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I. INTRODUCTION 
Satheesh Kumar and Riyaz (2013) developed an extended version of the zero-inflated logarithmic series 

distribution (ZILSD) and derive some of its structural and estimating its parameters. Then they (2015a, b ,c)) 

developed an order k version of the ZILSD and considered some of its structural properties, considered a 

modified version of logarithmic series distribution and study some of its properties, and proposed an alternative 

version of the ZILSD and studied some of its properties, and some of its applications. 

Logarithmic series distribution (LSD) sometime called logarithmic distribution or log-series distribution. This 

distribution is a member of the class of generalized power series distributions. For a detailed historical remarks 

and genesis of the LSD see Johnson et al (2005, 303-305). 

In this paper, we introduce in Section 2, the definition of the LSD and ZILSD with their probability generating 

function (pgf), followed in Section 3 we characterize the ZILSD through a linear equation of its pgf. 

 

II. THE LOGARITHMIC AND THE ZERO-INFLATED LOGARITHMIC SERIES 

DISTRIBUTIONS 
Let θ ∈ (0,1), then the discrete random variable (rv) X having probability mass function (pmf); 

𝑃(𝑋 = 𝑥) =  {
𝜃𝑥

−𝑥𝑙𝑜𝑔(1 − 𝜃)
                           𝑥 = 1, 2, 3, …      

   0                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,         

                                                 (2. 1) 

is said to have a logarithmic distribution (LSD) with parameter 𝜃. We will denote that by writing 𝑋 ∼ 𝐿𝑆𝐷(𝜃). 

See Johnson et al (2005), pp 302-325, for further details. 

The pgf of the rv X, GX(t), is given by; 

𝐺𝑋(𝑡) = 𝐸(𝑡𝑋)                                            

=
1

−𝑙𝑜𝑔(1 − 𝜃)
∑

𝜃𝑥

𝑥

∞

𝑥=1

𝑡𝑥 

=
𝑙𝑜𝑔(1 − 𝜃𝑡)

𝑙𝑜𝑔(1 − 𝜃)
                                                                                        (2.2) 

Let 𝛼 ∈ (0,1) be an extra proportion added to the proportion of zero of the rv X, then the rv Y defined by; 

𝑃(𝑌 = 𝑦) =  

{
 

 
𝛼,                                                   𝑦 = 0                  

(1 − 𝛼)
𝜃𝑦

−𝑦𝑙𝑜𝑔(1 − 𝜃)
             𝑦 = 1, 2, 3, …      

   0                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,         

                                               (2. 3) 

is said to have a ZILSD, and we will denote that by writing 𝑌 ∼ 𝑍𝐼𝐿𝑆𝐷(𝜃; 𝛼). 
Note that, if 𝛼 → 0, then (2.3) reduces to the standard form of the LSD given by (2.1).  

The pgf of the rv Y, can be shown to be; 

𝐺𝑌(𝑡) = 𝛼 + (1 − 𝛼)
𝑙𝑜𝑔(1 − 𝜃𝑡)

𝑙𝑜𝑔(1 − 𝜃)
                                                                       (2.4) 

 

III. CHARACTERIZATION OF THE ZERO-INFLATED LOGARITHMICSERIES 

DISTRIBUTION 
We give below the main result of this paper. 
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Theorem: Let 𝐺(𝑡) be the pgf of a discrete rv Y taking non-negative integer values then the rv Y has a 

degenerate, a Bernoulli or a ZILSD if its pgf satisfies, for some numbers a, b and c, that;  

(𝑎 + 𝑏𝑡)
𝜕

𝜕𝑡
𝐺(𝑡) = 𝑐                                                                                     (3.1) 

Proof: Let us consider all possible values of the numbers a, b and c. 

Case 1: 𝑎 = 0, 𝑏 = 0  and 𝑐 = 0is a non-sense case. 

Case 2: 𝑎 ≠ 0, 𝑏 = 0  and 𝑐 = 0. We have that; 𝑎
𝜕

𝜕𝑡
𝐺(𝑡) = 0, or equivalently, 

𝜕

𝜕𝑡
𝐺(𝑡) = 0, hence, 𝐺(𝑡) = 𝑘, 

where k is a constant. Since 1 = 𝐺(1); we have that k = 1; and therefore 𝐺(𝑡) = 1, inducting that the rv Y is a 

degenerate at 0. 

Case 3: 𝑎 = 0, 𝑏 ≠ 0  and 𝑐 = 0. We have that; 𝑏𝑡
𝜕

𝜕𝑡
𝐺(𝑡) = 0, hence; 𝐺(𝑡) = 𝑘, where k is a constant, 

resulting that the rv Y is a degenerate at 0 also. 

Case 4: 𝑎 = 0, 𝑏 = 0  and 𝑐 ≠ 0. We have that; c = 0, a non-sense case. 

Case 5: 𝑎 = 0, 𝑏 ≠ 0  and 𝑐 ≠ 0. We have that; 𝑏𝑡
𝜕

𝜕𝑡
𝐺(𝑡) = 𝑐, or equivalently; 

𝜕

𝜕𝑡
𝐺(𝑡) =

𝑐

𝑏𝑡
 

Hence, 𝑃(𝑌 = 0) =
𝜕

𝜕𝑡
𝐺(0) is not defined, and therefore this case is not possible. 

Case 6: 𝑎 ≠ 0, 𝑏 = 0  and 𝑐 ≠ 0. We have that; 𝑎
𝜕

𝜕𝑡
𝐺(𝑡) = 𝑐, or equivalently; 

𝜕

𝜕𝑡
𝐺(𝑡) =

𝑐

𝑎
; hence the solution 

is; 

𝐺(𝑡) =
𝑐

𝑎
t + 𝑘 

Where k is a constant. Since 1 = 𝐺(1); we have that k = 1; and therefore; 𝑘 = 1 − 
𝑐

𝑎
, hence; 

𝐺(𝑡) = 1 −
𝑐

𝑎
+ 
𝑐

𝑎
t 

Now, if a and c satisfy that 0 <
𝑐

𝑎
< 1, or equivalently, 0 < |𝑐| < |𝑎| < ∞;  then the rv Z has a Bernoulli 

distribution with parameter 𝜃 =
𝑐

𝑎
. 

Case 7: 𝑎 ≠ 0, 𝑏 ≠ 0  and 𝑐 = 0. We have that; (𝑎 + 𝑏)
𝜕

𝜕𝑡
𝐺(𝑡) = 0, or equivalently, 

𝜕

𝜕𝑡
𝐺(𝑡) = 0, hence; 

𝐺(𝑡) = 𝑘, where k is a constant, resulting that the rv Y is a degenerate at 0 also. 

Case 8: 𝑎 ≠ 0, 𝑏 ≠ 0  and 𝑐 ≠ 0. Without loss of generality, we can assume 𝑎 = 1 in (3.1), hence it becomes; 

(1 + 𝑏𝑡)
𝜕

𝜕𝑡
𝐺(𝑡) = 𝑐                                                                            (3.2) 

Or equivalently; 
𝜕

𝜕𝑡
𝐺(𝑡) =

𝑐

1 + 𝑏𝑡
 

Resulting in that; 

𝐺(𝑡) =
𝑐

𝑏
log(1 + 𝑏𝑡) + 𝑘 

Where k is a constant, determined from the fact that 𝐺(1) = 1, that is; 

𝑘 =  1 −
𝑐

𝑏
log(1 + 𝑏) 

Hence,  

𝐺(𝑡) =
𝑐

𝑏
log(1 + 𝑏𝑡) + 1 −

𝑐

𝑏
log(1 + 𝑏)                                                               (3.3) 

Using (3.3), we have that; 

𝑃(𝑌 = 0) = 𝐺(0) = 1 −
𝑐

𝑏
log(1 + 𝑏)                                                                     (3.4) 

Now; 
𝜕

𝜕𝑡
𝐺(𝑡) =

𝑐

1 + 𝑏𝑡
 

Therefore,  

𝑃(𝑌 = 1) =
𝜕

𝜕𝑡
𝐺(0) = 𝑐                                                                               (3.5) 

Let us show that 0 < 𝑃(𝑌 = 1) < 1. Suppose that 𝑃(𝑌 = 1) = 1, then from (3.5), we have that c=1, and 

therefore, 𝑃(𝑌 = 0) = 0, that is; 1 −
1

𝑏
log(1 + 𝑏) = 0, or equivalently, log(1 + 𝑏) = 𝑏. But; log(1 + 𝑏) = 𝑏 

has solution 𝑏 = 0, which is contradict the assumption that 𝑏 ≠ 0. Since by assumption 𝑐 ≠ 0, we have that 

0 < 𝑃(𝑌 = 1) < 1, hence 

0 < 𝑐 < 1                                                                                            (3.6) 
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Therefore, 0 < 𝑃(𝑌 = 0) < 1, that is  

0 < 1 −
𝑐

𝑏
log(1 + 𝑏) < 1                                                                                (3.7) 

It can be seen that; 

𝜕(𝑛)

𝜕𝑡𝑛
𝐺(𝑡) =

 𝑐(𝑛 − 1)! (−𝑏)𝑛−1

(1 + 𝑏𝑡)𝑛
,               𝑛 = 1, 2, 3, …                                  (3.8) 

It follows that; 

𝑃(𝑌 =) =
1

𝑦!

𝜕(𝑦)

𝜕𝑡𝑦
𝐺(0)                            

 =
 𝑐(−𝑏)𝑦−1

𝑦
,               𝑦 = 1, 2, 3, …                                             (3.9) 

Using (3.6), we have that; 

0 ≤
(−𝑏)𝑦−1

𝑦
< 1,                      𝑦 = 1, 2, 3, …                                                (3.10) 

Let us consider all possible values of 𝑏. Firstly, we note that in order for 𝐺(𝑡) given by (3.3) to be a pgf, b ≠−1; 

since it will not be defined when b = −1, therefore b ≠−1. Secondly, b cannot be positive, since if it does, then 

the quantity 
(−𝑏)𝑦−1

𝑦
 will be negative for even positive integer number of y. Similarly, if 𝑏 < −1, then the 

quantity 
(−𝑏)𝑦−1

𝑦
 will be unbounded as y getting large and hence violated (3.9). Therefore, −1 < 𝑏 < 0. 

Writing  

𝛼 =  1 −
𝑐

𝑏
log(1 + 𝑏)                                                                       (3.11) 

Hence,  

𝑐 = (1 − 𝛼)
−𝜃

𝑙𝑜𝑔(1 − 𝜃)
 

Where 𝜃 = −𝑏, and note that 0 < 𝜃 < 1 and that 0 < 𝛼 < 1 from (3.7), and hence the rv Y ∼ 𝑍𝐼𝐿𝑆𝐷(𝜃; 𝛼) 
with pmf given by (2.3). 

 

Theorem 2: Let Z be a discrete rv taking non-negative integer values, then Z ∼ 𝑍𝐼𝐿𝑆𝐷(𝜃; 𝛼), for some non-

zero 𝜃 and 𝛼if and only if its pgf satisfying (3.1) for some non-zero numbers a, b and c. 

Proof: let Z ∼ 𝑍𝐼𝐿𝑆𝐷(𝜃; 𝛼), for some 𝜃 𝑎𝑛𝑑 𝛼, then its pgf is given by (2.4), hence; 
𝜕

𝜕𝑡
𝐺(𝑡) = (1 − 𝛼)

1

𝑙𝑜𝑔(1 − 𝜃)

−𝜃

(1 − 𝜃𝑡)
 

And hence, 

(𝑎 + 𝑏)
𝜕

𝜕𝑡
𝐺(𝑡) = 𝑐 

With a = 1, b = −𝜃 and c = (1 − 𝛼)
−𝜃

𝑙𝑜𝑔(1−𝜃)
, therefore, (3.1) is satisfied, and hence the proof is complete using 

Case 7 of Theorem 1. 

 

IV. CONCLUSIONS 
We introduced a characterization of the zero-inflated logarithmic series distributions through a linear 

differential equation of its probability generating function. We would propose an extension of this 

results to other forms as well as to others distributions. 
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