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ABSTRACT 

Let G be a simple graph with n vertices, and  λ1, · · · , λn be the eigenvalues of its adjacent 

matrix. The Estrada index of G is a graph invariant, defined as EE = ie
n

i



1
 ,, is proposed as a 

measure of branching in alkanes. In this paper, we obtain two candidates which have the fourth 

largest EE among trees with n vertices. 
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I. Introduction 
Throughout the paper, G is a simple graph with vertex set V = {v1; ...; vn} and the edge set E. Let 

A(G) be the adjacent matrix of G, which is a symmetric (0; 1) matrix. The spectrum of G is the 

eigenvalues of its adjacency matrix, which are denoted by λ1, · · · , λn . For basic properties of 

graph eigenvalues, the readers are referred to [1]. A graph-spectrum-based invariant, put forward 

by Estrada [2], is defined as 

EE = EE(G) = ie
n

i



1
 . 

EE is usually referred as the Estrada index. The Esteada index has been successfully related to 

chemical properties of organic molecules, especially proteins[2-3]. Estrada and 

Rodriguez-Velazquez[4-5] showed that EE provides a measure of the centrality of complex 

(communication, social, metabolic, etc.) networks. It was also proposed as a measure of 

molecular branching[6]. Within groups of isomers, EE was found to increase with the increasing 

extent of branching of carbon-atom skeleton. In addition, EE characterizes the structure of 

alkanes via electronic partition function. Therefore it is natural to investigate the relations 

between the Estrada index and the graph-theoretic properties of G. Let d(u) denote the degree of 

vertex u. A vertex of degree 1 is called a pendant vertex or a leaf. A connected graph without 

any cycle is a tree. The path Pn is a tree of order n with exactly two pendant vertices. The star of 

order n, denoted by Sn is a tree with n − 1 pendant vertices. Let d(u) denote the degree of vertex 

u. A vertex of degree 1 is called a pendant vertex. A connected graph without any cycle is a tree. 

The path Pn is a tree of order n with exactly two pendant vertices. The star of order n, denoted 

by Sn, is a tree with n − 1 pendant vertices. The double star of order n, denoted by S(p, q), is a 

tree with n − 2 pendant vertices. p, q are the degrees of vertices whose degrees are bigger than 1 

in S(p, q) The ∆−starlike T (n1, ..., n∆) is a tree composed of the root v, and the paths P1, P2, ..., 

P∆ of length n1, n2, ..., n∆ attached at v. The number of vertices of a tree T (n1, ..., n∆) equals n = 

n1 + n2 + ... + n∆. 

A walk in a graph G is a finite non-null sequence w = v0e1v1e2v2…vk−1ekvk, whose terms are 

alternately vertices and edges, such that, for every 1 ≤ i ≤ k, the ends of ei are vi−1 and vi. We say 

that w is a walk from v0 to vk, or a (v0, vk)− walk. The vertices v0 and vk are called the initial and 
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final vertices of w, respectively, and v1, ..., vk−1 its internal vertices. The integer k is the length of 

w. The walk is closed if v0 = vk. 

In a simple graph, a walk v1e1v2e2v3…vk−1ek−1vk is determined by the sequence v1v2...vk−1vk 

of its vertices, hence a walk in a simple graph can be simply specified by its vertex sequence. 

   For any vertex u in G, we denote by Sk(G, u) the set of walks in G with length k starting 

from u, and by Mk(G, u) the number of walks in G with length k starting from u. Therefore, the 

set of all closed walks of length k in G, denoted by Sk(G), equals to Ｕv∈G Sk(G, v), and Mk(G) 

= Gv k
vGM ),( Error! Reference source not found.. The diameter of G, denoted

 
by 

Diam(G) is the length of the longest path in G. Since every tree is a bipartite graph, there is no 

any self-returning walk with odd length in a tree. 

For the path Pn = v1v2...vn and the star Sn with center v1, and any integer k ≥ 0, we have 

Mk(Pn, vi) = Mk(Pn, vn−i+1) and Mk(Sn, vj ) = Mk(Sn, vt) for all 1 ≤ i ≤ n and 2 ≤ j, t ≤ n by 

symmetry. 

Some mathematical properties of the Estrada index were established. One of most 

important properties is the following: 

EE=∑k≥0(Mk (G))/k! 

Mk(G) is called the k-th spectral moment of the graph G. Mk(G) is equal to the number of closed 

walks of length k in G. Thus, if for two graphs G1 and G2, we have Mk(G1) ≥ Mk(G2) for all k 

≥0, then EE(G1)≥EE(G2). Moreover, if there is at least one positive integer t such that 

Mt(G1) > Mt(G2), then EE(G1) > EE(G2). The question of finding the lower and upper bounds for 

EE and the corresponding extremal graphs attracted the attention of many researchers.G, J. A. de 

la Penna, I. Gutman and J. Rada [9] established lower and upper bounds for EE in terms of the 

number of vertices and number of edges and some inequalities between EE and the energy of G. 

Deng showed that among n-vertex trees, Pn has the minimum and Sn the maximum Estrada 

index, and among connected graphs of order n, the path Pn has the minimum Estrada index. 

Among these, Ilic and Stevanovic[10] obtained the unique tree with minimum Estrada index 

among the set of trees with given maximum degree, and determines the tree with second minima 

EE. Zhang et al. [11] determined the unique tree with maximum Estrada index among the set of 

trees with given matching number. Zhang et al.[11] determined the unique tree with maximum 

Estrada index among the set of trees with given matching number. In [12], Li proved that, 

among trees with n vertices, S(2; n − 2) and S(3; n − 3) have the second and the third largest EE, 

respectively. In this paper, we obtain two candidates which have the fourth largest EE among 

trees with n vertices. 

 

II. Main results 
First of all, we list and prove some lemmas, which will be used later. 

Lemma 2.1
[12]  

Let G = S(p, q) be
 
a double star with centers w, v and leaves ui, i = 1, 2, ..., p+ 

q-2, and assume that d(w) = p and d(v) = q. Then Mk(G, v) > Mk(G, ui) and Mk(G, w) >Mk(G, ui) 

for all i = 1, 2, ..., p + q−2. If p ≤ q, then Mk(G, w) ≤ Mk(G, v) for every k ≥ 1, and Mk(G, w) < 

Mk(G, v) for at least one integer k0 if p < q. 
 

Lemma 2.2
[10] 

 Let Pn = v1v2...vn. For every k ≥ 0, the following hold: Mk(Pn, v1) ≤Mk(Pn, v2)  

≤ ... ≤ Mk(Pn, vError! Reference source not found.n/2) with strict inequality for sufficiently large k. 

Lemma 2.3
[12]

 Let v be a pendant vertex of a simple graph G, and v1 is the only vertex 

connecting v. We have an injection ηk from Sk(G, v) to Sk(G, v1) for every k ≥ 1, and ηk0 is not 

surjective for at least one integer k0 if v1 is an internal vertex. Therefore, Mk(G, v) ≤ Mk(G, v1) for 

every k ≥ 1, and Mk0 (G, v) < Mk0 (G, v1) for at least one integer k0. 

Lemma 2.4
[12] 

Let u1, u2 be two non-isolated vertices of a simple graph H , u be a non-isolated 

vertices of a simple graph G. If H1 and H2 are the graphs obtained from H by identifying u1 and 

u2 to u, respectively, depicted in Figure 1. If Mk(H, u1) ≤ Mk(H, u2) for all integer k ≥ 0, and 

Mk0 (H, u1) < Mk0 (H, u2) for at least one integer k0, then Mt(H1) ≤ Mt(H2) for all integer t ≥ 0,and 

Mt0 (H1) < Mt0 (H2) for at least one integer t0. 
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    For n = 5, we only have three trees: S5, P5, P5,3. Therefore, we only need consider n > 5 in 
the 

following. 

Lemma 2.5 If G has the fourth largest Estrada index among trees with n vertices, then 

Diam(G)<5. 

Proof  Let G be a tree with fourth maximal Estrada index. On the contrary, we assume that 

Diam(T ) ≥ 5. Let T = v1v2...vk be the longest path in G, and let vk+1, ..., vd−2 are neighbours of v2 

besides v1 and v3, where d is the degree of v2. By cutting v1v2, vk+1v2, ..., vd−2v2 and adding new 

edges v1v3, vk+1v3, ..., vd−2v3, we get a new tree G1 of order n. G1 ≠ Sn because Diam(G1) ≥ 4. 

    On the other hand, we can obtain G and G1 by identifying the center u of Gd−1 to v2 and v3 

of G − {v1, vk, ..., vd−2}, respectively. By lemma 2.2, Mk(G2, v2) ≤ Mk(G2, v3) for every k ≥ 1. 

Therefore, Mk(G) ≤ Mk(G1) for all integer k ≥ 0, and Mk0 (G) < Mk0 (G1) for at least one integer 

k0 by lemma 2.4. Thus EE(G) < EE(G2) by equation (2). We get a tree G1 with bigger EE than G, 

a contradiction. Hence Diam(G) ≤ 4.. 

Proposition 2.1
[12]

 Among trees with k ≥ 6 vertices, the double star S(3, n − 3) has the third 

largest Estrada index. 

Theorem 2.1 If n = 6, 3-starlike tree T (2, 2, 1) has the fourth largest Estrada index; If n = 7, 4- 

starlike tree T (2, 2, 1, 1) has the fourth largest Estrada index. For n ≥ 8, S(4, n − 4) or n 

-3−starlike tree T (2, 2, 1, 1, ..., 1) has the fourth largest Estrada index. 

Proof For n = 6, If we only have two double star trees S(2, 4) and S(3, 3). By Lemma 2.5, if G 

has the fourth largest Estrada index, then Diam(G) = 4. We just need to add a pendent edge at 

one of internal vertex of the path P4. By lemma 2.2 and lemma 2.4, EE(T (2, 2, 1)) > EE(T (3, 1, 

1)). So, T (2, 2, 1) has the fourth largest Estrada index. 

    For n = 7, we only have two double star trees: S(2, 5) and S(3, 4). By Lemma 2.5, if G has 

the fourth largest Estrada index, then Diam(G) = 4. We just need to add a pendent path of length 

2 at v3 of the path P4 = v1v2v3v4v5 or add two pendent edges at two of internal vertex of the path 

P4. If v3v6v7 is a pendant path attached at v3, we can cut the edge v6v7 and add a new edge v7v3 to 

form a new tree with bigger Estrada index by Lemma 2.2 and lemma 2.4. So, T (3, 3, 3) is not 

the tree with fourth largest Estrada index. In the same way, we can show that T (2, 2, 1, 1) has 

the fourth largest Estrada index. 

    For n ≥ 8, let P = v1v2v3v4v5 be the longest path in T . If v2 or v4 has a pendent path of length 

longer than 1, we can choose another path with length bigger than 5, a contradiction. In the 

same way, we can prove that all pendent path at v3 have the length shorter than 2. If v3v6v7 is a 

pendant path attached at v3, we can cut the edge v6v7 and add a new edge v7v3 to form a new tree 

with bigger Estrada index by Lemma 2.1 and lemma 2.2. So, all pendant paths at v3, v4 and v5 

are of length 1. 

    If d(v2) > 2 and d(v4) > 2, we cut v4w1, ..., v4wt and add new edges v3w1, ..., v3wt to form a 

new tree T1 . Obviously, T1 ≠S(3, n − 3). By lemma 2.1 and lemma 2.2, EE(T1) > EE(T ), a 

contradiction. 

    Without loss of generality, we assume that d(v4) = 4. We will compare the Estrada index of 

the following three kinds of trees T2, T3 = T (2, 2, 1, ..., 1), T4 = T (3, 1, 1, ..., 1), as shown in 

Figure 2. 
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We can obtain T2 from T5 by adding some new edges w1v3, ..., wtv3. Also We can obtain T3 from 
T5 by adding some new edges w1v3, ..., wtv3. By lemma 3.2, Sk(P5, v3) ≥ Sk(P5, v2) for all k and 
Sk0 (P5, v3) > Sk0 (P5, v2) for at least one integer k0. Then Sk(T5, v3) ≥ Sk(T5, v2) by lemma 3.1. 
Therefore, EE(T3) > EE(T2). 

     By lemma 2.2, EE(T3) > EE(T4) since Mk(P5, v3) ≥ Mk(P5, v2) and Mk1 (P5, v3) ≥ Mk1 (P5, 

v2)for at least one integer k1. From above discussion, T3 has the largest Estrada index among 

n−vertex trees with length 4. If a graph G has diameter 3, then G is a double star. By lemma 2.1, 

EE(S(2, n-2)) > EE(S(3, n − 3)) > EE(S(4, n − 4)) .For n ≥ 8, Trees with fourth largest trees 

may be T3 or S(4, n − 4). 
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