International Journal of Mathematics and Statistics Invention (IJMSI)
E-ISSN: 2321 — 4767 P-ISSN: 2321 - 4759
www.ijmsi.org Volume 4 Issue 9 || November. 2016 || PP-01-08

Second Order Parallel Tensors and Ricci Solitons in S-space form
Sushilabai Adigond, C.S. Bagewadi

Department of P.G. Studies and Reseach in Mathematics, Kuvempu University,
Shankaraghatta - 577 451, Shimoga, Karnataka, INDIA.

ABSTRACT: In this paper, we prove that a symmetric parallel second order covariant tensor in (2m+s)-
dimensional S-space form is a constant multiple of the associated metric tensor. Then we apply this result to
study Ricci solitons for S-space form and Sasakian space form of dimension 3.
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l. INTRODUCTION
A Ricci soliton is a generalization of an Einstein metric and is defined on a Riemannian manifold (M ,g) . A

Ricci soliton is a triple (g,Vv , 1) with g a Riemannian metric, V a vector field and 21 areal scalar such that
L,g+28S+21g =0 (1.2)

where S is a Ricci tensor of M and L, denotes the Lie derivative operator along the vector field V . Metrics
satisfying (1.1) are interesting and useful in physics and are often referred as quasi-Einstein. A Ricci soliton is
said to be shrinking, steady and expanding when A is negative, zero and positive respectively.

In 1923, L.P. Eisenhart [1] proved that if a positive definite Riemannian manifold (M , g) admits a second

order parallel symmetric covariant tensor other than a constant multiple of the metric tensor, then it is reducible.
In 1926, H. Levy [2] proved that a second order parallel symmetric non-degenerated tensor in a space form is
proportional to the metric tensor. In ([3], [4], [5]) R. Sharma generalized Levy’s result and also studied a second
order parallel tensor on Kaehler space of constant holomorphic sectional curvature as well as contact manifolds.

Later Debasish Tarafdar and U.C. De [6]) proved that a second order symmetric parallel tensor on a P-Sasakian
manifold is a constant multiple of the associated metric tensor, and that on a P-Sasakian manifold there is no
non-zero parallel 2-form. Note that the Eisenhart problem have also been studied in [7] on P-Sasakian manifolds

with a coefficient k, in [8] on « -Sasakian manifold, in [9] on N (k) quasi Einstein manifold, in [10] on f-
Kenmotsu manifold, in [11] on Trans-Sasakian manifolds and in [12] on (k, ) -contact metric manifolds. Also

the authors C.S. Bagewadi and Gurupadavva Ingalahalli ([13]), [14]) studied Second order parallel tensors on
a -Sasakian and Lorentzian a -Sasakian manifolds. Recently C.S. Bagewadi and Sushilabai Adigond [15]

studied L.P. Eisenhart problem to Ricci solitons in almost C (&) manifolds.
On the other hand, as a generalization of both almost complex (in even dimension) and almost contact (in odd
dimension) structures, Yano introduced in [16] the notion of framed metric structure or f -structure on a

smooth manifold of dimension 2n + s, i.e a tensor field of type (1,1) and rank 2n satisfying f°+ f = 0.
The existence of such a structure is equivalent to the tangent bundle U (n) x O (s) . for manifolds with an f -
structure f , D.E. Blair [17] has introduced the S -manifold as the analogue of the Kaehler structure in the
almost complex case and of the quasi-Sasakian structure in the almost contact case and many authors [18], [19],
[20] have studied the geometry of submanifolds of S -space form.

Motivated by the above studies in this paper we study second order parallel tensor on S -space form. As an
application of this notion we study Ricci pseudo-symmetric S -space form. Also, we study Ricci solitons for
(2m + s) -dimensional S -space form and Sasakian space form of dimension 3 and obtain some interesting
results.
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1. PRELIMINARIES
Let N be a (2n + s) -dimensional framed metric manifold (or almost r -contact metric manifold) with a

framed metric structure (f.¢_,7,.9), @ ={1,2,..., s} where f is a (1,1) tensor field defining an f -
structure of rank 2n, &,,¢,,.. &, are vector fields; #,,7,,... n  are 1-forms and g is a Riemannian
metricon N such that

ff=-t1+¥Yn,®¢,, 1(£,)=0 n,(,)=0,,n,0f=0(21)

a=1

S

g(™X ., ¥ )=g(X.,Y)=->n, (X)), (Y) 9(X.&,)=n,(X) (22)

a=1

An framed metric structure is normal, if
[f,f]+23dp, ®&, =0 (23)

where [ f, f] is Nijenhuis torsion of f .
Let F be the fundamental 2 -form definedby F (X ,Y) = g(fX,Y), X,Y e TN . A normal framed metric

structure is called S -structure if the fundamental form F is closed. thatis 7, A 7, A ... A(dn, )" =0 for
any a ,and dn, = ... =d»n, = F . A smooth manifold endowed with an S -structure will be called an S -

manifold. These manifolds were introduced by Blair [17]. If s =1, a framed metric structure is an almost
contact metric structure, while S -structure is an Sasakian structure. If s = 0, a framed metric structure is an
almost Hermitian structure, while an S -structure is Kaehler structure.

If a framed metric structure on N isan S -structure, then it is known that

(Ve EXY) = SHo (X, ¥ )E, +7,(Y)F X} (24)

V,E, =-™, X,YeTN, a=12.., s (25

The converse also to be proved. In case of Sasakian structure (i.e s =1) (2.4) implies (2.5). for s > 1,
examples of S -structures given in [4], [5] and [6].
A plane section in T N is a f -section if there exists a vector X € T N orthogonal to & ,¢&, ... £, such

that { X , X } span the section. The sectional curvature of a f -section is called a f -sectional curvature. If
N isan S -manifold of constant f -sectional curvature k , then its curvature tensor has the form

R(X.,Y)Z =340, (X)n,(Z)FY =, (Y, (Z)F°X —g(fX, 1Z)n,(Y)E, (26)
a.p

+g(fyY, fZ)na(X)éﬁ}+£(k+35){—g(fY, fZ)f2X + g(fX, fz)f2Y}
4

+£(k—s){g(X,fZ)fY —g(Y, fZ)fX +2g(X, fY)fz}
4

forall X,Y,z,w e TN . Such a manifold N (k) will be called an S -space form. The euclidean space

2n+s 2n+s

E and hyperbolic space H are examples of S -space forms. When s =1, an S -space form reduces
to a Sasakian space form and if s = 0 then it reduces to complex-space-form.
From (2.6) when X = ¢ and Z = £, we have the following.

R(&,.Y)Z = 19(Y.2)¢, -n,(Z)Y] (2.7)
R(X.,Y)E, =s>n,(Y)X —n,(X)Y] (2.8)

Further from (2.5), we have
(Vn NY)=g(X, f¥) (2.9)
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Definition 2.1 A S -manifold (M ", f,»_,&, ,9) is to be » -Einstein if the Ricci tensor S of M is of the
form

S

S(X,Y)=ag (X ,Y)+b277a(X)r]a(Y) (2.10)

where a,b are constantson M .

Let M bea (2m + s) -dimensional S -space form then from (2.6), the Ricci tensor S is given by

S(X.Y) = 4s+(k+3S)(2m—1)+3(k—s)g(X’Y)+(2m+s—2)(4 -k -3s)-3(k —s)
4

n, (X)), (Y)

(2.11)

4
In(2.11), taking Y = &, and X =Y = ¢&_we have

S(X.¢,)= AY 7, (X) (212)

$(,.6,)=8B (2.13)
QX = AX  (2.14)
where

1

A=—[-3s’—(6m+k-13) s+ (14m-2mk —k —10) s+ 2m + 2) k] (2.15)
4
1

B=—[-3s'—(6m+k-13)s’+(14m-2mk —k —10) s* + (2mk + 2k)s]
4

(2.16)

Remark 2.2 If wetake m =1 and s =1 in (2m + s) -dimensional S -space form then it reduces to Sasakian-
spce-form of dimension 3.

In this case equations (2.8), (2.12), (2.13) and (2.14) reduces to
R(X,Y)E =In(Y)X —n(X)Y] (2.17)
S(X,&)=2n(X) (2.18)
QX =2X (219)
where £, = & and n, =7 .

I11. PARALLEL SYMMETRIC SECOND ORDER TENSORS AND RICCI SOLITONS IN S-
SPACE FORM

Let h be a symmetric tensor field of (0,2) type which we suppose to be parallel with respect to V i.e

Vh = 0. Applying Ricci identity
VIh(X,Y;Z W)=V h(X,Y;W,Z)=0 (3.1)
We obtain the following fundamental relation
h(R(X,Y)Z,W)+h(Z,R(X,Y)W)=0 (3.2)
Replacing Zz =W = ¢&_ in (3.2) and by virtue of (2.8), we have
21, (ENSIN(CEY €, (X)=h(F°X,&,n, (Y)]=0 (33

a.p
by the symmetry of h .

Put X = ¢ _ in(3.3)and by virtue of (2.1), we have
20, (ENSNCEY € ), (£,) =0 (34)

and supposing 277 , (£, ) = 0 . it results
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Sh(Y. &) =Sn, (Y)h(, &) (3.5)

Differentiating (3.5) covariantly with respect to z , we have
DV, Y, E)+h(V,Y . &) +h(Y,V, 5] (3.6)

= >RV )Y +n, (VYN &) +n, YV, h)(E,.E,)+2h(V ¢, .&

By using the parallel condition Vh = 0 and (2.5) in (3.6), we have
Dh(Yy, v, &) =>(V,n,NY)h(, . &,) (B.7)

Using (2.5) in (2.9) in (3.7), we get
-h(y,Z)=9(z, Y)Y h(,.¢,) (38)

Replacing X by ¢X in (3.8), we have
h(Y,Z)=g9g(Y,Z)Y h(,.&,) (3.9)

Using the fact that Vh = 0, we have from the above equation h(&_, & ) is a constant. Thus, we can state the
following theorem.

Theorem 3.1 A symmetric parallel second order covariant tensor in S -space form is a constant multiple of the
metric tensor.

Corollary 3.2 A locally Ricci symmetric (vS = 0) S -space form is an Einstein manifold.

Remark 3.3 The following statements for S -space form are equivalent.
1. Einstein

2. locally Ricci symmetric

3. Ricci semi-symmetric

4. Ricci pseudo-symmetrici.e R-S = L,Q(g,S).

. . r
where L issome functionon U ; = {x e M :S = —gatx }.
n

Proof. The statements (1) — (2) — (3) and (3) — (4) is trivial. Now, we prove the statement (4) — (1)
is true.

Here R -S = L,Q(g,S) means
(R(X,Y)-SYU,V)=LJIS(X AY)U,V)+SU, (X AY)V]=0 (3.10)
Putting X = &_ in(3.10), we have
S(R(5,. YU, V)+SU,R(5,.Y)V)=LI(S, ~YIU.V)+SU . (S, AY)V)]

(3.11)
By using (2.7) in (3.11), we obtain

(L +U Y [g(Y U)S(V.E)=-S(Y.V)np, (U)+g(Y,V)S(U,Z)-S(Y.U)y, (V)] =0 (312)

In view of (2.12), we obtain

(L +0 Y [An,(V)g(Y . U)-S(Y.V)p, (U)-Ag (Y.V)p, (U)-S(Y.U)p, (V)I=0 (313)

Putting U = &_ in (3.13) and by using (2.1) and (2.12), we get
[Lo+20s-S(Y,V)-As-g(Y,V) =0 (3.14)
If L, +1+ 0, then (3.14) reduces to
S(Y,V)=Ag(Y,V) (3.15)
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where A is given by equation (2.15).
Therefore we conclude the following.
Proposition 3.4 A Ricci pseudo-symmetric S -space form is an Einstein manifold if L, = —1.

Corollary 3.5 A Ricci pseudo-symmetric Sasakian space form is an Einstein manifold if L, = —-1.

Proof. If we take s =1 in (2.15), we get
A=2m (3.16)

Put this in (3.15), we have
S(y,v)=2mg (Y,V) (3.17)

Hence the proof.
Corollary 3.6 Suppose that on a regular S -space form, the (0,2) type field L, g + 2S is parallel where V is
a given vector field. Then (g,Vv ) vyield a Ricci soliton. In particular, if the given S -space form is Ricci semi-

symmetric with L, g parallel. we have the same conclusion.
Proof: Follows from theorem (3.1) and corollary (3.2).

If V. be the linear span of & ,&,,.., & eV =cé +c,é,+...+c & = z:ﬂcigi where ¢, e F for
i =1,2,.., s thenRiccisoliton (g,¢,,&,,.. £.,4) alongV isgiven by

( ciLJg(x,Y)+2S(x,v)+2zg(x,v)=o
3

i=1

We are interested in expressions for (Z cL.g+2S \
i=1 I )
A straight forward computation gives

(iciLgig}(X,Y):O (3.18)

from equation (1.1), we have h(X ,Y) = —=24g (X ,Y) andthenputting X =Y =¢_fora =12,.., s,we

have

h($,,&,)=-22s (3.19)
where
h(¢,.&,)= [zciLgig}(g@,éan 28(¢,.¢,) (3.20)

By using (2.13) and (3.18), we have
1
h(¢,.¢,) = ;B (3.21)

Equating (3.19) and (3.21), we get

1
A= —[3s’+(®6m+k-13) s’ —(14m-2mk —k —10) s — (2mk + 2k)] (3.22)
16
Hence we state the following:
Theorem 3.7 A Ricci soliton (g,¢,,&, ... £.,4) inan (2m + s) -dimensional S -space form is given by

equation (3.22)
Corollary 3.8 If we take m =1, s =1 in (3.22) then the (2m + s) -dimensional S -space form is reduces to

1
Sasakian-space-form [17] of dimension 3. In this case, 2 = — — . Hence Ricci soliton is shrinking in Sasakian-
2

space-form of dimension 3.
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Corollary 3.9 If we take s = 1 in (3.22) then the (2m + s) -dimensional S -space form is reduces to Sasakian-

1
space-form [17] of dimension (2m +1) . In this case, 4 = — —m . Hence Ricci soliton is shrinking in
2

(2m + 1) -dimensional Sasakian-space-form.

Corollary 3.10 If we take s = 0 in (3.22) then the (2m + s) -dimensional S -space form is reduces to
. . . k(m +1) .. . .
complex-space-form [17] of dimension 2m . In this case, A = - ———— . Hence Ricci soliton in 2m -
8

dimensional complex-space-form is shrinking if k > 0, steady if k = 0 and expanding if k < 0.

Theorem 3.11 If an (2m + s) -dimensional S -space form is » -Einstein then the Ricci soliton in S -space
form with constant scalar curvature r is give by

1
A= —[3s’+(6m+k-13)s’—(14m-2mk —k —10) s — (2mk + 2k)]
8

Proof. First we prove that S -space form is » -Einstein. from equation (2.10), we have

S(X.,Y)=ag (X.,Y)+b> n, (X)n, (Y)

a

Now, by simple calculation we find the values of a and b. Let {e,},i = 12...., (@2m + s) be an orthonormal

basis of the tangent space at any point of the manifold. then putting X =Y =e, in (2.10) and taking

summation over i, we get
r=a@2m+s)+bs (3.23)

Again putting X =Y = ¢£_ in(2.10) then by using (2.13), we have

B=as+bs’ (3.24)
Then from (3.23) and (3.24), we obtain

[ r B | b-|— r B(2m+s) |
L(2m+s—1) (2m+s—1)J’ Ls(2m+s—1) 52(2m+s—1)J

a =

(3.25)
Substituting the values of a and b in (2.10), we have
r

S(X,Y) :|— - 8 —|g(X,Y) (3.26)
L(2m+s—1) (2m+s—1)J

[ r B(2m+s) |
Ls(2m+s—1) 52(2m+s—1)J
The above equation shows that S -space form is an » -Einstein manifold.

Su, (X ), (V)

a

Now, we have to show that the scalar curvature r is constant. For an (2n + s) -dimensional S -space form the
symmetric parallel covariant tensor h(X ,Y ) of type (0,2) is given by

h(X,Y):(ZciL;QW(X,Y)+ZS(X,Y) (3.27)
i)
By using (3.18) and (3.26) in (3.27), we have
[ 2r i
h(X,Y)= - g(x,vy) (3.28)
{(2m+sfl) (2m+sfl)J
Differentiating the above equation covariantly w.r.t z , we get
[ 2v,r 1 [ ,r ]
(VX Y)=| ——————9(X,Y) - | —————— > 7, (X)n,(Y)
L(2m+s—l)J Ls(2m+s—1)Ja
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[ 2r 2B@2m+5s) |
_L - JZ[g(X.Vzéa)na(YHg(Y,Vzéa)na(X)]
s@m+s-1) s 2m+s-1) |7
(3.29)
Substituting Z = &, X =Y =(span &,) , @ =1,2.,, s in(3.29) and by virtue of Vh = 0, we have

&

V.r=o (3.30)

This shows that r is constant scalar curvature. From equation (1.1) and (3.27), we have
h(X,Y)=-24g(X,Y) andthenputting X =Y =¢_ fora =12,.., s , we obtain

h(¢,.&,)=-24s (3.31)
Again, putting X =Y = ¢&_ in(3.28), we get
h(,.¢,)=8 (332
Equating (3.31) and (3.32), we have
A= ;[353 +(6m+k-13)s’—(14m-2mk —k —10) s— (2mk + 2k)] (3.33)

Hence the proof.

Corollary 3.12 If we take m =1, s =1 in (3.33) then the (2m + s) -dimensional S -space form is reduces to

Sasakian-space-form [17] of dimension 3. In this case, 4 = —1. Hence Ricci soliton is shrinking in Sasakian-
space-form of dimension 3.

Corollary 3.13 If we take s =1 in (3.33) then the (2m + s) -dimensional S -space form is reduces to
Sasakian-space-form [17] of dimension (2m +1) . In this case, 4 = —m . Hence Ricci soliton is shrinking in
(2m + 1) -dimensional Sasakian-space-form.

Corollary 3.14 If we take s = 0 in (3.33) then the (2m + s) -dimensional S -space form is reduces to

. . . k(m+1 L. . .
complex-space-form [17] of dimension 2m . In this case, 1 = —¥. Hence Ricci soliton in 2m -
4

dimensional complex-space-form is shrinking if k > 0, steady if k = 0 and expanding if k < 0.

(AVAS RICCI SOLITON IN SASAKIAN SPACE FORM OF DIMENSION 3
In this section, we compute an expression for Ricci tensor for 3-dimensional S -space form. The curvature
tensor for 3-dimensional Riemannian manifold is given by

R(X,Y)Z =g(Y,Z)QX —g(X,Z)QY +S(Y,Z)X —S(X,Z)Y —L[g(Y,Z)X —g(X,Z)Y] (4.1)
2
PutZ= ¢ in(4.1) and by using (2.17) and (2.19), we have
[7(Y)X =n(X)Y]=[n(Y)QX —n(X)QY ]+[2ﬂ[n(Y)X -n(X)Y] (4.2)
Againput Y = & in (4.2) and using (2.1), (2.2) and (2.4), we get
fr 1 fr 1
QX = —-1 X = | —=3 7 (X)¢ (4.3)
FI PR
By taking inner product with respectto Y in (4.3), we get
e rr 1
S(X'Y)_L__l g(X,Y)— 1 —==37(X)n(Y) (4.4)
2 ] [2 7]

This shows that Sasakian space form of dimension 3 is 7 -Einstein manifold. where r is the scalar curvature.
For a Sasakian space form of dimension 3, we have
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h(X,Y)=(L,g)(X,Y)+2S(X,Y) (4.5)
By using (3.15) and (4.4) in (4.5), we get
h(X,Y)=1[r-21g(X,Y)-[r-6]n(X)n(Y) (4.6)

Differentiating (4.6) covariantly with respect to z , we obtain

(V, h)(XL,Y)=(V,r)g(X,Y)=(V, nn(X)n(Y)-[r=6ll g(X,V, E)n(Y)+g(Y,V,E)n(X)
4.7
Substituting Z = &, X =Y e (span &)" in(4.7) and by virtue of Vh = 0, we have
V.r=0 (4.8)
Thus, r is a constant scalar curvature.
From equation (1.1) and (3.5), we have h(X ,Y) = -24g(X,Y) andthenputting X =vY = &, we get
h(¢.&)=-22  (49)
Again, putting X =Y = & ,in (4.6), we get
h(¢.&)=14 (4.10)
In view of (4.9) and (4.10), we have
A==2 (4.12)
Therefore, A is negative. Hence we state the following theorem:
Theorem 4.1 An 5 -Einstein Sasakian-space form of dimension 3 admits Ricci soliton (g, &, 4) with constant
scalar curvature r is shrinking.
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