Properties Of Gsp-Separation Axioms In Topology

¹Govindappa Navalagi And ^{*2}R G Charantimath

¹Department of Mathematics KIT Tiptur 572202 ,Karnataka India ^{*2}Department of Mathematics KIT Tiptur 572202 ,Karnataka India Corresponding Author: R G Charantimath

ABSTRACT: In this paper we define and study gsp-separation axioms, namely, $gsp-T_0$, $gsp-T_1$, $gsp-T_2$ gsp- R_0 and $gsp-R_1$ spaces using gsp-open sets due to J.Dontchev (1995). Also, we study the comparison of these gsp-separation axioms with the existing gp-separation axioms and α g-separation axioms. Further, we also introduce and study the notions of g^* -separations.

KEY WORDS: semipreopen sets, gsp-closed sets $.g^*$ -closed sets preopen sets, gsp-closed sets, gsp-irresoluteness, and strongly g^* -continuums functions

DATE OF SUBMISSION: 09-07-2018 DATE OF ACCEPTANCE: 23-07-2018

I. INTRODUCTION

In 1982 A S Mashhour et al[8] have defined and studied the concept of pre-open sets and Sprecontinuous functions of topology. In 1983 S.N.Deeb et al [5] have defined and studied the concepts of preclosed sets, preclosure operater, p-regular spaces and pre-closed functions in topology. In 1998, T.Noiri et al [14] have defined the concepts of gp-closed sets ans gp-closed functions in topology. In 2012, Navalagi et al. [12] have defined and studied the concepts of Generalized pre-separation axioms like, gp-T₀, gp-T₁, gp-T₂, gp-R₀ and gp-R₁ spaces using gp-open sets due to T.Noiri et al [14]. In 1986, D. Andrijivic [1] introduced and studied the notion of semipre open sets, semipreclosed sets ,semipreinterior operator and semipre-closed operator in topological spaces. In 1965, Njstad [13] has defined the concept of α -open sets in topological spaces In 1983, A.S.Mashhour et al [9] have defined and studied the concepts of α -closed sets, α -closure operator, α -continuity, α -openness and α -closedness in topology. For the first time, N.Levine [6] has introduced the notion g-closed sets and g-open sets in topology. In 1994, H.Maki et al [7] have defined and studied the concepts of α -closed sets in topological spaces.

in topological spaces . Recently , in 2014 Thakur C.K.Raman et al [3& 15] have defined and studied the concepts of αg -separation axioms in tology. In 1995 , J.Dontchev [4] has defined and studied the concept of gsp-closed sets, gsp-open sets , gsp-continuous functions and gsp-irresoluteness in topology. In this paper , using gsp-open sets , we define and study the notions of gsp-T₀, gsp-T₁, gsp-T₂ gsp-R₀ and gsp-R₁ spaces .

II. PRELIMINARIES

Throughout this paper (X , τ) and ($Y,\,\sigma)$ (or simply X and Y) denote topological spaces on which no

separation axioms are assumed unless explicitly stated . If A be a subset of X, the closure of A and the interior

of A is denoted by Cl(A) and Int(A) ,respectively.

We give the following define are useful in the sequel :

Definition 2.1: The subset of A of X is said to be.

(i) A pre-open [8]set, if $A \subset Int(Cl(A))$

(ii) A semi-pre open[1] set, if $A \subset Cl(Int(Cl(A)))$

(iii) α -open [13] set, if A \subset *Int*(*Cl*(*Int*(*A*)))

The compliment of a pre-open (resp., semipre-open , α -open) set is called pre-closed [5] (resp., semipre-closed [1], α -closed[9]) set in space X. The family of all pre-open (resp. semipre-open, α -open) sets of a space X is denoted by PO(X) (resp., SPO(X), α O(X)) and that of pre-closed (resp.semipre-closed, α -closed) sets of a space X is denoted by PF(X), (resp.SPF(X) α F(X)).

Definition 2.2[5]: The intersection of all pre-closed sets of X containing subset A is called the pre-closure of A and is denoted by pCl(A).

Definition 2.3[1]: The intersection of all semipre-closed sets of X containing subset A is called the semipreclosure of A and is denoted by spCl(A).

Definition 2.4[9]: The intersection of all α -closed sets of X containing subset A is called the α -closure of A and is denoted by $\alpha Cl(A)$.

Definition 2.5[5]: The union of all pre-open sets of X contained in A is called the pre-interior of A and is denoted by pInt (A).

Definition 2.6[1]: The union of all semipre-open sets of X contained in A is called the semipre-interior of A and is denoted by spInt(A).

Definition 2.7[9]: The union of all α -open sets of X contained in A is called the α -interior of A and is denoted by α Int(A).

Definition 2.8 : A sub set A of a space X is said to be :

- (i) a generalized closed (briefly, g- closed) [6] set if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open set in (X, τ)
- (ii) a α -generalized closed (briefly, α g-closed) [7] set if α Cl(A) $\subseteq U$ whenever A $\subseteq U$ and U is open set in (X, τ)
- (iii) a generalized semi-preclosed (briefly, gsp-closed) [4] set if $spCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ)
- (iv) a generalized pre -closed (briefly, gp- closed) [14] set if $pCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ)

The complement of a g-closed (resp, α g-closed, gsp-closed, , gp-closed) set in X is called g-open (resp. α g-open, gsp- open, , gp- open) set in X. The family of all gsp-open sets of X is denoted by GSPO(X).

Definition 2.9[12]: The intersection of all gp-closed sets of X containing subset A is called the gp-closure of A and is denoted by gpCl(A).

Definition 2.10[3]: The intersection of all α g-closed sets of X containing subset A is called the α g-closure of A and is denoted by α gCl(A).

Definition 2.11 [12]: A space X is called generalized pre- T_1 (briefly written as $gp-T_1$) iff to each pair of distinct points x,y of X, there exists a pair of gp-open sets containing x but not y and the other containing y but not x.

Definition 2.12 [12]: A space X is said to be $gp-T_2$ space if for each pair of distinct points of X there exist disjoint gp-open sets containing them.

Definition 2.13 [3&15]: A space X is called α -generalized-T₀ (briefly written as α g-T₀) iff to each pair of distinct points x,y of X, there exists a α g-open set containing one but not the other.

Definition 2.14 [3&15]: A space X is called α -generalized-T₁ (briefly written as αg -T₁) iff to each pair of distinct points x,y of X, there exists a pair of αg -open sets containing xbut not y and the other containing y but not x.

Definition 2.15 [10]: A space X is called semipre- T_0 (briefly written as semipre- T_0) iff to each pair of distinct points x,y of X, there exists a semipre-open set containing one but not the other.

Definition 2.16 [10]: A space X is called semipre- T_1 (briefly written as semipre- T_1) iff to each pair of distinct points x,y of X, there exists a pair of semipre-open sets containing xbut not y and the other containing y but not x.

III. PROPERTIES OF GSP-SEPARATION AXIOMS

We, define the following

Definition 3.1: A space X is called $gsp-T_0$ iff to each pair of distinct points x,y of X, there exists a gsp-open set containing one but not the other .

Definition 3.2 : A space X is said to be $gp-T_0$ space if for each pair of distinct points of X there exists a gp-open set containing one but not the other.

Clearly, every semipre- T_0 is gsp- T_0 . Also, we have the following,

Note 3.3: In view of definitions of αg -closed, gp-closed sets and gsp-closed sets, the following is observed in [2]:

 α g-closed set \Rightarrow gp-closed set \Rightarrow gsp-closed set

Hence we have the following implication:

 αg -T₀-space \rightarrow gp-T₀-space \rightarrow gsp-T₀-space We ,define the following **Definition 3.4 :** A generalized semipre-closure of set A is denoted by gspCl(A), is the intersection of all gsp-closed sets that contain A

We characterize gsp-T₀-spaces in the following

Theorem 3.5: If in any topological space X, gspclosures of distinct points are distinct, then X is $gsp-T_0$

Proof: Let $x,y \in X$, $x \neq y$ imply $gspCl(\{x\}) \neq gspCl(\{y\})$. Then there exists a point $z \in X$ such that z belongs one of

two sets, say, gspCl({y}) but not to gspCl({x}). If we suppose that $z \in gspCl(\{x\})$, then $z \in gspCl(\{y\}) \subseteq z \in gspCl(\{x\})$, which is contradiction. So, $y \in X$ - gspCl({x}), where X- gspCl({x}) is gsp-open set which does not contain x. This shows that X is gsp-T₀.

Next ,we give the following

Theorem 3.6: A space X is $gsp-T_0$ iff $gspCl(\{x\})\neq gspCl(\{y\})$ for every pair of distinct points x,y of X. Proof follows from Th.3.5.

Theorem 3.7 : Every sub space of an gsp-T₀ space is gsp-T₀ space.

Proof: Let x be a space and (Y, τ^*) be a subspace of X where τ^* is the relative topology of τ on Y. Let x,y be two distinct points of Y. As Y \subseteq X, x and y are distinct points X. Since X is an gsp-T₀ space, there exists an gsp-

open set G such that $x \in G$ but $y \notin G$. Then $G \cap Y$ is an gsp-open set in (Y, τ^*) which contains x but does not

contain y. Hence (Y, τ^*) is an gsp-T₀ space.

We, define the following

Definition 3.8: A function f: $X \rightarrow Y$ is said to be point -gspclosure 1-1 iff $x,y\in X$ such that $gspCl(\{x\})\neq gspCl(\{y\})$ then $f(gspCl(\{x\}))\neq f(gspCl(\{y\}))$

Theorem 3.9: If function f: X \rightarrow Y is point -gspclosure 1-1 and X is gsp-T₀ then f is 1-1

Proof: Let $x,y \in X$ with $x \neq y$. Since X is $gsp-T_0$, then $gspCl(\{x\})\neq gspCl(\{y\})$ by Theorem 3.6. But f is point - gspclosure 1-1 implies that $f(gspCl(\{x\}))\neq f(gspCl(\{y\}))$. Hence $f(x)\neq f(y)$. Thus, f is 1-1.

Theorem 3.10: Let $f: X \to Y$ be amapping from $gsp-T_0$ space X into $gsp-T_0$ space Y. Then f is pointgspclosure 1-1 iff f is 1-1

Prof follows from Theorem 3.5 above

Theorem 3.11: Let f: $X \rightarrow Y$ be an injective gsp-irresolute mapping. If Y is gsp-T₀ then X is gsp-T₀.

Proof: Let $x,y \in X$ with $x \neq y$. Since f is injective and Y is gsp-T₀, there exists a gspopen set V_x in Y such that f(x)

 ϵV_x and $f(y) \notin V_x$ or there exists a gspopen set V_y in Y such that $f(y) \epsilon V_y$ and $f(x) \notin V_y$ with $f(x) \neq f(y)$. By gsp

irresoluteness of f, $f^{1}(V_{x})$ is gspopen set in X such that $x \in f^{1}(V_{x})$ and $y \notin f^{1}(V_{x})$ or $f^{1}(V_{y})$ is gspopen set in X

such that $y \in f^{1}(V_{y})$ and $x \notin f^{1}(V_{y})$. This shows that X is gsp-T₀.

We define the following mapping analogous to always semi-pre-open mapping.

Definition 3.12 : A mapping $f:X \rightarrow Y$ is said to be always gsp-open, if the image of every gsp-open set of X is gsp-open in Y.

Lemma 3.13 : The property of a space being $gsp-T_0$ is preserved under one-one, onto and always gsp-open mapping.

Proof: Let X be a gsp-T₀ space and Y be any topological space. Let $f: X \to Y$ be a one-one, onto always gsp-open mapping from X to Y. Let u, $v \in Y$ with $u \neq v$. Since f is one-one, onto, there exist distinct points $x, y \in X$. Such

that f(x) = u, f(y) = v. Since X is on gsp-T₀ space. There exists gsp-open set G in X such that $x \in G$ but $y \notin G$. Since f is always gsp-open, f(G) is an gsp-open set containing f(x) = u but not containing f(y) = v. Thus there exists an gsp-open set f(G) in y such that $u \in f(G)$ but $v \notin f(G)$ and hence Y is an gsp-T₀ space.

Next, we define the following.

Definition 3.14 : A sub set A of a space X is called a gspD-set if there are two gsp-open subsets U and V such that $U \neq X$ and A = U - X.

Clearly, every gsp-open set is gspD-set.

We, define the following

Definition 3.15: A space X is called a $gsp-D_0$ if for any disjoint pair of points x and y of X there exists a gspD-set of X containing x but not y or a gspD-set of X containing y but not x.

Cleary, every $gsp-T_0$ space is $gsp-D_0$ space.

We prove the following

Theorem 3.16 : If $f:X \rightarrow Y$ is gsp-irresolute surjective function and A is a gspD-set in Y, then the inverse image of A is a gspD-set in X.

Proof: Let A be a gspD-set in Y. Then there are gsp-open sets U_1 and U_2 in Y such that $A = U_1 - U_2$ and $U_1 \neq Y$. By the gsp-irresoluteness of f, $f^1(U_1)$ and $f^1(U_2)$ are gsp-open set in X. Since $U_1 \neq Y$, we have f ${}^1(U_1) \neq X$. Hence $f^1(A) = f^1(U_1) - f^1(U_2)$ is a gspD-set.

We define the following.

Definition 3.17 : A space (X, τ) is gsp-T₁ if and only if for $x, y \in X$ such that $x \neq y$, there exists a gsp-open set containing x but not y and there is a gsp-open set containing y but not x.

It is easy to verify the following :

(i) Every semipre- T_1 space is an gsp- T_1 space

(ii) Every $gsp-T_1$ space is an $gsp-_{T0}$ space

(iii) Every sg- T_1 space is an gsp- T_1 space . Also,

In view of above Note-3.3 , we have the following implication :

 αg -T₁-space \rightarrow gp-T₁-space \rightarrow gsp-T₁-space

Theorem 3.18 : A space X is an gsp-T₁ space if and only if $\{x\}$ is gsp-closed in X for every $x \in X$.

Proof: Let x,y be two distinct points X such that $\{x\}$ and $\{y\}$ are gsp-closed. Then $X - \{x\}$ and $Y - \{y\}$ are gsp-open in X such that $y \in X - \{x\}$ but $x \notin X - \{x\}$ and $x \in X - \{y\}$ but $y \notin X - \{y\}$. Hence, X is an gsp-T₁ space.

Conversely, let X be an gsp-T₁ space and x be any arbitrary point of X. If $y \in X - \{x\}$, then $y \neq x$. Now the space being gsp-T₁ and y is a point different from x, there exists an gsp-open set G_y such that $y \in G_y$ but $x \notin Gy$. Thus for each $y \in X - \{x\}$, there exists an gsp-open set G_y such that $y \in G_y \subset X - \{x\}$. Therefore $\bigcup \{y \mid y \neq x\} \subset \bigcup \{G_y \mid y \neq x\} \subset \bigcup \{G_y \mid y \neq x\} \subset X - \{x\}$ which implies that

 $X - \{x\} \subset \bigcup \{G_{y} | y \neq x\} \subset X - \{x\}.$

Therefore, $X - \{x\} = \bigcup \{G_y | y \neq x\}$. Since G_y gsp-open in X and the union of gsp-open sets in X is gsp-open in X, $X - \{x\}$ is gsp-open in X and so $\{x\}$ is gsp-closed.

Recall the following.

Definition 3.19 [11]: A topological space (X, τ) is ags-symmetric if for any x and y in X, $x \in \alpha gsCl(\{y\})$ implies $y \in \alpha gsCl(\{x\})$.

We, define the following.

Definition 3.20 : A topological space (X, τ) is semipre symmetric if for x and y in x, x \in semipreCl({y}) implies y \in semipreCl({x}).

Definition 3.21 : A topological space (X, τ) is gsp-symmetric if for any x and y in X, $x \in gspCl(\{y\})$ implies $y \in gspCl(\{x\})$.

Clearly, every semipre-symmetric space is gsp-symmetric space.

Theorem 3.22 : If $\{x\}$ is gsp-closed for each x in X then a space X is semipre-symmetric.

Proof: Suppose $x \in gspCl(\{y\})$ and $y \notin gspCl(\{x\})$. Since $\{y\} \subset X - gspCl(\{x\})$ and $\{y\}$ is gsp-closed, $gspCl(\{y\}) \subset X - gspCl(\{x\})$. Thus $x \in X - gspCl(\{y\})$, a contradiction.

Theorem 3.23 : If a space X is extremely disconnected (i.e., closure of every open set is open) and semipre-symmetric, then $\{x\}$ is gsp-closed, for each x in X.

Proof: Suppose $\{x\} \subseteq U$ where U is semipre-open and gspCl($\{x\}) \notin U$.

Then gspCl({x }) \cap (X–U) $\neq \emptyset$ Let y \in gspCl({x }) \cap (X–U).We have x \in gspCl({x}) \subset (X–U) and x \notin U, a contradiction. Hence {x} is gsp-closed in X.

Corollary 3.24 : If X is extremely disconnected, then X is $gsp-T_1$ if and only if X is

semipre-symmetric.

Proof: Obvious

Next, we have the following invariant properties.

Theorem 3.25 : Let $f:X \rightarrow Y$ be an gsp-irresolutes injective map. If Y is gsp-T₁, then X is gsp-T₁.

Proof: Assume that Y is gsp-T₁. Let $x,y \in Y$ be such that $x \neq y$. Then there exists a pair of gsp-open sets u,v in Y such that $f(x) \in U$, $f(y) \in V$ and $f(x) \notin V$, $f(y) \notin U$. Then $x \in f^{-1}(U)$, $y \in f^{-1}(V)$, $x \notin f^{-1}(U)$ and $y \notin f^{-1}(V)$. Since f is gsp-irresolute, X is gsp-T₁.

Corollary 3.26: A topological space (X, τ) is gsp-T₁ if and only if every finite subset of X is gsp-closed. We, define the following

Definition 3.27 : A space X is called $gsp-D_1$ if for any distinct pair of points x and y of X there exists a gsp-D set of X containing x but y and a gsp-D set of X containing y but not x.

Clearly, every $gsp-T_1$ space is $gsp-D_1$ space.

Theorem 3.28: If Y is a gsp-D₁ and f: $X \rightarrow Y$ is gsp-irresolute and bijective, then X is gsp-D₁.

Proof: Suppose that Y is a gsp-D₁ space. Let x and y be any pair of distinct points in X. Since f is injective and Y is gsp-D₁, there exist gsp-D sets G_x and G_y of Y containing f(x) and f(y) respectively, such that $f(y) \notin G_x$ and

 $f(x) \notin G_y$. By Theorem 3.16, $f^1(G_x)$ and $f^1(G_y)$ are gsp-D sets in X containing x and y respectively. This implies that X is a gsp-D₁ space.

We, define and study the concept of $gsp-R_0$ spaces in the following :

Definition 3.29: Let X be a topological space and $A \subset X$. Then the generalized pre-kernel of A denoted by gsp-ker(A), is defined to be the set gsp-ker(A)= $\{G \in GSPO(X) | A \subset G\}$

Lemma 3.30 : Let X be a topological space and x X. Then $y \in gsp-ker(\{x\})$ if and only if $x \in gspCl(\{y\})$

Proof: Suppose that y gsp-ker($\{x\}$). Then there exists a gsp-open set V containing x such that y V.Therefore, we have x gspCl($\{y\}$).

Conversely, Suppose that x gsp-ker($\{y\}$). Then there exists a gsp-open set V containing y such that x V.Therefore, we have y gspCl($\{x\}$).

Lemma.3.31: Let X be a topological space and A be a subset of X. Then gsp-ker(A)={ x X|gspCl({x}) $A \neq \emptyset$ }

Proof: Let x gsp-ker(A) and suppose gspCl({x})= \emptyset . Hence x X|gspCl({x}) which is a gsp-open set containing A. This is absurd. Since x gsp-ker(A). consequently, gspCl({x}) $A \neq \emptyset$. Next, let gspCl({x}) $A \neq \emptyset$ and suppose that x gsp-ker(A). Then there exists gsp-open set U containing A and x U. Let y gspCl({x}) A. hence, U is a gsp-neighbourhood of y where x U. But this is a contradiction, Therefore

x gsp-ker(A) and the claim.

Now, we define the following

Definition 3.32: A space X is said to be $gsp-R_0$ space if every gsp-open set contains the gsp-closure of each of its singletons.

Clearly , every $gsp-R_0$ space is $gsp-T_1$ space.

We recall the following :

Definition 3.33 [12]: A topological space (X, τ) is said to be $gp-R_0$ space if every gp-open set contains the gp-closure of each of its singletons.

Definition 3.34 [3]: A topological space X is said to be $\alpha g \cdot R_0$ space if $\alpha gCl(\{x\}) \subset U$ Whenever U is αg -open and x U.

Hence, we have the following w.r.t. Note-3.3:

 αg -R₀-space \rightarrow gp-R₀-space \rightarrow gsp-R₀-space

Now , we characterize the $gsp-R_0$ spaces in the following.

Theorem 3.35: For any topological space X the following properties are equivalent:

(i) X is gsp-R₀ space;

(ii) Foe any $F \in GSPC(X, T) \ x \notin F \Rightarrow F \subset U$ and $x \notin U$ for some $U \in GSPC(X, T)$;

(iii) For any $F \in GSPC(X, T) \ x \notin F \Rightarrow F \cap gspCl(\{x\}) = \varphi$;

(iv) For any distinct points x and y either $gspCl({x}) = gspCl({y})$ or $gspCl({x})$

 $gspCl(\{y\})=\phi.$

Proof: (i) \Rightarrow (ii): Suppose $F \in GSPC(X, T)$ and $x \notin F$. Then by(i) $gspCl(\{x\}) \subset X|F$. Set $U=Xgsp(\{x\})$ then $U \cup \in GSPO(X, T)$, $F \subset U$ and $x \notin U$

(ii) \Rightarrow (iii): Let $F \in GSPC(X, T)$, $x \notin F$. Therefore, there exists $U \in GSPO(X, T)$ such that $F \subset U$ and $x \notin U$. Since $U \in GSPO(X, T)$, $Ug \cap spCl(\{x\}) = \varphi$. and $F \cap gspCl(\{x\}) = \varphi$.

(iii) \Rightarrow (iv): Suppose that gspCl({x}) \neq gspCl({y}) for distinct points x, y \in X. There exist z \in gspCl({x}) such that $z \notin$ gspCl({y}). One can also assume that $z \in$ gspCl({y}) such that $z \notin$ gspCl({x}). There exists

 $V \in GSPO(X, T)$ such that $y \notin V$ and $z \in V$. Hence $x \in V$. Therefore we obtain $x \notin gspCl(\{y\}).By(iii)$ we obtain $gspCl(\{x\}) \cap gspCl(\{y\}) = \phi$. The proof of otherwise is similar.

(iv) \Rightarrow (i): Let V \in GSPO(X, T) and x \in V. For each $y \notin V$, $x \neq y$ and $x \notin$ gspCl($\{y\}$). This show that gspCl($\{x\}$) \neq gspCl($\{y\}$). By (iv) gspCl($\{x\}$) \cap gspCl($\{y\}$)= φ for each $y \in X | V$. Hence gspCl($\{x\}$) \cap (U{gspCl($\{y\}$)| $y X | V \} = \varphi$. On the other hand, since V \in GSPO(X, T) and $y \notin X | V$. We have gspCl($\{y\}$) \subset X|V. Therefore X|V= U{gspCl($\{y\}$)| $y X | V \}$. Therefore we obtain (X|V) \cap gspCl($\{x\}$)= φ and gspCl($\{x\}$) \subseteq V. Hence (X, T) is gsp-R₀ space.

Finally, we define and study the following.

Definition 3.36: A space X is said to be a gsp-R₁ if for x,y in X with gspCl({x}) \neq gspCl({y}), there exists disjoint gsp-open sets U and V such that gspCl({x}) \subseteq U and gspCl({y}) \subseteq V.

We recall the following

Definition 3.37[12] : A topological space X is said to be $gp-R_1$ space if for x,y in X with $gpCl({x})$ $gpCl({y})$, there exist disjoint gp-open sets U and V such that $gpCl({x})$ is a subset of U and $gpCl({y})$ is a subset of V.

Definition 3.38[3]: A topological space X is said to be αg -R₁ space if for x,y in X with $\alpha gCl(\{x\})$

 $gpCl(\{y\})$, there exist disjoint αg -open sets U and V such that $\alpha gCl(\{x\})$ is a subset of U and $\alpha gCl(\{y\})$ is a subset of V

In view of Note-3.3, we have the following :

 αg -R₁-space \rightarrow gp-R₁-space \rightarrow gsp-R₁-space

We, prove the following

Theorem 3.39: If X is gsp-R₁, then X is gsp-R₀-space.

Proof: Let U be a gsp-open and x U. If y U then since x $gspCl(\{y\})$, $gspCl(\{x\}) gspCl(\{y\})$. Hence there exists a gsp-open V such that $gspCl(\{x\})$ V and x V, which implies y $gspCl(\{x\})$. Thus $gspCl(\{y\})$ U. Therefore (X T) is gsp P space.

Therefore (X, τ) is gsp-R₀ space.

REFERENCE

- [1]. D.Andrijevic, Semipreopen sets, Math. Vensik 38(1),(1986), 24-32.
- [2]. I. Arokiarani, K.Balachandran and J.Dontchev "Some characterizations of gp-irresolute and gp-continuous maps between Topological spaces" Men.Fac.Sci.Kochi Univ(Math) 20(1999), 93-104
- [3]. S.Balasubramanian and Ch.Chaitanya'' On αg-Separation Axioms'' International Journal Of Mathematics Archive-3(3), 2012,Page: 877-888
- [4]. J.Dontchev ,On generalizingsemi-pre open sets,Mem.Fac.Sci. Kochi.Univ. .Ser. A.Math,6(1995), 35-48.
- [5]. S.N.El-Deeb, I.A. Hasanein, A.S.Mashhour and T. Noiri, On p-regular spaces, Bull Math. Soc. Sci. Math. R.S.Roumanie (N.S), 27(75), (1983), 311-315.
- [6]. N.Levine, Generalized closed sets in Topology, Rend.Cric.Math.Palermo, 19(2)(1970), 89-96.
- [7]. H.Maki, R.Devi and K.Balachandran, Associated topologies of generalized α-closed sets & α-generalized closed sets, Mem.Rac.Sci.Kochi.Univ.Ser.A.Math, 15(1994), 51-63.
- [8]. A.S. Mashhoour, M.E. Abd El-Monsef and S.N. El-Deeb, On Pre continuous and Weak Precontinuous Mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), pp.47-53.
- [9]. A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, On α- continuous and α-open mapping, Acta. Math. Hungar. 41 (1983), 213-218.
- [10]. G B Navalagi "Definition Bank in General Topology" Topology Atlast Preprint# 449
- [11]. G.Navalagi, M.Rajmani and K.Viswanathan αgs-Separation Axioms In Topology Inernational Joueal of General Topology Vol. 1,No. 1 (June 2007),p. 43-53
- [12]. Govidapp Navalagi and Girish Sajjanshetter "generalized Pre-R₀ spaces". IJECSM. Vol.3,No.1, January-June 2012, pp 7-12.
- [13]. O.Njstad, On some classes of nearly open sets, Pacific Jour.of Mathematics, 15(1965), pp. 961-970.
- [14]. T. Noiri, H. Maki and J. Umehara, Generalized preclosed functions, Mem.Fac.Sci.Kochi. Univ. Ser.A, Math, 19(1998)13-24
- [15]. Thakur C.K.Raman, Vidyottama kumari, M.K.Sharma " α-generalized & α^{*}-Separation Axioms for Topological Space" ISOR Journal of Mathematics (IOSR-JM) Volume10. Issue 3 Ver.VI (May-June 2014),pp 32-36.

R G Charantimath"Properties Of Gsp-Separation Axioms In Topology". International Journal of Mathematics and Statistics Invention (IJMSI), vol. 06, no. 04, 2018, pp. 04-09.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _