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ABSTRACT: A well-designed preconditioning of the partial differential equations problems reduces the 

number of iterations to reach convergence. Dramatic improvements are possible, but the difficulty is to 

construct the suitable preconditioner.The construction of a specific splitting-type preconditioner in block 

formulation for a class of group relaxation iterative methods derived from the finite difference approximations 

have been shown to improve the convergence rates of these methods. This paper is concerned with the 

application of suitable preconditioning techniques to the Nine-Point Group SOR (N-P SOR) iterative method for 

solving Poisson’s Equation. Preconditioning strategies which improve the rate of convergence of these iterative 

methods are investigated. The results reveal the improvements on the convergence rate and the efficiency of the 

proposed preconditioned Group iterative method. 
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I. INTRODUCTION  
Elliptic equations describe problems in a closed region. The Poisson and Laplace equations are 

examples of the elliptic equations. Only boundary conditions are considered because the dependent variable 

does not depend on time. In this work, we will consider Poisson equation in the form: 
2 2

2

2 2
( , ) , ( , )

u u
u f x y x y

x y

 
     

 

                                        (1.1) 

with specific Dirichlet boundary conditions 

( , ) ( , ),U x y g x y       ( x , y ) . 

 

The well-known classical iterative methods are Jacobi, Gauss-Seidel and Successive Over Relaxation 

(SOR) methods. The Jacobi and Gauss-Seidel methods could be used for such systems with some success, not 

so much because of the reduction in the computational work, but mainly because of the limited amount of 

memory that is required. 

In SOR method, we have to determine the parameter w, where a suitable value of w could lead to 

drastic improvements in convergence.  Because of that, the SOR method became very popular and this method 

was selected as the method in computer codes, in order to solve large practical problems such as weather 

prediction and nuclear reactor diffusion [1]. 

It has been affirmed that the discretisation of PDEs using finite difference schemes normally yield a 

system of linear equations, which are large and sparse in nature. Iterative methods are usually used to solve 

these types of systems since these methods need less storage and are capable of preserving the sparsity property 

of the large system. Many problems in various fields, such as engineering, science and the quantitative study of 

business and economic problems associate with the linear systems of equations . In Yousif and Evans [2], the 

explicit group over relaxation methods for the numerical solution of the sparse linear systems has been 

presented. The group method has been shown computationally superior in comparison with the implicit one-line 

and two-line block SOR iterative method. 

Suppose (1.1) is discretised using some finite difference scheme, this will normally lead to a large, 

block and sparse system of equations. Many researchers have considered preconditioners, applied to linear 

systems ([3], [4], [5], [6]).  

 

 

In Lee [7], preconditioners had been successfully applied on the standard five point formula in solving 

the Poisson problem with Dirichlet boundary condition and the numerical experiments yield some encouraging 

results. 
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Equation (1.1) may be approximated at the point ( , )
i j

x y in many ways. Assume that a rectangular 

grid in the (x,y) plane with equal grid spacing h in  both directions with 0 1
i

x ih , y jh ( i , j , , . . . .N )   are 

used, where 
,

( , )
i j i j

u u x y  and 1 /h N . By neglecting terms of 2
( )O h , we obtain the simplest approximation 

for (1.1) which is known as the standard five-point difference formula:  
2

, 1 , 1 1, 1,
4

i j i j i j i j ij ij
u u u u u h f

   
                                                (1.2) 

The objective of this research is to find the most efficient group SOR iterative method for solving 

elliptic partial differential equations. We will compare the point, the four-point group and the nine-point group 

SOR iterative method in solving the two dimensional Poisson equation. 

 

The outline of this paper is as follows: An overview of the formulation of the Nine-Point Group SOR 

(NPSOR) iterative method for solving Poisson’s Equation will be given in Section 2. We proposed a new type 

of preconditioned formula and apply it to the N-P SOR method for solving Poisson’s Equation in Section 3. The 

numerical results are presented to show the efficiency of the preconditioned N-P SOR method in Section 4 and 

the concluding remarks is given in Section 5.  

 

II. FORMULATION OF THE NINE-POINT GROUP ITERATIVE METHOD  
In the group 9-point method the mesh points are grouped together in blocks of nine. The points 

involved in updating 
i j

u  are also using standard five-point formula. The solution domain is divided into groups 

of nine points as shown in Fig.1: 

 

 

 

 

 

 

 

Fig. 1: The solution domain for group of nine points 

 

In matrix notation, the system of nine equations can be written as: 
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1 4 1 0 1 0 0 0 0
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The inverse form of the above system is: 

       

       

         

       

       

       

  

 

      

 
 

 



Solving Poisson’s Equation Using Preconditioned… 

  www.ijmsi.org                                                   22 | Page 

1 ,

2 ,
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1 , 1
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1 , 2
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Hence, the explicit 9-point group iterative equations are given by: 

 
1 2 7 0 5 6

1
[6 7 2 2 7 1 4 6 3 ],

2 2 4
     

i j
u t t t t t t               

1, 1 9 8 9 0 2 0 1 0

1
[3 7 1 1 7 1 4 5 3 ],

1 1 2


     
i j

u t t t t t t  

2 , 3 1 3 1 8 0 1 4 4

1
[6 7 2 2 7 1 4 6 3 ],

2 2 4


     
i j

u t t t t t t          
, 1 2 1 1 5 1 6 0 2 2 1 7

1
[3 7 1 1 7 1 4 5 3 ],

1 1 2


     
i j

u t t t t t t  

1, 1 1 1 0 1 2

1
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  
i j

u t t t ,                                       
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 
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

     
i j

u t t t t t t           
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 
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i j

u t t t t t t  

 (2.2) 

where: 

          2

0 1, 1
,

 


i j
t h f                         2

1 1, , 1 1, 1
,

   
  

i j i j i j
t u u h f                 2 2

2 1, 1 1, 1 1, , 1
,

     
   

i j i j i j i j
t u u h f h f          

          2
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,

   
  

i j i j i j
t u u h f         2
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,

   
  

i j i j i j
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       
   
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,

     
  

i j i j i j
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, t t t   
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, t t t
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,

      
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t u u h f h f  

         
1 0 4 6

, t t t
   1 1 2 5

, t t t
             1 2 8 1 0

, t t t
                              

2 2

13 1, 1 3 , 1 1, 2 , 1
,

      
   

i j i j i j i j
t u u h f h f  

        2 2

14 1, 1 1, 3 , 1 1, 2
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      
   

i j i j i j i j
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1 5 1 4
, t t t                 2 2
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      
   
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1 7 3 6

, t t t
  1 8 1 6

, t t t
      

2

19 1, 1 1,
,

  
 

i j i j
t u h f

                
2

20 1, 3 1, 2
,

   
 

i j i j
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2

21 1, 1 , 1
,

  
 

i j i j
t u h f  

         2

22 3 , 1 2 , 1   
 

i j i j
t u h f       

                       

This method proceeds with iterative evaluation of solution in groups of nine points throughout the 

entire solution domain using all nine equations (2.2). The process is continuous until convergence is achieved. 

The nine-point group can be represented by the computational molecule shown in Fig. 2.  
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Fig. 2: The computational molecule for the nine- point group at point Q 

 

 
III.  DERIVATION OF THE PROPOSED PRECONDITIONED N-P SOR ITERATIVE METHOD 

According to equation (1.2) in section 3.2, the SOR iterative scheme can be written as  

( 1 ) ( ) ( ) ( 1 ) ( 1 ) 2 ( )

1, , 1 1, , 1
( ) (1 )

4

k k k k k k

ij i j i j i j i j ij ij
u u u u u h f u

  

   


         

Now, from (2.2), we can build the nine-point SOR iterative scheme as follows:   

( 1 ) ( )

1 2 7 0 5 6

1
[ (6 7 2 2 7 1 4 6 3 )] (1 ) ,

2 2 4

k k

ij ij
u t t t t t t u


           
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           

( 1 ) ( )
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
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1
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

   
           

  (3.1) 

where 

          

          
2

0 1, 1
,

i j
t h f

 
    ( 1) ( 1) 2

1 1, , 1 ,
,

k k

i j i j i j
t u u h f

 

 
     ( 1) ( 1) 2 2

2 1, 1 1, 1 1, , 1
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k k

i j i j i j i j
t u u h f h f

 

     
     

          
( 1) ( ) 2 2

3 2 , 1 3 , 3 , 2 ,
,
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i j i j i j i j
t u u h f h f



    
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4 1, 2 , 3 , 2
,

k k

i j i j i j
t u u h f



   
    
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i j i j i j i j
t u u h f h f

       
          ( ) ( ) 2

6 2 , 2 2 , 3 2 , 2
,

k k

i j i j i j
t u u h f

     
    

           

          7 3 4
,t t t               

8 1 3
,t t t                ( ) ( 1) 2 2

9 3 , 1 1, 1 2 , 1 , 1
,

k k

i j i j i j i j
t u u h f h f



      
     

           1 0 4 6
,t t t    

1 1 2 5
,t t t     

1 2 8 1 0
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

      
     
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           ( 1) ( ) 2 2
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,t t t                             

( 1) 2
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k

i j i j
t u h f



  
   

            
( ) 2

20 1, 3 1, 2
,

k

i j i j
t u h f

   
   ( 1) 2

21 1, 1 , 1
,

k

i j i j
t u h f



  
                    ( ) 2

22 3 , 1 2 , 1
,

k

i j i j
t u h f

   
   

 
It is well known that the resulting system for applying N-P SOR for solving (1.1) can be written as: 

A u f
                                                                                     (3.2) 

Matrix A is can be written as  ,  A D L U  where D is a diagonal matrix and L and U are strictly lower and 

upper triangular matrices. The convergence rates of (3.2) depend on the spectral properties of the coefficient 

matrix  A. A preconditioner is a matrix that transforms the linear system into one that is equivalent in the sense 

that it has the same solution, but that has more favourable spectral properties. 

For the nine-point group method, the matrix A, vectors u
 
and f  are as defined in (2.1)). Therefore the 

precondetioner M  is obtained in the form: ,M D L  and then, we can write the precontioned system as the 

following: 

( ) ( ) ( ) ( )M A u M f D L A u D L f    
                                  (3.3) 

 

IV.  NUMERICAL EXPERIMENTS AND RESULTS  
In order to compare the standard five-point, nine-point group SOR and preconditioned nine-point group 

SOR iterative methods, some numerical experiments have been performed. These methods were implemented to 

model problem of Poisson equation in the form:  

     
2 2

2 2 2

2 2
( ) ,

x yu u
u x y e

x y

 
    

 

                                                           (4.1) 

with                       ( , 0 ) (0 , ) 1,u x u y     ( ,1) ,
x

u x e    (1, ) ,
y

u y e                  0 , 1 .x y   

 The exact solution for this problem is ( , ) .
x y

u x y e  In this experimental work, we choose the value of 

tolerance; 
6

1 0


  . The computer processing unit is Intel(R) Core(TM) i5 with memory of 4Gb and the 

software used to implement and generate the results was Developer C++ Version 4.9.9.2. We have computed the 

average absolute errors and record the number of iterations for convergence for different size of grids 45, 85, 

105, 145, 185 and 225.  

 

Table 1:  Comparison of number of iterations, execution time and over relaxation parameter for standard five-

point, N-P SOR and preconditioned N-P SOR iterative methods 

N 
Standard Five-Point N-P Group SOR Preconditioned N-P Group SOR 

w k t e w k t e w k t e 

45 

85 

105 

145 

185 

225 

1.683 

1.764 

1.789 

1.851 

1.899 

1.914 

55 

98 

124 

163 

191 

265 

0.004 

0.014 

0.024 

0.036 

0.067 

0.134 

5.41E-06 

5.66E-06 

5.84E-06 

5.91E-06 

5.93E-06 

5.68E-06 

1.633 

1.702 

1.758 

1.781 

1.784 

1.789 

38 

58 

73 

98 

116 

138 

0.004 

0.016 

0.033 

0.038 

0.069 

0.141 

3.91E-06 

3.98E-06 

4.31E-06 

4.24E-06 

3.66E-06 

3.57E-06 

1.622 

1.604 

1.705 

1.724 

1.771 

1.783 

32 

44 

56 

84 

95 

123 

0.000 

0.005 

0.013 

0.027 

0.042 

0.097 

3.85E-06 

3.87E-06 

4.44E-06 

4.62E-06 

4.04E-06 

3.99E-06 

                 t is the execution time of the computer with corresponding w in seconds(s). 

Table 1 shows the comparison of the results for standard five-point, nine-point group SOR and 

preconditioned nine-point group SOR iterative methods. The results show the corresponding number of 

iterations (k), value of optimum w obtained, and the maximum error (e). 

 Fig.3 shows the comparison of the number of iterations between these three methods. The graph 

explained that the preconditioned nine-point group SOR method gives the minimum number of iterations and 

the difference became obvious when the value of N increased. Where else, Fig.4 compares the CPU time for 

standard five-point, nine-point group SOR and preconditioned nine-point group SOR iterative methods. From 

the graph obtained in Fig.4, the nine-point group method requires the minimum number of iterations, but it did 
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not give the lowest CPU time. This is because this method has larger amount of computing effort compared to 

the preconditioned nine-point group SOR iterative method which requires the minimum CPU time amongst 

other methods.  

 

 

Fig. 3: Comparison of number of iterations (k) for Standard Five-Point, N-P SOR and preconditioned N-P SOR 

iterative methods 

 

Since the convergence of the iteration methods relies on the spectral radius, which is defined as the 

largest of the moduli of the eigenvalues of the iteration matrix. It is stated and proven that a linear system with 

smaller value of spectral radius will have better convergence rate ([8], [9], [10]). Thus, the spectral radius of the 

coefficient matrix of the original system and the preconditioned system will be compared in order to justify the 

performance and suitability of the preconditioner. Since there are no special theoretical formulas that can be 

used to determine the spectral radiuses of the preconditioned matrices, therefore, we use Matlab software to 

estimate the values of the spectral radius. 

       Table 2 shows the comparison of the spectral radius between the original N-P Group SOR and the 

preconditioned N-P Group SOR systems. Clearly it can be seen that the spectral radius of the preconditioned 

system is smaller compared to the original system, thus justifying our findings. 

Fig. 4: Comparison of the CPU time (t) for Standard Five-Point, N-P SOR and preconditioned N-P SOR 

iterative methods 
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Table 2:  Comparison of spectral radius between the original and the preconditioned linear systems 

 

N Original N-P Group 

SOR system 

Preconditioned N-P Group 

SOR system 

45 

85 

105 

145 

185 

225 

0.7741 

0.8322 

0.8603 

0.8943 

0.9402 

0.9474 

0.4231 

0.4603 

0.4934 

0.5022 

0.5791 

0.6343 

 
 

V. CONCLUSION  
The application of the new preconditioner in block formulation for the N-P Group SOR iterative 

method is presented to accelerate the convergence rate of this group method. We see that the resulted 

preconditioned system showed improvements in the number of iterations and the execution time. Hence, we 

conclude that the proposed preconditioner is suitable to be implemented on the N-P Group SOR method and is 

able to accelerate the rate of convergence of this method. For future work, it would be worthwhile effort to 

investigate the application of preconditioner for other types of explicit group methods. 
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