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ABSTRACT: In this paper, we prove that a symmetric parallel second order covariant tensor in (2m+s)- 

dimensional S-space form is a constant multiple of the associated metric tensor. Then we apply this result to 

study Ricci solitons for S-space form and Sasakian space form of dimension 3. 
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I. INTRODUCTION  

A Ricci soliton is a generalization of an Einstein metric and is defined on a Riemannian manifold ),( gM . A 

Ricci soliton is a triple ),,( Vg  with g  a Riemannian metric, V  a vector field and   a real scalar such that  

                                                     0=22 gSgL
V

       (1.1) 

 where S  is a Ricci tensor of M  and 
V

L  denotes the Lie derivative operator along the vector field V . Metrics 

satisfying (1.1) are interesting and useful in physics and are often referred as quasi-Einstein. A Ricci soliton is 

said to be shrinking, steady and expanding when   is negative, zero and positive respectively.  

 In 1923, L.P. Eisenhart [1] proved that if a positive definite Riemannian manifold ),( gM  admits a second 

order parallel symmetric covariant tensor other than a constant multiple of the metric tensor, then it is reducible. 

In 1926, H. Levy [2] proved that a second order parallel symmetric non-degenerated tensor in a space form is 

proportional to the metric tensor. In ([3], [4], [5]) R. Sharma generalized Levy’s result and also studied a second 

order parallel tensor on Kaehler space of constant holomorphic sectional curvature as well as contact manifolds.  

Later Debasish Tarafdar and U.C. De [6]) proved that a second order symmetric parallel tensor on a P-Sasakian 

manifold is a constant multiple of the associated metric tensor, and that on a P-Sasakian manifold there is no 

non-zero parallel 2-form. Note that the Eisenhart problem have also been studied in [7] on P-Sasakian manifolds 

with a coefficient k, in [8] on  -Sasakian manifold, in [9] on )( kN  quasi Einstein manifold, in [10] on f-

Kenmotsu manifold, in [11] on Trans-Sasakian manifolds and in [12] on ),( k -contact metric manifolds. Also 

the authors C.S. Bagewadi and Gurupadavva Ingalahalli ([13]), [14]) studied Second order parallel tensors on 

 -Sasakian and Lorentzian  -Sasakian manifolds. Recently C.S. Bagewadi and Sushilabai Adigond [15] 

studied L.P. Eisenhart problem to Ricci solitons in almost )(C  manifolds.  

 On the other hand, as a generalization of both almost complex (in even dimension) and almost contact (in odd 

dimension) structures, Yano introduced in [16] the notion of framed metric structure or f -structure on a 

smooth manifold of dimension sn 2 , i.e a tensor field of type (1,1)  and rank n2  satisfying 0=
3

ff  . 

The existence of such a structure is equivalent to the tangent bundle )()( sOnU  . for manifolds with an f -

structure f , D.E. Blair [17] has introduced the S -manifold as the analogue of the Kaehler structure in the 

almost complex case and of the quasi-Sasakian structure in the almost contact case and many authors [18], [19], 

[20] have studied the geometry of submanifolds of S -space form.  

Motivated by the above studies in this paper we study second order parallel tensor on S -space form. As an 

application of this notion we study Ricci pseudo-symmetric S -space form. Also, we study Ricci solitons for 

)(2 sm  -dimensional S -space form and Sasakian space form of dimension 3 and obtain some interesting 

results.  
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II. PRELIMINARIES  

Let N  be a )(2 sn  -dimensional framed metric manifold (or almost r -contact metric manifold) with a 

framed metric structure ),,,( gf


 , }{1,2,...,= s  where f  is a (1,1)  tensor field defining an f -

structure of rank n2 , 
s

 ,....,,
21

 are vector fields; 
s

 ,.....,,
21

 are 1 -forms and g  is a Riemannian 

metric on N  such that  

  0=,=)(0,=)(,=

1=

2
ffIf

s

o




    (2.1) 

  )(=),(),()(),(=),(

1=

XXgYXYXgfYfXg

s





  (2.2) 

 An framed metric structure is normal, if  

                                    0=2],[




   dff  (2.3) 

 where ],[ ff  is Nijenhuis torsion of f .  

 Let F  be the fundamental 2 -form defined by ),(=),( YfXgYXF , TNYX , . A normal framed metric 

structure is called S -structure if the fundamental form F  is closed. that is 0)(.......
11


n

d


  for 

any  , and Fdd
s

=......
1

  . A smooth manifold endowed with an S -structure will be called an S -

manifold. These manifolds were introduced by Blair [17]. If 1=s , a framed metric structure is an almost 

contact metric structure, while S -structure is an Sasakian structure. If 0=s , a framed metric structure is an 

almost Hermitian structure, while an S -structure is Kaehler structure. 

If a framed metric structure on N  is an S -structure, then it is known that  

                  })(),({=))((
2

XfYfYfXgYf
X 



    (2.4) 

                     sTNYXfX
X

1,2,....,=,,,= 


  (2.5) 

  

The converse also to be proved. In case of Sasakian structure (i.e 1=s ) (2.4) implies (2.5). for 1>s , 

examples of S -structures given in [4], [5] and [6].  

 A plane section in NT
p

 is a f -section if there exists a vector NTX
p

  orthogonal to 
s

 ,....,,
21

 such 

that },{ fXX  span the section. The sectional curvature of a f -section is called a f -sectional curvature. If 

N  is an S -manifold of constant f -sectional curvature k , then its curvature tensor has the form  

 




 )(),()()()()({=),(
22

,

YfZfXgXfZYYfZXZYXR   (2.6) 

 }),(),(){3(
4

1
})(),(

22
YffZfXgXffZfYgskXfZfYg 


  

 }),(2),(),(){(
4

1
fZfYXgfXfZYgfYfZXgsk   

 for all .,,, TNWZYX   Such a manifold )( kN  will be called an S -space form. The euclidean space 

sn
E

2
 and hyperbolic space 

sn
H

2
 are examples of S -space forms. When 1=s , an S -space form reduces 

to a Sasakian space form and if 0=s  then it reduces to complex-space-form. 

From (2.6) when 


=X  and 


=Z , we have the following.  

                            ])(),([=),( YZZYgZYR





   (2.7) 

                           ])()([=),( YXXYsYXR





   (2.8) 

 Further from (2.5), we have  

                                     ),(=))(( fYXgY
X 
                 (2.9) 
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 Definition 2.1 A S -manifold ),,,,( gfM
n


  is to be  -Einstein if the Ricci tensor S  of M  is of the 

form  

                        )()(),(=),(

1=

YXbYXagYXS

s





  (2.10) 

 where ba ,  are constants on M .  

  

 Let M  be a )(2 sm  -dimensional S -space form then from (2.6), the Ricci tensor S  is given by  

 

)()(
4

)3()32)(4(2
),(

4

)3(1))(23(4
=),( YX

sksksm
YXg

skmsks
YXS









                                                                                                                                             (2.11) 

 In (2.11), taking 


=Y  and 


== YX  we have  

                                          )(=),( XAXS





   (2.12) 

                                              BS =),(


  (2.13) 

                                                AXQX =  (2.14) 

 where  

 ]2)(210)2(1413)(63[
4

1
=

23
kmskmkmskmsA   (2.15) 

 ])2(210)2(1413)(63[
4

1
=

234
skmkskmkmskmsB 

 (2.16) 

  

Remark 2.2 If we take 1=m  and 1=s  in )(2 sm  -dimensional S -space form then it reduces to Sasakian-

spce-form of dimension 3.  

 In this case equations (2.8), (2.12), (2.13) and (2.14) reduces to  

                                   ])()([=),( YXXYYXR    (2.17) 

                                            )(2=),( XXS   (2.18) 

                                                  XQX 2=  (2.19) 

 where  =
1

 and  =
1

. 

  

III. PARALLEL SYMMETRIC SECOND ORDER TENSORS AND RICCI SOLITONS IN S-

SPACE FORM 

Let h  be a symmetric tensor field of (0,2)  type which we suppose to be parallel with respect to   i.e 

0=h . Applying Ricci identity  

                  0=),;,(),;,(
22

ZWYXhWZYXh   (3.1) 

 We obtain the following fundamental relation  

                    0=)),(,(),),(( WYXRZhWZYXRh   (3.2) 

 Replacing 


== WZ  in (3.2) and by virtue of (2.8), we have  

           0=)](,()(),([)(2
22

,

YXfhXYfh





   (3.3) 

 by the symmetry of h . 

Put 


=X  in (3.3) and by virtue of (2.1), we have  

                                    0=)(),()(2
2






 Yfh  (3.4) 

 and supposing 0)(2 


 . it results  
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                              ),()(=),(








 hYYh   (3.5) 

 Differentiating (3.5) covariantly with respect to Z , we have  

 )],(),(),)([(





ZZZ

YhYhYh   (3.6) 

  

 )}],(2),)(){((),(})()[{(=





ZZZZ

hhYhYY   

 By using the parallel condition 0=h  and (2.5) in (3.6), we have  

                          ),())((=),(








 hYYh
ZZ

   (3.7) 

 Using (2.5) in (2.9) in (3.7), we get  

                                ),(),(=),(




hfYZgfZYh   (3.8) 

 Replacing X  by X  in (3.8), we have  

                                     ),(),(=),(




hZYgZYh   (3.9) 

 Using the fact that 0=h , we have from the above equation ),(


h  is a constant. Thus, we can state the 

following theorem.  

Theorem 3.1 A symmetric parallel second order covariant tensor in S -space form is a constant multiple of the 

metric tensor.  

Corollary 3.2 A locally Ricci symmetric 0)=( S  S -space form is an Einstein manifold.  

Remark 3.3 The following statements for S -space form are equivalent.   

1.  Einstein  

2.  locally Ricci symmetric  

3.  Ricci semi-symmetric  

4.  Ricci pseudo-symmetric i.e ),(= SgQLSR
S

 .  

where 
S

L  is some function on }:{= gatx
n

r
SMxU

S
 .  

  

Proof. The statements (3)(2)(1)   and (4)(3)   is trivial. Now, we prove the statement (1)(4)   

is true. 

Here ),(= SgQLSR
S

  means  

  0=])(,(),)(([=),)(),(( VYXUSVUYXSLVUSYXR
S

  (3.10) 

 Putting 


=X  in (3.10), we have  

    )])(,(),)[((=)),(,(),),(( VYUSVUYLVYRUSVUYRS
S






 (3.11) 

 By using (2.7) in (3.11), we obtain  

 

0=)](),(),(),()(),(),(),([1][ VUYSUSVYgUVYSVSUYgL
S 



    (3.12) 

 In view of (2.12), we obtain  

              

0=)](),()(),()(),(),()([1][ VUYSUVYAgUVYSUYgVAL
S 



    (3.13) 

 Putting 


=U  in (3.13) and by using (2.1) and (2.12), we get  

                          0=)],(),(1][[ VYgAsVYSsL
S

  (3.14) 

 If 01 
S

L , then (3.14) reduces to  

                                           ),(=),( VYAgVYS  (3.15) 
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 where A  is given by equation (2.15).  

 Therefore we conclude the following.  

Proposition 3.4 A Ricci pseudo-symmetric S -space form is an Einstein manifold if 1
S

L .  

Corollary 3.5 A Ricci pseudo-symmetric Sasakian space form is an Einstein manifold if 1
S

L .  

  

Proof.  If we take 1=s  in (2.15), we get  

                                                  mA 2=  (3.16) 

 Put this in (3.15), we have  

                                           ),(2=),( VYmgVYS  (3.17) 

 Hence the proof.  

  

Corollary 3.6 Suppose that on a regular S -space form, the (0,2)  type field SgL
V

2  is parallel where V is 

a given vector field. Then ),( Vg  yield a Ricci soliton. In particular, if the given S -space form is Ricci semi-

symmetric with gL
V

 parallel. we have the same conclusion.  

 Proof: Follows from theorem (3.1) and corollary (3.2). 

 

 If V  be the linear span of 
s

 ,....,,
21

 i.e 
ii

s

iss
ccccV  

1=2211
=....=  where Fc

i
  for 

si 1,2,..,=  then Ricci soliton ),,....,,,(
21


s

g  along V  is given by  

                   0=),(2),(2),(

1=

YXgYXSYXgLc
i

i

s

i















  

 We are interested in expressions for 









 SgLc

i
i

s

i

2

1=


 

 A straight forward computation gives  

                                        0=),(

1=

YXgLc
i

i

s

i












 
 (3.18) 

 from equation (1.1), we have ),(2=),( YXgYXh   and then putting 


== YX  for s1,2,...,= , we 

have  

                                        sh 


2=),(   (3.19) 

 where  

                   ),(2),(=),(

1=


 SgLch

i
i

s

i












  (3.20) 

 By using (2.13) and (3.18), we have  

                                        Bh
2

1
=),(


  (3.21) 

 Equating (3.19) and (3.21), we get  

 )]2(210)2(1413)(6[3
16

1
=

23
kmkskmkmskms   (3.22) 

 Hence we state the following:  

Theorem 3.7 A Ricci soliton ),,....,,,(
21


s

g  in an )(2 sm  -dimensional S -space form is given by 

equation (3.22)  

  

Corollary 3.8 If we take 1=m , 1=s  in (3.22) then the )(2 sm  -dimensional S -space form is reduces to 

Sasakian-space-form [17] of dimension 3. In this case, 
2

1
=  . Hence Ricci soliton is shrinking in Sasakian-

space-form of dimension 3.  
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Corollary 3.9 If we take 1=s  in (3.22) then the )(2 sm  -dimensional S -space form is reduces to Sasakian-

space-form [17] of dimension 1)(2 m . In this case, m
2

1
=  . Hence Ricci soliton is shrinking in 

1)(2 m -dimensional Sasakian-space-form.  

  

Corollary 3.10 If we take 0=s  in (3.22) then the )(2 sm  -dimensional S -space form is reduces to 

complex-space-form [17] of dimension m2 . In this case, 
8

1)(
=




mk
 . Hence Ricci soliton in m2 -

dimensional complex-space-form is shrinking if 0>k , steady if 0=k  and expanding if 0<k .  

 

Theorem 3.11 If an )(2 sm  -dimensional S -space form is  -Einstein then the Ricci soliton in S -space 

form with constant scalar curvature r  is give by 

               )]2(210)2(1413)(6[3
8

1
=

23
kmkskmkmskms    

  

Proof.  First we prove that S -space form is  -Einstein. from equation (2.10), we have  

                           )()(),(=),( YXbYXagYXS




  

 Now, by simple calculation we find the values of a and b. Let )(21,2,.....,=,}{ smie
i

  be an orthonormal 

basis of the tangent space at any point of the manifold. then putting 
i

eYX ==  in (2.10) and taking 

summation over i , we get  

                                     bssmar  )(2=  (3.23) 

 Again putting 


== YX  in (2.10) then by using (2.13), we have  

                                           
2

= bsasB   (3.24) 

 Then from (3.23) and (3.24), we obtain  

 




























 1)(2

)(2

1)(2
=,

1)(21)(2
=

2
sms

smB

sms

r
b

sm

B

sm

r
a

 (3.25) 

 Substituting the values of a  and b  in (2.10), we have  

 ),(
1)(21)(2

=),( YXg
sm

B

sm

r
YXS 














 (3.26) 

                                 )()(
1)(2

)(2

1)(2
2

YX
sms

smB

sms

r





















  

 The above equation shows that S -space form is an  -Einstein manifold.  

 Now, we have to show that the scalar curvature r  is constant. For an )(2 sn  -dimensional S -space form the 

symmetric parallel covariant tensor ),( YXh  of type (0,2)  is given by  

               ),(2),(=),(

1=

YXSYXgLcYXh
i

i

s

i












 
 (3.27) 

 By using (3.18) and (3.26) in (3.27), we have  

              ),(
1)(2

2

1)(2

2
=),( YXg

sm

B

sm

r
YXh 














 (3.28) 

  Differentiating the above equation covariantly w.r.t Z , we get  

 )()(
1)(2

2
),(

1)(2

2
=),)(( YX

sms

r
YXg

sm

r
YXh

ZZ

Z 






























  
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)](),()(),([
1)(2

)(22

1)(2

2

2
XYgYXg

sms

smB

sms

r

ZZ 



 















 

 (3.29) 

 Substituting 


=Z , 


)(==


spanYX , s1,2..,=  in (3.29) and by virtue of 0=h , we have  

                                           0=r



  (3.30) 

 This shows that r  is constant scalar curvature. From equation (1.1) and (3.27), we have 

),(2=),( YXgYXh   and then putting 


== YX  for s1,2,...,= , we obtain  

                                 sh 


2=),(   (3.31) 

 Again, putting 


== YX  in (3.28), we get  

                                         Bh =),(


  (3.32) 

 Equating (3.31) and (3.32), we have  

 )]2(210)2(1413)(6[3
8

1
=

23
kmkskmkmskms   (3.33) 

 Hence the proof.  

  

Corollary 3.12 If we take 1=m , 1=s  in (3.33) then the )(2 sm  -dimensional S -space form is reduces to 

Sasakian-space-form [17] of dimension 3. In this case, 1=  . Hence Ricci soliton is shrinking in Sasakian-

space-form of dimension 3.  

  

Corollary 3.13 If we take 1=s  in (3.33) then the )(2 sm  -dimensional S -space form is reduces to 

Sasakian-space-form [17] of dimension 1)(2 m . In this case, m= . Hence Ricci soliton is shrinking in 

1)(2 m -dimensional Sasakian-space-form.  

  

Corollary 3.14 If we take 0=s  in (3.33) then the )(2 sm  -dimensional S -space form is reduces to 

complex-space-form [17] of dimension m2 . In this case, 
4

1)(
=




mk
 . Hence Ricci soliton in m2 -

dimensional complex-space-form is shrinking if 0>k , steady if 0=k  and expanding if 0<k . 
 

IV. RICCI SOLITON IN SASAKIAN SPACE FORM OF DIMENSION 3  

In this section, we compute an expression for Ricci tensor for 3-dimensional S -space form. The curvature 

tensor for 3-dimensional Riemannian manifold is given by  

]),(),([
2

),(),(),(),(=),( YZXgXZYg
r

YZXSXZYSQYZXgQXZYgZYXR   (4.1) 

 Put Z =   in (4.1) and by using (2.17) and (2.19), we have  

 ])()([
2

2])()([=])()([ YXXY
r

QYXQXYYXXY  









  (4.2) 

 Again put =Y  in (4.2) and using (2.1), (2.2) and (2.4), we get  

                          )(3
2

1
2

= X
r

X
r

QX




















  (4.3) 

 By taking inner product with respect to Y  in (4.3), we get  

                 )()(3
2

),(1
2

=),( YX
r

YXg
r

YXS 




















  (4.4) 

 This shows that Sasakian space form of dimension 3 is  -Einstein manifold. where r  is the scalar curvature. 

For a Sasakian space form of dimension 3, we have  
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                        ),(2),)((=),( YXSYXgLYXh 


 (4.5) 

 By using (3.15) and (4.4) in (4.5), we get  

                   )()(6][),(2][=),( YXrYXgrYXh   (4.6) 

 Differentiating (4.6) covariantly with respect to Z , we obtain  

 

)](),()(),(6][[)()()(),()(=),)(( XYgYXgrYXrYXgrYXh
ZZZZZ

 

 (4.7) 

 Substituting =Z , 


 )(= spanYX  in (4.7) and by virtue of 0=h , we have  

                                               0=r


  (4.8) 

 Thus, r  is a constant scalar curvature. 

From equation (1.1) and (3.5), we have ),(2=),( YXgYXh   and then putting == YX , we get  

                                        2=),( h  (4.9) 

 Again, putting == YX , in (4.6), we get  

                                           4=),( h  (4.10) 

 In view of (4.9) and (4.10), we have  

                                                  2=   (4.11) 

 Therefore,   is negative. Hence we state the following theorem:  

Theorem 4.1 An  -Einstein Sasakian-space form of dimension 3 admits Ricci soliton ),,( g  with constant 

scalar curvature r  is shrinking.  
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