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Abstract In this paper we analyzed an SEIR compartment model of a Swine flu with mixing transmission and 

disease induced death rate. The stability of the diseases-free equilibrium and the endemic equilibrium is 

obtained by Routh-Hurwitz criteria. The basic reproduction number 
0

R  has also been discussed, when 1
0
R

, the disease free equilibrium point is stable. In case 1
0
R , there exists endemic equilibrium. Numerical 

simulation is carried out for different values of contact rate to understand the transmission behavior of the 

disease. 
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I. INTRODUCTION 

Mathematical model have become important tools to study and analyze the spread and control of 

infectious diseases. Almost all mathematical models of diseases start from the same basic premise; that the 

population can be subdivided into a set of distinct classes, dependent upon their experience with respect to the 

diseases. In this disciplinary V. H. Badshah and Amit Kumar [20] gave a primary result of mathematical 

modeling. Cappaso and Serio [19] introduced a saturated incidence rate into epidemic model. Mena – Lorca and 

Hethcote [5] also analyzed an SIRS model with the same saturation incidence. Ruan and Wang [16] studied an 

epidemic model with a specific nonlinear incident rate. Liu et al. [22,23], Derrick and Ven den Driessche[24] 

Hethcote and Ven Den Driessche [4]  proposed an epidemic model with non-monotonic incidence rate. After 

that Xiao and Raun [27] discussed non-monotonic incidence rate.  

Swine Flu is highly communicable respiratory disease "refers to infection caused by those strains of 

infection virus, called the swine influenza virus, that generally infect pigs". Symptoms of swine flu are fever, 

which is usually high; cough; runny nose or stuffy nose; sore throat; body aches; headache; chills; fatigue or 

tiredness, which can be extreme; diarrhea and vomiting, sometimes, but more commonly seen than with 

seasonal flu. 

 
Several different incidence rates have been planned by many researchers [see for instance, Anderson 

and May [14], Elsteva and Matias [6], Hethcote and Driesech [4], Ruan and Wang [16], Liu, et. al. [22,23] 

Derrick and Ven den Driessche [24] , Alexander and Moghadas [7] and Xiao and Raun [27] , in year 2010 

Pathak et. al. gave a result on rich dynamics of an SIR epidemic model Recently Porwal, et. al. [9,10,11,12]] 

presented their work on respected field . 
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II. THE MATHEMATICAL MODEL 
2.1 Basic Model 

Nidhi et. al. [8] has proposed an SEIR epidemic model with mixed transmission which describes swine flu effect 

of certain serious diseases on the community when the number of infective is getting larger. Under by 

differential equations 
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where )( tS , )( tI , )( tR
 
represent the number of susceptible, infective and recovered individual respectively.  

 A  = the recruitment rate of the population, 

  = the natural death rate of the population, 

c  = the contact rate at which the susceptible population is converted into exposed population. rate of 

the population, 

 r = the recovery rate, 

   = the effective transmission coefficient, 

  = the natural recovery rate of the infective individuals. 

2.2. Model for Induced death rate and Immigration rate. 

Now the transmissions of shown as figure. 

 
 

Now  the  model )2.2(
 
with disease induced death rate  , and immigration rate , shown as : 
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where 

)( tS  the number of susceptible, 

)( tI  the number of infective, 
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)( tR  the number of  recovered person respectively.  

 A  = the recruitment rate of the population, 

  = the natural death rate of the population, 

c  = the contact rate at which the susceptible population is converted into exposed population, 

 r = the recovery rate, 

   = the effective transmission coefficient, 

  = the natural recovery rate of the infective individuals, 

  =  is the induced death rate, 

  = is the immigration rate. 

III. MATHEMATICAL ANALYSIS 

SIR MODEL WITH EQUILIBRIUM POINT AND STABILITY ANALYSIS  
In this case the system equation (5) to (8) reduce to the equilibrium points the above differential equation should 

be equated to zero. 

,0


  SrI
IS

cSI
A       (9) 
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When ,0I  the equation (9) gives 
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By equation (12) we have,  
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Again by equation (11) 
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The system of equation (9) to (12) always has the DFE 






  0,0,0,
0 

AP for any set of parameter 

values. The given system has unique endemic equilibrium point  **,*,*,
*

RIESP   we write from 

equation (11) 
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Therefore substituting equation (13) by (10) we get, 
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Now we substituting (14) in (9) take .
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By equation (12), now 
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Where 
  
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The basic reproduction number 
  
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Theorem 3.1. The disease free equilibrium of the system is locally asymptotically stable if 1
0
R  and 

unstable if 1
0
R .  

Proof. We consider equations 
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At equilibrium point 
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The characteristics equation ,0
0

 IJ  is given as  
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It is clear that two eigen values    ,  are negative, other eigen values are given by the quadratic 

equation 
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Theorem 3.2. If 1
0
R  the endemic equilibrium 

*
P is locally asymptotically stable.  

Proof. The variation matrix at the endemic point  *****
,,, RIESP   
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The characteristics equation ,0
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It is clear that one eigen value is negative    and other eigen values are given by the cubic equation. 
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Where he cubic equation 
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By Routh-Hurwitz criteria, the system (2.2) is locally asymptotically stable if 0
1
a , 0

3
a and

321
aaa  . 

Thus, 
*

P is locally asymptotically stable.  

 

IV. NUMERICAL ANALYSIS. 
1.1. FOR DISEASE FREE EQUILIBRIUM. 

From the numerical values of the parameters as 

,1A ,3.0c  ,1.0r ,02.0  ,1.0 ,01.0 ,02.0 and ,2.0
 
Then the calculated 

disease free equilibrium point and basic reproductive number are:    ,0,0,0,600,0,0,
0

SP and 

.101666.0
0

R  These values shows that  ,tS
 
goes to its steady state, while  ,tE  ,tI and  ,tR  goes 

to zero with respect to time. Hence the disease dies out. 
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1.2.  FOR ENDEMIC EQUILIBRIUM 

We change the value of ,003.0c and all other parameters are as above. Then we obtain 

   4545.5,909.10,3635.16,3635.16,,,
*****

RIESP and .116666.0
0

R therefore, the 

endemic equilibrium 
*

P is locally asymptotically stable. These values shows that number of susceptible population are also same number 

of exposed population then disease IES ,, and ,R goes to their steady state values. Hence the disease becomes endemic. 
 

V. CONCLUSION 

In this paper we have carried out result on SEIR model of Swine Flu model with mixed transmission and induced death rate and 
the existence of stability of disease- free and endemic equilibrium. In this model we used Routh–Hurwitz Stability Criterion to provide the 

critical evaluation of the epidemics of Swine Flu, and apply Jacobian method to determine the effect of variations in the potential of the 

epidemic for their prediction. Stability of infectious disease through the model is depending upon eigen value and create the given system 
slightly stable.  

Where the basic reproduction number

  


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

r

c
R

0

 . Our main result indicates that when ,1
0
R  the 

diseases-free equilibrium is 
0

P

 

is stable and when ,1
0
R  the endemic equilibrium 

*
P exist and locally asymptotically stable. For 

verify our result we used numerical analysis for verification of our result. 
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