 𝑘2𝑠𝑖𝑛𝜑

) 

 

where 𝐷 = (ℎ̈ − ℎ𝜑̇2)𝑐𝑜𝑠𝜑 + (−ℎ𝜑̈ − 2ℎ̇𝜑̇)𝑠𝑖𝑛𝜑, 𝐸 = (2ℎ̇𝜑̇ + ℎ𝜑̈)𝑐𝑜𝑠𝜑 + (ℎ̈ − ℎ𝜑̇2)𝑠𝑖𝑛𝜑, 

𝑘1 = ℎ̈ − ℎ𝜑̇2, 𝑘1 =  2ℎ̇𝜑̇ + ℎ𝜑̈ 

 

Corollary 5.1. If 𝜑(𝑡) = 𝑡, then we obtain 

𝑋 = 𝑃1 =
−1

(ℎ̇ − ℎ)2 + (2ℎ)2

[
 
 
 

𝑐1̈(𝐹𝑐𝑜𝑠𝜑 − 𝐺𝑠𝑖𝑛𝜑) + 𝑐2̈(𝐺𝑐𝑜𝑠𝜑 + 𝐹𝑠𝑖𝑛𝜑)

−𝑐1̈ (𝐺𝑐𝑜𝑠𝜑 + 𝐹𝑠𝑖𝑛𝜑) + 𝑐2̈(𝐹𝑐𝑜𝑠𝜑 − 𝐺𝑠𝑖𝑛𝜑)

𝑐3̈(𝐹𝑐𝑜𝑠𝜑 − 𝐺𝑠𝑖𝑛𝜑) + 𝑐4̈(𝐺𝑐𝑜𝑠𝜑 + 𝐹𝑠𝑖𝑛𝜑)

−𝑐3̈ (𝐺𝑐𝑜𝑠𝜑 + 𝐹𝑠𝑖𝑛𝜑) + 𝑐4̈(𝐹𝑐𝑜𝑠𝜑 − 𝐺𝑠𝑖𝑛𝜑 ]
 
 
 

 

 

where 𝐹 = ℎ̈ − ℎ, 𝐺 = 2ℎ̇. 

 

 

 

Corollary 5.2. If 𝜑(𝑡) = 𝑡 ve ℎ(𝑡) = 1, then we obtain 

𝑋 = 𝑃1 = [

−𝑐1̈ 𝑐𝑜𝑠𝜑 − 𝑐2̈𝑠𝑖𝑛𝜑
𝑐1̈𝑠𝑖𝑛𝜑 − 𝑐2̈𝑐𝑜𝑠𝜑)
−𝑐3̈  𝑐𝑜𝑠𝜑 − 𝑐4̈𝑠𝑖𝑛𝜑
𝑐3̈ 𝑠𝑖𝑛𝜑 − 𝑐4̈𝑐𝑜𝑠𝜑

] 

Corollary 5.3. If 𝜑(𝑡) = 𝑡, then we obtain 

𝑌 = 𝑃1
′ =

1

(ℎ̇ − ℎ)2 + (2ℎ)2
[

−𝑐1̈ℎ𝐹 − 𝑐2̈ℎ𝐺
𝑐1̈ℎ𝐺 − 𝑐2̈ℎ𝐹
𝑐3̈ ℎ𝐹 − 𝑐4̈ℎ𝐺
𝑐3̈ ℎ𝐺 − 𝑐4̈ℎ𝐹

] + [

𝑐1

𝑐2

𝑐3

𝑐4

] 

 

Corollary 5.4. If 𝜑(𝑡) = 𝑡 ve ℎ(𝑡) = 1, then we obtain 

  
(5.5)                                           𝑌 = 𝑃1

′ = (𝑐̈1 + 𝑐1, −𝑐̈2 + 𝑐2, −𝑐̈3 + 𝑐3, −𝑐̈4 + 𝑐4) 

 

The solution of the equation 𝑉𝑓̈ = 0 gives the seond order acceleration pole. 

𝑉𝑓̈ = 𝐵𝑋 + 𝐶 = 0 implies 𝑋 = −𝐵−1𝐶. Now calculating the matrices −𝐵−1 and 𝐶 and setting these in 𝑋 = 𝑃2 =

−𝐵−1𝐶 we get 

𝑋 = 𝑃2 =
−1

𝑅

[
 
 
 

𝑐1(𝑎𝑐𝑜𝑠𝜑 − 𝑏𝑠𝑖𝑛𝜑) + 𝑐2(𝑏𝑐𝑜𝑠𝜑 + 𝑎𝑠𝑖𝑛𝜑)

−𝑐1(𝑏𝑐𝑜𝑠𝜑 + 𝑎𝑠𝑖𝑛𝜑) + 𝑐2(𝑎𝑐𝑜𝑠𝜑 − 𝑏𝑠𝑖𝑛𝜑)

𝑐3(𝑎𝑐𝑜𝑠𝜑 − 𝑏𝑠𝑖𝑛𝜑) + 𝑐4(𝑏𝑐𝑜𝑠𝜑 + 𝑎𝑠𝑖𝑛𝜑)

−𝑐3(𝑏𝑐𝑜𝑠𝜑 + 𝑎𝑠𝑖𝑛𝜑) + 𝑐4(𝑎𝑐𝑜𝑠𝜑 − 𝑏𝑠𝑖𝑛𝜑)]
 
 
 

 

 

The pole curve in the fixed plane is obtained as 

𝑃2
′ = (

−1

𝑅
(𝑐1𝑎ℎ + 𝑐2𝑏ℎ) + 𝑐1,

−1

𝑅
(𝑐2𝑎ℎ − 𝑐1𝑏ℎ) + 𝑐2,

−1

𝑅
(𝑐3𝑎ℎ + 𝑐4𝑏ℎ) + 𝑐3, 

 
−1

𝑅
(𝑐3𝑎ℎ − 𝑐4𝑏ℎ) + 𝑐4) 

 

where 

𝐵 = (

𝐷̇ −𝐸̇ 0 0
𝐸̇ 𝐷̇ 0 0
0 0 𝐷̇ −𝐸̇
0 0 𝐸̇ 𝐷̇

) 

 

where 𝑘1 = ℎ̈ − ℎ𝜑̇2, 𝑘2 =  2ℎ̇𝜑̇ + ℎ𝜑̈ 

𝐷 = (ℎ̈ − ℎ𝜑̇2)𝑐𝑜𝑠𝜑 + (−ℎ𝜑̈ − 2ℎ̇𝜑̇)𝑠𝑖𝑛𝜑 = 𝑘1𝑐𝑜𝑠𝜑 + 𝑘2𝑠𝑖𝑛𝜑 

𝐸 = (2ℎ̇𝜑̇ + ℎ𝜑̈)𝑐𝑜𝑠𝜑 + (ℎ̈ − ℎ𝜑̇2)𝑠𝑖𝑛𝜑 = 𝑘2𝑐𝑜𝑠𝜑 + 𝑘1𝑠𝑖𝑛𝜑 
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𝐷̇ = (𝑘̇1 − 𝑘2𝜑̇)𝑐𝑜𝑠𝜑 + (−𝑘1𝜑̇ − 𝑘̇2)𝑠𝑖𝑛𝜑 = 𝑎𝑐𝑜𝑠𝜑 − 𝑏𝑠𝑖𝑛𝜑 

𝐸̇ = (𝑘̇2 + 𝑘1𝜑̇)𝑐𝑜𝑠𝜑 + (𝑘̇1−𝑘2𝜑̇)𝑠𝑖𝑛𝜑 = 𝑏𝑐𝑜𝑠𝜑 + 𝑎𝑠𝑖𝑛𝜑 

𝑎 = 𝑘̇1 − 𝑘2𝜑̈,       𝑏 = 𝑘̇2 + 𝑘1𝜑̇ 

(5.7)    𝑑𝑒𝑡𝐵 = (𝑎2 + 𝑏2)2 = 𝑅2 ≠ 0 . Thus 𝐵 is regular and 

 

𝐵−1 =
1

𝑅
(

𝑎𝑐𝑜𝑠𝜑 − 𝑏𝑠𝑖𝑛𝜑 𝑏𝑐𝑜𝑠𝜑 + 𝑎𝑠𝑖𝑛𝜑 0 0
−(𝑏𝑐𝑜𝑠𝜑 + 𝑎𝑠𝑖𝑛𝜑) 𝑎𝑐𝑜𝑠𝜑 − 𝑏𝑠𝑖𝑛𝜑 0 0

0 0 𝑎𝑐𝑜𝑠𝜑 − 𝑏𝑠𝑖𝑛𝜑 𝑏𝑐𝑜𝑠𝜑 + 𝑎𝑠𝑖𝑛𝜑
0 0 −(𝑏𝑐𝑜𝑠𝜑 + 𝑎𝑠𝑖𝑛𝜑) 𝑎𝑐𝑜𝑠𝜑 − 𝑏𝑠𝑖𝑛𝜑

) 

 

Corollary 5.5. If 𝜑(𝑡) = 𝑡 then, we obtain  

 

𝑋 = 𝑃2 =
−1

𝑇3

[
 
 
 

𝑐1(𝑇1𝑐𝑜𝑠𝜑 − 𝑇2𝑠𝑖𝑛𝜑) + 𝑐2(𝑇2𝑐𝑜𝑠𝜑 + 𝑇1𝑠𝑖𝑛𝜑)

−𝑐1(𝑇2𝑐𝑜𝑠𝜑 + 𝑇1𝑠𝑖𝑛𝜑) + 𝑐2(𝑇1𝑐𝑜𝑠𝜑 − 𝑇2𝑠𝑖𝑛𝜑)

𝑐3(𝑇1𝑐𝑜𝑠𝜑 − 𝑇2𝑠𝑖𝑛𝜑) + 𝑐4(𝑇2𝑐𝑜𝑠𝜑 + 𝑇1𝑠𝑖𝑛𝜑)

−𝑐3(T2cosφ + T1sinφ) + c⃛4(T1cosφ − T2sinφ)]
 
 
 

 

where T1 = h⃛ − 3ḣ,   T2 = 3ḧ − h,   T3 = (h⃛ − 3ḣ)
2
+ (3ḧ − h)

2
 dir. 

 

Corollary 5.6. If φ(t) = t ve h(t) = 1, then we obtain 

P2 = X = [

−c⃛1cosφ − c⃛2sinφ
−c⃛1sinφ − c⃛2cosφ
−c⃛3cosφ − c⃛4sinφ
c⃛3sinφ − c⃛4cosφ

] 

Corollary 5.7. If φ(t) = t, then we obtain 

Y = P′
2 =

−1

T3

[

c⃛1hT1 + c⃛2hT2

c⃛2hT1 − c⃛1hT2

c⃛3hT1 − c⃛4hT2

c⃛3hT1 − c⃛4hT2

] + [

c1

c2

c3

c4

] 

 

Corollary 5.8. Ifφ(t) = t ve h(t) = 1, then we obtain 

 

(5.8)                                      Y = P2
′ = (−c⃛2 + c1, c⃛1 + c2, −c⃛4 + c3, c⃛4 + c4). 
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