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Abstract: A one parameter Poisson-Mishra distribution has been obtained by compounding Poisson 

distribution with Mishra distribution of B.K.Sah(2015). The first four moments about origin have been obtained. 

The maximum likelihood method and the method of moments have been discussed for estimating its parameter. 

The distribution has been fitted to some data-sets to test its goodness of fit. It has been found that this 

distribution gives better fit to all the discrete data sets which are used by Sankaran (1970) and others to test 

goodness of fit of Poisson-Lindley distribution.  
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I. INTRODUCTION 
Lindley (1958) introduced a one-parameter continuous distribution given by its probability density function, 
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This distribution is known as Lindley distribution and its cumulative distribution function has been obtained as  
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Sankaran (1970) obtained a Poisson-Lindley distribution given by its probability mass function 
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assuming that the parameter of a Poisson distribution has Lindley distribution which can symbolically be 

expressed as 

Poisson    



Lindley .    … … …   (1.4) 

He discussed that this distribution has applications in errors and accidents. 

The first four moments about origin of this distribution have been obtained as 
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And its variance as    
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Ghitany et al (2009) discussed the estimation methods for the one parameter Poisson-Lindley distribution (1.3) 

and its applications. 

In this paper, a one parameter Poisson-Mishra distribution has been obtained by compounding Poisson 

distribution with Mishra distribution 

 

II. MISHRA DISTRIBUTION 

A continuous random variable X is said to follow Mishra distribution with parameter   if it assumes only non-

negative value and its probability density function (pdf) is given by 
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The r

th 
moment about origin of this distribution is obtained as 
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Moment Generating Function  ( )
x

M t   

Moment generating function of Mishra distribution can be obtained as 
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Distribution Function 

Distribution function of this distribution function can be obtained as 
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III. POISSON-MISHRA DISTRIBUTION 
A Poisson-Mishra distribution can be obtained by mixing Poisson distribution with the Mishra distribution (2.1). 

Suppose that the parameter  of Poisson distribution follows Mishra distribution (2.1).Thus, the one parameter 

Mishra mixture of Poisson distribution can be obtained as 
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We name this distribution as’ Poisson-Mishra distribution (PMD)’. The expression (3.2) is the probability mass 

function of PMD. 

 

IV. MOMENTS 
The r

th
 moment about origin of the PMD (3.2) can be obtained as 
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Obviously, the expression under bracket is the r
th

 moment about origin of the Poisson distribution. So, the first 

four moments about origin of the PMD can be obtained as 
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Taking r=2 in (4.1) and using the second moment about origin of the Poisson distribution, the second moment 

about origin of the PMD is obtained   
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Similarly, taking r=3 and 4 in (4.1) and using the respective moments of the Poisson distribution, we get finally, 

after a little simplification, the third and fourth moments about origin of the  one parameter PMD

  
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Probability Generating Function: 

 The probability generating function of the one parameter PMD (3.2) can be obtained as 
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Moment Generating Function: 
The moment generating function of the one parameter PMD (3.2) can be obtained as 
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V. ESTIMATION OF PARAMETER 
Here, at first, the method of moments has been used to estimate the parameter of one parameter PMD.  An 

estimate of the parameter  of this distribution can be obtained by solving the expression (4.2) of 
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Replacing the population moment by the respective sample moment and solving the expression (5.1) by using 

Regula-Falsi method, we get an estimate of  . 

 

The Maximum Likelihood Estimates: 
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and the log likelihood function is obtained as
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The likelihood equation is obtained as 
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Solving the expression (5.4), we get an estimate of . 

 

VI. GOODNESS OF FIT 
The one parameter Poisson-Mishra distribution (PMD) has been fitted to a number of discrete data-sets to which 

earlier one parameter Poisson-Lindley distribution (PLD)has been fitted and it is found that to all these data-sets, 

the PMD provides better fits than the one parameter PLD of Sankaran (1970) and the two-parameter PLD of 

Rama Shanker and Mishra (2014). Here the fittings of the PMD to three data-sets have been presented in the 
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following tables. The first data is the Student's historic data Hemocytometer counts of yeast cell, used by Borah 

(1984) for fitting the Gegenbauer distribution and the second is due to Kemp and Kemp (1965) regarding the 

distribution of mistakes in copying groups of random digits and the third is due to Beall(1940) regarding the 

distribution of Pyraustanublilalis in 1937. 

 

Table –I 

 Hemocytometer Counts of Yeast Cell 

        

Table-II 

 Distribution of mistakes in copying groups of random digits 
Number of errors 
per group 

Observed frequency Expected frequency of 
PLD 

Expected frequency of 
two-parameter PLD 

Expected frequency of 
PMD 

0 

1 

2 
3 

4 

35 

11 

8 
4 

2 

33.1 

15.3 

6.8 
2.9 

1.2 

32.4 

15.8 

7.0 
2.9 

1.9 

32.9 

15.3 

6.8 
3.6 

1.4 

Total 60 59.3 60 60 

1
μ   0.7833    

2
   1.8500    



  
 1.7434 1.9997 2.1654758 



   - 0.3829 - 

2
   2.20 2.11 1.72 

P-value  0.48 0.28 0.58 

 

Table-III 

 Distribution of Pyraustanublilalis in 1937 
Number of errors 

per group 

Observed frequency Expected frequency of 

PLD 

Expected frequency of 

two-parameter PLD 

Expected frequency of 

PMD 

0 
1 

2 

3 
4 

5 

33 
12 

6 

3 
1 

1 

31.5 
14.2 

6.1 

2.5 
1.0 

0.7 

31.9 
13.8 

5.9 

2.5 
1.1 

0.8 

31.4 
14.2 

6.2 

2.6 
1.0 

0.6 

Total 56 56 56 56 

 

 

 

Number of Yeast 
Cell per square 

Observed frequency Expected frequency of 
PLD 

Expected frequency of 
two-parameter PLD 

Expected frequency of  
PMD 

0 

1 

2 
3 

4 

5 
6 

213 

128 

37 
18 

3 

1 
0 

234.4 

99.3 

40.4 
16.0 

6.2 

2.4 
1.3 

227.6 

101.5 

43.6 
17.9 

6.8 

2.2 
0.6 

234.3 

99.3 

40.6 
16.0 

6.1 

2.3 
1.4 

Total 400 400 400 400 

1
   0.6825    

2
   1.2775    



   1.9602 3.6728 2.3914 



   - -0.0916 - 

2
   14.3 12.25 14.23 

d.f  4 3 4 

P-value  0.0068 0.0069 0.007 
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1
   0.75    

2
   1.85714    



  
 1.8081 1.5257 2.234 



  
 - 0.3.8873 - 

2
   0.53 0.36 0.47 

P-value  0.83 0.798 0.85 

 

The Kolmogorov - Smirnov Test (K-S Test): 
The K-S test is a simple non parametric method for testing whether there is a significant difference between the 

observed frequency distribution and a theoretical frequency distribution. The K-S test is therefore another 

measure of the goodness of fit of a theoretical frequency distribution. For more validity of the Poisson-Mishra 

distribution, we may apply K-S test to test whether the PMD is a good fit to the above mentioned data-sets or 

not. 

We have obtained the absolute deviation of expected relative cumulative frequency of the PMD and observed 

relative cumulative frequency of the above mentioned data-sets and are placed in the table 4, 5 and 6 

respectively. Some notations used for applying K-S test are as follows. 

Fe = Expected Relative Cumulative Frequency of the Poisson-Mishra distribution. 

Fo = Observed Relative Cumulative Frequency  

Dn (Max) = the maximum absolute deviation of Fe and Fo 

Dn (Tabulated) = the critical value of the K-S test statistic at 1% level of significance 

 

Calculation of the absolute deviation of Fe and Fo: 

Table –IV  

Hemocytometer counts of Yeast Cell 
Number of Yeast Cell per square Observed frequency Expected frequency of  PMD Fe Fo |Fe- Fo| 

0 

1 
2 

3 

4 
5 

6 

213 

128 
37 

18 

3 
1 

0 

234.3 

99.3 
40.6 

16.0 

6.1 
2.3 

1.4 

0.586 

0.834 
0.935 

0.975 

0.991 
0.996 

1.000 

0.533 

0.853 
0.945 

0.990 

0.997 
1.000 

1.000 

0.053 

0.019 
0.001 

0.015 

0.006 
0.004 

0.000 

 400 400    

The maximum absolute deviation of Fe and Fo= Dn(calculated ) =0.053 at x=0 .The Critical value for Dn at 1% level 

of significance can be computed by  082.0

n

63.1

)Tabulated(nD   

 

Table-V 

 Distribution of mistakes in copying groups of random digits 
Number of errors per group Observed frequency Expected frequency of PMD Fe Fo |Fe- Fo| 

0 

1 
2 

3 

4 

35 

11 
8 

4 

2 

32.9 

15.3 
6.8 

3.6 

1.4 

0.548 

0.803 
0.917 

0.977 

1.000 

0.583 

0.767 
0.900 

0.967 

1.000 

0.035 

0.036 
0.017 

0.010 

0.000 

Total 60 60    

The maximum absolute deviation of Fe and Fo= Dn(calculated ) =0.036 at x=1 .The Critical value for Dn at 1% level 

of significance can be computed by  210.0

n

63.1

)Tabulated(nD   

 

Table-VI  

Distribution of Pyraustanublilalis in 1937 
Number of errors per group Observed frequency Expected frequency of PMD Fe Fo |Fe- Fo| 

0 
1 

2 

3 
4 

5 

33 
12 

6 

3 
1 

1 

31.4 
14.2 

6.2 

2.6 
1.0 

0.6 

0.561 
0.814 

0.925 

0.971 
0.989 

1.000 

0.589 
0.800 

0.911 

0.964 
0.982 

1.000 

0.028 
0.014 

0.014 

0.007 
0.007 

0.000 

Total 56 56    



Poisson-Mishra Distribution 

  www.ijmsi.org                                                          30 | Page 

The maximum absolute deviation of Fe and Fo= Dn(calculated ) =0.028 at x=0 . 

The Critical value for Dn at 1% level of significance can be computed by  

218.0

n

63.1

)Tabulated(nD   

By comparing the calculated and tabulated value of K-S test statistic, we may conclude that the Poisson-Mishra 

distribution is a good fit for the data-set. 

 

VII. CONCLUSION 
It has been observed that the Poisson-Mishra distribution gives better fit to all the discrete data-sets than the one 

parameter PLD of Sankaran and the two-parameter PLD of Rama Shanker and Mishra because of p-value. 

Hence, it provides a better alternative to the one parameter PLD of Sankaran (1970) and two-parameter PLD of 

Rama Shanker and Mishra (2014). Perhaps, it is the best alternative to all the existing Quasi Poisson-Lindley 

distributions. 
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