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ABSTRACT: Biharmonic eigenvalue equation is a typical fourth-order partial differential equation, which is an 
important partial differential equation model in elastic thin plate, biophysics and other fields, and its efficient 
numerical solution has been a hot spot and difficulty in related fields. The discontinuous finite element method 
has high plasticity and adaptability, and has become an important numerical method for solving various kinds 
of partial differential equations and practical problems. In this paper, we use the discontinuous finite element 
method to study the eigenvalue problem of biharmonic equations with simply supported boundary conditions, 
and introduce a posterior error index based on residual through discontinuous Galerkin discretization, and 
obtain the complete posterior error estimation results of this method. The performance of this index is verified 
in an adaptive mesh refiner.
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I. INTRODUCTION 
The biharmonic equation originates from the elastic thin plate theory in the field of continuum 

mechanics. The fourth-order boundary value problem is a kind of special boundary value problem of partial 
differential equations, which often appears in thin plate theory of elasticity, phase field model and mathematical 
biology, which makes biharmonic equations widely used. Many scholars have also been committed to the 
numerical solution of biharmonic equations, and its solution methods are constantly optimized and innovative. 
The finite difference method was used to solve biharmonic equations[1]. Liu used the mixed finite element 
method to solve the biharmonic equation[2], that is, by introducing intermediate variables, the biharmonic 
equation was reduced to two second-order equations, and the mixed finite element space satisfying certain 
conditions was used to discretize corresponding mixed variational problem, so as to obtain the numerical 
solutions of the original variables and intermediate variables satisfying the original equation. Discontinuous 
Galerkin finite element method is a kind of finite element method using completely discontinuous basis 
function, which can solve more complex boundary problems, and is easy to realize the selection of local mesh 
and each element polynomial. Therefore, discontinuous Galerkin method is often used to solve various 
eigenvalue problems, such as Steklov eigenvalue problem, Laplacian eigenvalue problem, biharmonic 
eigenvalue problem, etc. Emmanuil derived the DG scheme of the biharmonic equation[3]. The internal penalty 
discontinuous finite element method is to penalty the jump of the approximating solution on the common edge 
or common surface of the element, which is more flexible than the finite element method. [4] constructed the hp 
internal penalty discontinuity Galerkin finite element method for biharmonic equations and analyzed the prior 
error of the method. In this paper, the biharmonic eigenvalue problem with simply supported boundary is 
studied by discontinuous finite element method in internal penalty discontinuous galerkin(IPDG) format, and a 
posterior error estimation is established to verify the reliability and validity of the posterior error estimation of 
the discontinuous finite element method. The results show that the adaptive algorithm can achieve the optimal 
convergence order.

II. BASIC THEORETICAL PREPARATION 
 to represent a standard Lebesgue space, where , The corresponding norm is expressed by. In this 

paper, the norm of  is represented by  We also use  to express the standard Hilbert Sobolev space of real 
functions defined at  with index  and the corresponding norm and semi-norm areand. Let  be the bounded open 
polygon region of , and let  represent its boundary. Consider the simply supported boundary condition 
eigenvalue problem: find and , such that
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Denote

and define a continuous bilinear form

Then, there exists two positive constants  and  independent of  and , such that the bilinear form  is satisfied

The weak form of (2.1) is to find such that 

Let  be a conforming subdivision of  into disjoint triangular or quadrilateral elements , on this 
assumption that the subdivision is shape regular and constructed by affine mapping, where, with nonsingular 
Jacobin, where  is the reference triangle or quadrilateral. It is assumed that the mapping is constructed to ensure 
that  and the elemental edges are straight line segments.

The broken Laplacian  is defined by

For a non-negative integer ,  is used to represent the set of all polynomials of degree at most  if  is a 
reference triangle, and  is used to represent the set of polynomials of tensor product if is a reference 
quadrilateral. For , consider its finite element space

. 
We use  to represent the union (including the boundary) of all one-dimensional unit edges associated 

with the subdivision . In addition, we decompose  into two disjoint subsets, i.e. , where.
Letand  be two elements of the shared edge . Define the outward normal unit vectors on  

corresponding to  and , respectively, as  and . For functions and , these functions may be discontinuous in, the 
following is defined for,
,   ,  ,.
If , then these definitions are changed as follows:

,     ,     ,     .
With the above definition, it can be verified

To define , and collect them into the elementwise constant function, with , and . We always assume that the 
families of meshes considered are locally quasi-uniform, there are constants  independent of , for any pair of 
elements  and  in , that share an edge, we have 

.
We first introduce the lifting operator by

And the lifting operatorhas stability: for  , there is
  

Where , .
Proof. See [5].
Define bilinear form as  by

here the internal penalty parameter ,  of the segmentation constant is defined as

where  , in order to guarantee the stability of the IPDG method defined in (2.7), ,  must be selectively large 
enough.
The finite element approximation of (2.4) is to find , such that

The source problem of (2.4) is to find , such that

The DG approximation of (2.10) is to find , such that 

Define the linear bounded operator  satisfying

The equivalent operator from of (2.4) is 

By using (2.10), the corresponding discrete solution operator  can be defined:
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The equivalent operator from of (2.10) is

From the consistency of discontinuous finite element method, let  be the solution of (2.12), and , then

From (2.11) and (2.16), we obtain

For any function , introduce sum space , that assigns a locally discontinuous finite element norm, where the 
energy norm is defined as follows:

There is  is continuous and coercive

where  is a piecewise continuous function, and  are positive constants depending only on the mesh parameters.
Proof. For , using the Cauchy-Schwarz inequality, we have

Continuity is valid.
Next, we prove (2.20), using the definition of norm and the Young’s inequality, we obtain

When , the proof is completed.
Let  be the solution of (2.12), and , assuming the following regularity estimate holds:

Let  be the quadratic interpolation of , then:

also .

Lemma 2.1. (Proposition 4.9 in [6]) Let  and  then there exists the polynomial , satisfying 

Introduce the global interpolation operator  such that , for the vector-value function  define 

Lemma 2.2. (lemma 2.1 in [7]) Let , , and , for any  with , there exists a positive constant C independent of  
such that 

Theorem 2.1. Let and  be the solution of (2.10) and (2.11), for all , and  , then there holds

Proof. Firstly, we prove (2.25) by utilizing (2.17), (2.19) and (2.20), we obtain

From lemma 2.2, the inverse estimate and the definition of energy norm, we deduce

Also

From the trace inequality, the definition of energy norm and (2.21), we deduce

Similarly,

Then

Using the triangle inequality, we get (2.25).
Next, we prove (2.26). By (2.18), let , having

 can be estimated from (2.23):

 can be estimated from (2.24), the trace inequality and the inverse estimate:

Similarly, we get :
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Using (2.32), (2.33) and (2.34), we get

By using the error estimate and the interpolation estimate, we obtained

Then (2.26) directly from (2.25), (2.35) and (2.36), the proof is completed.

Theorem 2.2. Let and  be the solution of (2.10) and (2.11), then there holds:

Proof.  is the quadratic interpolation of , form (2.17) and (2.22), we have

From , we derive

From lemma 2.2, the inverse estimate, definition of energy norm, (2.21) and taking , we deduce

By the trace inequality with , the interpolation estimates and the definition of energy norm, we get

From the trace inequality, (2.21), (2.22) and the definition of energy norm, we derive

Then (2.37) directly from (2.39), (2.40), (2.41) and (2.43).
Next, we prove (2.38). From (2.26), (2.37) and (2.43), we get

So, (2.38) is valid.
Taking  in (2.26), and the regularity estimate yields the following stable estimate:

Let  be the th eigenvalue of (2.4), with algebraic multiplicities  and the ascent ,where . When ,  
eigenvalue  of (2.9) will converge to . Let  be the generalized eigenvector space of (2.4) related to ,  be the direct 
sum of the generalized eigenvector space of (2.9) related to , and  converge to .
 The following theorem can be proven using a similar method as proof Theorem 3.1 in reference [8].

Theorem 2.3. The following inequality holds

Let  be the direct sum of the generalized eigenvector space of (2.9), with  ,then there exists eigenvalue function  
of (2.4) such that

III. POSTERIOR ERROR ESTIMATION 
i. Estimators of eigenfunctions and their reliability

Let  be the eigenpair of (2.9), and define element residuals and surface residuals on each element  and 
, respectively, as follows,

Define local error indicators on the  of each unit

where .
The global error indicator is

Lemma 3.1. We assume that the mesh  is constructed as above. Then there exists an operator  that satisfies 

with  and  being a constant that is independent of  and.
Note that the recovery operator  maps elements of  onto a -conforming space consisting of macro-elements of 
degree 4.
Proof. See [3].

Theorem 3.1. Let  and  be the eigenpairs of (2.4) and (2.9), for any , the following formula holds
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Proof. Let , with  in lemma 3.1, then the error can be decomposed into

Since  is the solution to the weak-form problem, we have , where . We have

Then 

By , there is , then , and by  in (3.5), there is 

We have   is a linear approximation to , then  is a constant independent of , , from [9] we get

By (3.7), then

By (2.5), (2.7), Green's formula and the definition of the lifting operator, there is

From the inverse estimate, the stability of the lifting operator, the trace inequality, (3.7) and Poincaré-Friedrichs 
inequalities, we get 

Using , the triangle inequality and the stability of the lifting operator

Substituting (3.8), (3.9) and (3.10) into (3.6), and using the Cauchy-Schwarz inequality, we obtain

Then 

Theorem 3.1 can be proved by Lemma 3.1, (3.11), (3.12) and the triangle inequality.
For the residual term , reference [3] shows that it does not affect the upper bound, and it can be seen 

from theorem 2.3 that when ascent ,  and  are both small quantities of higher order . Therefore, it can be seen 
from (3.3) that the indicator of error estimation  is one of the upper bounds of the discontinuous finite element 
energy norm, so the error estimation is reliable.

ii. Effectiveness of the eigenfunction estimator

Theorem 3.2. Under theorem 3.1, there is
 for any ,

 for any ,

 for any ,

 for any 

 for any 

Proof. First prove  Given that  is a subspace of . Fix, and let , with , be a polynomial function on . Setting  and 
taking  as above in (3.4) yields

noting that  on and that . We have

Letting , where  is the standard internal bubble function (which is defined by , where  are the barycentric 
coordinates of the reference triangle , then , and if  is the reference rectangle, then . We have

Then applying (3.14), (3.15) and the Cauchy-Schwarz inequality yields

 is valid.
For any , we have , which gives For any , we have , then we get 
Next prove . For each inner edge , we define the largest diamond in  as , where  is the diagonal of the 

diamond . And we define the bubble function  on the diamond . And there is an affine  which has a value of 0 
along edge e, i.e. . Thus  is fully defined as a symbol, which is irrelevant to the discussion. The above definition 
gives the function , where , and on , where , then we have the following properties:
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and along edge  we have .
We set  where  is a constant function in the direction of  normal, i.e., , and substitute  and  into (3.4), 

we deduce

Letting  in (3.18), we derive

From scaling argument and norm equivalence, let , where  represents the length of a line perpendicular to  in  
intersecting at point , so there is

From (3.18) and (3.19), we have

Substitute (3.20) and   into (3.21), by the Cauchy-Schwarz inequality, and multiply (3.21) by , so  is proved.
Similarly,  the same as the above, have

Letting ,  is defined the same as , and substitute  and  into (3.4), we have

Let  into (3.23), there is

From the above, there are the following

The following can be obtained by (3.23) and (3.24)

By substituting  and (3.25) into (3.26) and multiplying both sides of (3.26) by ,  is proved.

Theorem 3.3. Under Theorem 3.1 and theorem 3.2, we have

Proof. According to the definition of  and theorem 3.2, (3.27) can be obtained, and using the definition of 
energy norm, (3.28) can be obtained.

Theorem 3.3 shows that the error estimation indicator is valid.

iii. The reliability of the estimators for the eigenvalues 

Lemma 3.2. Let  and  be the eigenpairs of (2.4) and (2.9), respectively, then 

Theorem 3.4. Under the condition of lemma 3.2, let , then 

Proof. Theorem 2.3 shows that  is a term higher than , so from lemma 3.1 and (3.3), we have

From lemma 2.2, the inverse estimate and the definition of energy norm, we deduce

From the trace inequality and the definition of energy norm, we derive

Substituting (3.32) and (3.33) into (3.31), and then from (3.3) and the Cauchy-Schwarz inequality, we get 
(3.30), that is, the proof is complete.

From theorem 3.1 and theorem 3.3, we know that the estimator  of the eigenfunction error  is reliable 
and efficient. Therefore, an adaptive algorithm based on this estimator indicator can generate a good gradient 
grid such that the approximate eigenfunction reaches the optimal convergence rate  in . Thus, we expect:

Therefore, from (3.30), we get . Thus,  can be regarded as the error estimation indicator of . The following 
numerical experiments show that as the error estimation indicator of is reliable and efficient.

IV. NUMBERICAL EXPERIMENTS
In this section, we report some numerical experiments to demonstrate the effectiveness of our 

approach. Considering the problem (2.1), our program is compiled under the iFEM package and we use the DG 
method where the penalty coefficient is  to do the calculation. Consider the following two test domain: square 
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domain  with vertex of, hexagonal domains  with vertex of   Since the exact eigenvalue is unknown, we take the 
reference eigenvalue  in the square domain and the first two reference eigenvalues  in the hexagon domain.

Table 1: Results of numerical solutions of quadratic eigenvalues for region ,with an initial grid of 1/8

1 768    1.0e+02*4.804360813618129 90.7995813618128
2 1056 1.0e+02*4.0162473161865 11.98823162
4 1728 1.0e+02*3.92381659951859 2.74515995185873
6 3888 1.0e+02*3.90616393229752 2.62161409558774
8 8760 1.0e+02*3.92258114095587 0.979893229753657
10 18564 1.0e+02*3.9012227109147 0.485771091471861
12 42378 1.0e+02*3.89847285964222 0.210785965330899
14 87588 1.0e+02*3.89736006335979 0.099506810507876
16 206172 1.0e+02*3.89680850296493 0.044593973099722

Table 2: Results of numerical solutions of quadratic eigenvalues for region ,with an initial grid of 1/8

1 2304 56.681054076591394 5.482175956805392
2 2616 54.063730945910883 2.864852826124881
4 4512 52.744740755403164 1.545862635617162
6 8334 52.153313504680995 0.954435384894992
8 15468 51.745061666227073 0.546183546441071
10 28248 51.509294035452548 0.310415915666546
12 53400 51.376378012289926 0.177499892503924
14 99072 51.290365005390711 0.091486885604709
15 136656 51.266349425181744 0.067471305395742

Table 3: Results of numerical solutions of quadratic eigenvalues for region ,with an initial grid of 1/8

1 2304 1.0e+02 *3.614939016628592 32.736159444206237
2 2838 1.0e+02*3.425149701035349 13.757227884881900
4 5502 1.0e+02* 3.364259155266177 7.668173307964651
6 11460 1.0e+02* 3.333056194237199 4.547877205066868
8 22872 1.0e+02*3.313142058416707 2.556463623017692
10 45060 1.0e+02* 3.300261319939643 1.268389775311334
12 89652 1.0e+02*3.294558000135493 0.698057794896329
14 174900 1.0e+02*3.291024325952683 0.344690376615290
16 341610 1.0e+02*3.289234693276596 0.165727109006639

Figure 1: On the test domain , the initial grid is 1/8 quadratic adaptive mesh and error curve
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Figure 2: On the test domain , the reference eigenvalue is  with an initial grid of 1/8 quadratic adaptive mesh and 
error curve

  

Figure 3: On the test domain , the reference eigenvalue is  with an initial grid of 1/8 quadratic adaptive mesh and 
error curve

  

The numerical solution results of eigenvalues obtained through adaptive calculation are listed in table 
1 to Table 3, and the figure illustrates the adaptive mesh and error curve. From Figure1 to Figure3, we can see 
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that the error curve of the numerical solution for eigenvalues is approximately parallel to the error index curve 
to a certain extent, the error curve of the quadratic discontinuity element exhibits a nearly parallel relationship 
with a line having a slope of -1. It shows that all the posterior error indexes of numerical eigenvalues are reliable 
and effective. The results show that the adaptive algorithm can achieve the optimal convergence order, you can 
also see from the error curve that for the same degree of freedom, the approximation obtained by the adaptive 
algorithm is more accurate than that obtained by the uniform grid calculation.
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