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ABTRACT: In this paper we define the generalized Cesaro sequence spaces  𝑐𝑒𝑠(𝑝, 𝑞, 𝑠). We prove the space  

𝑐𝑒𝑠(𝑝, 𝑞, 𝑠) is a complete paranorm space. In section-2 we determine its Kothe-Toeplitz dual. In section-3 we 

establish necessary and sufficient  conditions for a matrix A to map 𝑐𝑒𝑠 𝑝, 𝑞, 𝑠  to  𝑙∞ and 𝑐𝑒𝑠(𝑝, 𝑞, 𝑠)  to c, 

where 𝑙∞ is the space of all bounded sequences and c is the space of all convergent sequences. We also get some 

known and unknown results as remarks. 

KEYWORDS: Sequence space, Kothe-Toeplitz dual, Matrix transformation. 

 

 

I. INTRODUCTION 

Let  𝜔  be the space of all (real or complex) sequences and let  𝑙∞, 𝑐 𝑎𝑛𝑑 𝑐0 are respectively the Banach spaces 

of  bounded sequences, convergent sequences and null sequences. Let  𝑝 =  𝑝𝑘  be a bounded sequence of 

strictly positive real numbers. Then 𝑙(𝑝) was defined by Maddox [7] as  

𝑙 𝑝 =  𝑥 =  𝑥𝑘 ∈ 𝜔: |𝑥𝑘 |𝑝𝑘 < ∞

∞

𝑘=1

   

                                                                      with  0 < 𝑝𝑘 ≤
𝑠𝑢𝑝
𝑘
𝑝𝑘 = 𝐻 < ∞.  

 In [9] Shiue introduce the Cesaro sequence space 𝑐𝑒𝑠𝑝  as  

   

      𝑐𝑒𝑠𝑝 =  𝑥 =  𝑥𝑘 ∈ 𝜔:  
1

𝑛
  𝑥𝑘  

𝑛

𝑘=1

 

𝑝

< ∞

∞

𝑛=1

  𝑓𝑜𝑟 1 < 𝑝 < ∞ 

 

                                                  𝑎𝑛𝑑   𝑐𝑒𝑠∞ =  𝑥 =  𝑥𝑘 ∈ 𝜔:
𝑠𝑢𝑝
𝑛 ≥ 1

 
1

𝑛
  |𝑥𝑘 |

𝑛

𝑘=1

  𝑓𝑜𝑟  𝑝 = ∞. 

𝐼𝑛 [5] Leibowitz studied some properties of this space and showed that it is a Banach space. Lim [10] defined 

this space in a different norm as 

      𝑐𝑒𝑠𝑝 =  𝑥 =  𝑥𝑘 ∈ 𝜔:  
1

2𝑟
  𝑥𝑘  

𝑟

 

𝑝

< ∞

∞

𝑟=0

  𝑓𝑜𝑟 1 < 𝑝 < ∞ 

 

      𝑎𝑛𝑑   𝑐𝑒𝑠∞ =  𝑥 =  𝑥𝑘 ∈ 𝜔:
𝑠𝑢𝑝
𝑟 ≥ 0

 
1

2𝑟
  𝑥𝑘  < ∞  𝑓𝑜𝑟 𝑝 = ∞ 

where   𝑑𝑒𝑛𝑜𝑡𝑒𝑠𝑟  a sum over the ranges [2𝑟 , 2𝑟+1), determined its dual spaces and characterize some matrix 

classes. Later in [11] Lim extended this space 𝑐𝑒𝑠𝑝  𝑡𝑜 𝑐𝑒𝑠(𝑝) for the sequence 𝑝 = (𝑝𝑟) with inf 𝑝𝑟 > 0 and 

defined as 

author ingCorrespond*  

 

𝑐𝑒𝑠 𝑝 =  𝑥 =  𝑥𝑘 ∈ 𝜔:  
1

2𝑟
 |𝑥𝑘 |

𝑟

 

𝑝𝑟

< ∞

∞

𝑟=0

 . 

For positive sequence of real numbers  𝑝𝑛 ,  𝑞𝑛  𝑎𝑛𝑑 𝑄𝑛 = 𝑞1 + 𝑞2 + ⋯… . +𝑞𝑛 , Johnson and Mohapatra [14] 

defined the Cesaro sequence space  𝑐𝑒𝑠 𝑝, 𝑞   𝑎𝑠 

 

𝑐𝑒𝑠(𝑝, 𝑞) =  𝑥 =  𝑥𝑘 ∈ 𝜔:  
1

𝑄𝑛
 𝑞𝑘

𝑛

𝑘=1

 𝑥𝑘   

𝑝𝑟

< ∞

∞

𝑛=1

  

and studied some inclusion relations. What amounts to the same thing defined by Khan and Rahman [4] as  
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𝑐𝑒𝑠 𝑝, 𝑞 =  𝑥 =  𝑥𝑘 ∈ 𝜔:  
1

𝑄2𝑟
 𝑞𝑘 |𝑥𝑘 |

𝑟

 

𝑝𝑟

< ∞

∞

𝑟=0

  

 for  𝑝 =  𝑝𝑟  with inf 𝑝𝑟 > 0 , 𝑄2𝑟 = 𝑞2𝑟+  𝑞2𝑟+1 + ⋯…… . . …+ 𝑞2𝑟+1−1   and   denotes 𝑟 a sum over the 

ranges [2𝑟 , 2𝑟+1). They determined it’s Kothe –Toeplitz  dual and characterized some matrix classes. 

 

The main purpose of this paper is to define the generalized Cesaro sequence space 𝑐𝑒𝑠(𝑝, 𝑞, 𝑠). We determine 

the Kothe-Toeplitz dual of  𝑐𝑒𝑠(𝑝, 𝑞, 𝑠)  and then consider the matrix mapping  

𝑐𝑒𝑠 𝑝, 𝑞, 𝑠  𝑡𝑜 𝑙∞ 𝑎𝑛𝑑 𝑐𝑒𝑠 𝑝, 𝑞, 𝑠  𝑡𝑜 𝑐.  
 

𝐼𝑛 [2] Bulut and Cakar defined and studied the sequence space 𝑙 𝑝, 𝑠 , in [3] Khan and Khan defined and 

investigated the Cesaro sequence space  𝑐𝑒𝑠 𝑝, 𝑠 , in [12] we defined and studied  the Riesz sequence space  

𝑟𝑞(𝑢, 𝑝, 𝑠) of non-absolute type and in [13] we defined and studied the generalized weighted Cesaro sequence 

space 𝑐𝑒𝑠 𝑝, 𝑞, 𝑠  . In the same vein we define generalized Cesaro sequence space 𝑐𝑒𝑠 𝑝, 𝑞, 𝑠 in the following 

way. 

 

DEFINITION.  For 𝑠 ≥ 0 we define 

𝑐𝑒𝑠 𝑝, 𝑞, 𝑠 =  𝑥 =  𝑥𝑘 ∈ 𝜔: (𝑄2𝑟)−𝑠   
1

𝑄2𝑟
   𝑞𝑘 |𝑥𝑘 |

𝑟

 

𝑝𝑟

< ∞

∞

𝑟=0

  

   where  (𝑞𝑘)  is a bounded sequence of real  numbers,  𝑝 =  𝑝𝑟  with inf 𝑝𝑟 > 0,    𝑄2𝑟 = 𝑞2𝑟 + 𝑞2𝑟+1 +
⋯…………… . . +𝑞2𝑟+1−1 𝑎𝑛𝑑  denotes𝑟  a sum over the range 2𝑟 ≤ 𝑘 < 2𝑟+1. With regard notation, the dual 

space of  𝑐𝑒𝑠 𝑝, 𝑞, 𝑠 , that is, the space of all continuous linear functional on  𝑐𝑒𝑠 𝑝, 𝑞, 𝑠  will be denoted by  

𝑐𝑒𝑠∗(𝑝, 𝑞, 𝑠). We write 

 

𝐴𝑟 𝑛 =
𝑚𝑎𝑥
𝑟
 𝑞𝑘

−1 𝑎𝑛,𝑘    

where for each n the maximum with respect  to  k  in  [2𝑟 , 2𝑟+1). 

Throughout the paper the following well-known inequality (see [7] or [8]) will be frequently used. For any 

positive integer  𝐸 > 1 and any two complex numbers a and b we have 

                                       |𝑎𝑏| ≤ 𝐸 |𝑎|𝑡𝐸−𝑡 + |𝑏|𝑡                                                                                      
(1) 

                                                  where   𝑝 > 1 𝑎𝑛𝑑 
1

𝑝
+

1

𝑞
= 1. 

To begin with, we show that the space  𝑐𝑒𝑠 𝑝, 𝑞, 𝑠  is a paranorm space paranormed by 

                                                                         𝑔 𝑥 =   (𝑄2𝑟)−𝑠   
1

𝑄2𝑟
 𝑞𝑘   𝑥 𝑘  𝑟  

𝑝𝑟
∞
𝑟=0  

1/𝑀

                                        

(2)  

provided  𝐻 =
𝑠𝑢𝑝
𝑟
𝑝𝑟 < ∞ 𝑎𝑛𝑑 𝑀 = max 1, 𝐻 . 

Clearly                           

                                              𝑔 𝜃 = 0 

                  𝑔 −𝑥 = 𝑔(𝑥), 

where  𝜃 = (0, 0, 0, ……………………… . . ) 

Since 𝑝𝑟 ≤ 𝑀, 𝑀 ≥ 1 𝑠𝑜 𝑓𝑜𝑟 𝑎𝑛𝑦  𝑥, 𝑦 ∈ 𝑐𝑒𝑠 𝑝, 𝑞, 𝑠  𝑤𝑒 have by Minkowski’s inequality 

             (𝑄2𝑟)−𝑠    
1

𝑄2𝑟
  𝑞𝑘  𝑥𝑘 + 𝑦𝑘  

𝑟

 

𝑝𝑟∞

𝑟=0

 

1/𝑀

 

 

≤   (𝑄2𝑟)−𝑠  
1

𝑄2𝑟
 (𝑞𝑘   𝑥𝑘  

𝑟

+ 𝑞𝑘  |𝑦𝑘 |) 

𝑝𝑟∞

𝑟=0

 

1/𝑀

 

 

≤   (𝑄2𝑟)−𝑠  
1

𝑄2𝑟
 𝑞𝑘  𝑥𝑘  

𝑟

 

𝑝𝑟∞

𝑟=0

 

1/𝑀

+  (𝑄2𝑟)−𝑠    
1

𝑄2𝑟
   𝑞𝑘 |𝑦𝑘
𝑟

| 

𝑝𝑟∞

𝑟=0

 

1/𝑀

 

which shows that  g  is subadditive. 

Finally we have to check the continuity of scalar multiplication. From the definition of   𝑐𝑒𝑠(𝑝, 𝑞, 𝑠), we have 

inf  𝑝𝑟 > 0. So, we may assume that inf 𝑝𝑟 ≡ 𝜌 > 0. Now for any complex  𝜆  with   |𝜆 | < 1, we have  
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𝑔 𝜆𝑥 =   (𝑄2𝑟 )−𝑠   
1

𝑄2𝑟
  𝑞𝑘 |𝜆𝑥𝑘
𝑟

| 

𝑝𝑟∞

𝑟=0

 

1/𝑀

 

 

     =  𝜆 
𝑝𝑟
𝑀    𝑄2𝑟 

−𝑠   
1

𝑄2𝑟
  𝑞𝑘 |𝑥𝑘
𝑟

| 

𝑝𝑟∞

𝑟=0

 

1

𝑀

 

                                                                            ≤
𝑠𝑢𝑝
𝑟
 𝜆 

𝑝𝑟
𝑀  𝑔(𝑥) 

                                                           ≤  𝜆 
𝜌

𝑀   𝑔 𝑥 → 0  𝑎𝑠 𝜆 → 0  
above. It is quite routine to show that  𝑐𝑒𝑠(𝑝, 𝑞, 𝑠) is a metric space with the metric  𝑑(𝑥, 𝑦) = 𝑔(𝑥 − 𝑦)  

provided that  𝑥, 𝑦 ∈ 𝑐𝑒𝑠 𝑝, 𝑞, 𝑠 ,  where g is defined by (2). And using a similar method to that in 

([3],[4],[13])one can show that  𝑐𝑒𝑠(𝑝, 𝑞, 𝑠) is complete under the metric mentioned. 

 

II. KOTHE-TOEPLITZ DUALS 

       If  X is a sequence space we define ([1], [6])  

        𝑋|+| = 𝑋𝛼 =  𝑎 =  𝑎𝑘 ∈ 𝜔:  𝑎𝑘𝑥𝑘  < ∞,

𝑘

 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦  𝑥 ∈ 𝑋  

𝑋+ = 𝑋𝛽 =  𝑎 =  𝑎𝑘 ∈ 𝜔: 𝑎𝑘𝑥𝑘  𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦  𝑥 ∈ 𝑋

𝑘

  

Now we are going to give the following theorem by which the generalized Kothe-Toeplitz dual 𝑐𝑒𝑠+(𝑝, 𝑞, 𝑠) 

will be determined. 

Theorem 1: If 1 < 𝑝𝑟 ≤
𝑠𝑢𝑝
𝑟
𝑝𝑟 < ∞  𝑎𝑛𝑑  

1

𝑝𝑟
+

1

𝑡𝑟
= 1, 𝑓𝑜𝑟  𝑟 = 0, 1, 2, …… ., then  

      𝑐𝑒𝑠+ 𝑝, 𝑞, 𝑠 = [𝑐𝑒𝑠(𝑝, 𝑞, 𝑠)]𝛽  

=  𝑎 =  𝑎𝑘 :  (𝑄2𝑟)𝑠(𝑡𝑟−1)  𝑄2𝑟
𝑚𝑎𝑥
𝑟

(𝑞𝑘
−1  𝑎𝑘  ) 

𝑡𝑟
𝐸−𝑡𝑟 < ∞, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝐸 > 1∞

𝑟=0  . 

 

Proof : Let   1 < 𝑝𝑟 ≤
𝑠𝑢𝑝
𝑟
𝑝𝑟 < ∞ 𝑎𝑛𝑑 

1

𝑝𝑟
+

1

𝑡𝑟
= 1, 𝑓𝑜𝑟  𝑟 = 0,1,2, ……. . Define  

𝜇 𝑡, 𝑠 = 

 𝑎 =  𝑎𝑘 :   (𝑄2𝑟)𝑠(𝑡𝑟−1)  𝑄2𝑟
𝑚𝑎𝑥
𝑟
 𝑞𝑘

−1  𝑎𝑘    
𝑡𝑟

𝐸−𝑡𝑟 < ∞, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝐸 > 1 ∞
𝑟=0  .                        (3) 

We want to show that  𝑐𝑒𝑠+ 𝑝, 𝑞, 𝑠 = 𝜇 𝑡, 𝑠 . Let 𝑥 ∈ 𝑐𝑒𝑠(𝑝, 𝑞, 𝑠) and  𝑎 ∈ 𝜇 𝑡, 𝑠  . Then using inequality (1) 

 we get 

  𝑎𝑘𝑥𝑘  =    𝑎𝑘𝑥𝑘  

𝑟

∞

𝑟=0

∞

𝑘=1

 

     =    𝑞𝑘
−1   𝑎𝑘    𝑞𝑘   𝑥𝑘  

𝑟

∞

𝑟=0

 

                    ≤   
𝑚𝑎𝑥
𝑟
 𝑞𝑘

−1  𝑎𝑘      𝑞𝑘   𝑥𝑘  

𝑟

∞

𝑟=0

 

                     =  𝑄2𝑟
𝑚𝑎𝑥
𝑟
 𝑞𝑘

−1   𝑎𝑘    (𝑄2𝑟 )
𝑠

𝑝𝑟  
1

𝑄2𝑟
 (𝑄2𝑟)

− 
𝑠

𝑝𝑟   𝑞𝑘  𝑥𝑘  

𝑟

∞

𝑟=0

 

                   ≤ 𝐸   𝑄2𝑟
𝑚𝑎𝑥
𝑟
 𝑞𝑘

−1   𝑎𝑘    
𝑡𝑟

(𝑄2𝑟)
𝑠 𝑡𝑟
𝑝𝑟

 
𝐸−𝑡𝑟  + (𝑄2𝑟)−𝑠  

1

𝑄2𝑟
 𝑞𝑘   𝑥𝑘  

𝑟

 

𝑝𝑟

 

∞

𝑟=0

 

     = 𝐸    𝑄2𝑟
𝑚𝑎𝑥
𝑟
 𝑞𝑘

−1  𝑎𝑘    
𝑡𝑟

(𝑄2𝑟)𝑠(𝑡𝑟−1)𝐸−𝑡𝑟 + (𝑄2𝑟)−𝑠  
1

𝑄2𝑟
 𝑞𝑘  𝑥𝑘  

𝑟

 

𝑝𝑟∞

𝑟=0

∞

𝑟=0

  

                  < ∞ 

which implies that the series   𝑎𝑘𝑥𝑘
∞
𝑘=1  convergent. 

Therefore,  

           𝑎 ∈ 𝑑𝑢𝑎𝑙 𝑜𝑓 𝑐𝑒𝑠 𝑝, 𝑞, 𝑠 = 𝑐𝑒𝑠+(𝑝, 𝑞, 𝑠). This shows, 𝜇(𝑡, 𝑠) ⊂ 𝑐𝑒𝑠+(𝑝, 𝑞, 𝑠) 

Conversely, suppose that  𝑎𝑘𝑥𝑘   is convergent for all 𝑥 ∈ 𝑐𝑒𝑠(𝑝, 𝑞, 𝑠)  but    𝑎 ∉ 𝜇(𝑡, 𝑠). Then  
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                          (𝑄2𝑟)𝑠(𝑡𝑟−1)  𝑄2𝑟
𝑚𝑎𝑥
𝑟
 𝑞𝑘

−1  𝑎𝑘    
𝑡𝑟

𝐸−𝑡𝑟 = ∞

∞

𝑟=0

 

                               for every integer 𝐸 > 1. 
So, we can define a sequence   0 = 𝑛 0 < 𝑛 1 < 𝑛 2 < ⋯……… .…, such that  𝛾 = 0, 1, 2, …………. , we 

have 

𝑀𝛾 =  (𝑄2𝑟)𝑠(𝑡𝑟−1)   𝑄2𝑟
𝑚𝑎𝑥
𝑟
 𝑞𝑘

−1  𝑎𝑘    
𝑡𝑟
 𝛾 + 2 −

𝑡𝑟
𝑝𝑟 

𝑛 𝛾+1 −1

𝑟=𝑛(𝛾)

> 1 

Now we define a sequence  𝑥 =  𝑥𝑘  in the following way: 

                             𝑥𝑁(𝑟) = 𝑄
2𝑟
𝑡𝑟  𝑎𝑁(𝑟) 

𝑡𝑟−1
 𝑠𝑔𝑛 𝑎𝑁(𝑟)(𝑄2𝑟)𝑠(𝑡𝑟−1)(𝛾 + 2)−𝑡𝑟𝑀𝛾

−1 

      for  𝑛 𝛾 ≤ 𝑟 ≤ 𝑛 𝛾 + 1 − 1, 𝛾 = 0, 1, 2, ………………,  and  𝑥𝑘= 0 for  𝑘 ≠ 𝑁 𝑟 , where  𝑁 𝑟  is such 

that  

                           𝑎𝑁(𝑟) =
𝑚𝑎𝑥
𝑟
 𝑞𝑘

−1   𝑎𝑘   , the maximum is taken with respect to  k  in   2𝑟 , 2𝑟+1 . 

Therefore . 

 𝑎𝑘𝑥𝑘

2𝑛 𝛾+1 −1

𝑘=2𝑛(𝛾)

=   𝑄2𝑟  𝑎𝑁(𝑟)  
𝑡𝑟

𝑛 𝛾+1 −1

𝑟=𝑛(𝛾)

(𝑄2𝑟)𝑠(𝑡𝑟−1)(𝛾 + 2)−𝑡𝑟  𝑀𝛾
−1 

                         = 𝑀𝛾
−1(𝛾 + 2)−1   𝑄2𝑟  𝑎𝑁(𝑟)  

𝑡𝑟

𝑛 𝛾+1 −1

𝑟=𝑛(𝛾)

(𝑄2𝑟)𝑠(𝑡𝑟−1)(𝛾 + 2)−𝑡𝑟  /𝑝𝑟  

 

                         = 𝑀𝛾
−1𝑀𝛾   (𝛾 + 2)−1 

 

                         = (𝛾 + 2)−1 

It follows that  

                                       𝑎𝑘𝑥𝑘

∞

𝑘=1

=  (𝛾 + 2)−1

∞

𝛾=0

 

diverges. 

 Moreover  

                               (𝑄2𝑟)−𝑠   
1

𝑄2𝑟
  𝑞𝑘  𝑥𝑘  

𝑟

 

𝑝𝑟𝑛 𝛾+1 −1

𝑟=𝑛(𝛾)

 

                         =   (𝑄2𝑟)−𝑠  𝑄
2𝑟
𝑠 𝑡𝑟−1 

 𝑄
2𝑟
 𝑡𝑟−1 

 𝑎𝑁(𝑟) 
 𝑡𝑟−1 

(𝛾 + 2)−𝑡𝑟𝑀𝛾
−1 

𝑝𝑟
𝑛 𝛾+1 −1

𝑟=𝑛(𝛾)

 

                        =   (𝑄2𝑟)−𝑠

𝑛 𝛾+1 −1

𝑟=𝑛(𝛾)

𝑄2𝑟
(𝑠+1) 𝑡𝑟−1 𝑝𝑟   𝑎𝑁(𝑟) 

 𝑡𝑟−1 𝑝𝑟
  (𝛾 + 2)−𝑡𝑟𝑝𝑟 𝑀𝛾

−𝑝𝑟  

                          =   (𝑄2𝑟)−𝑠

𝑛 𝛾+1 −1

𝑟=𝑛(𝛾)

 𝑄2𝑟
(𝑠+1)𝑡𝑟   𝑎𝑁(𝑟) 

𝑡𝑟
  (𝛾 + 2)−𝑡𝑟𝑝𝑟 𝑀𝛾

−𝑝𝑟  

                        = (𝛾 + 2)−2𝑀𝛾
−1  𝑄

2𝑟
𝑠 𝑡𝑟−1 (𝑄2𝑟  𝑎𝑁 𝑟  )

𝑡𝑟 𝛾 + 2 2−𝑡𝑟−𝑝𝑟𝑀𝛾
1−𝑝𝑟  

𝑛 𝛾+1 −1

𝑟=𝑛(𝛾)

 

    = (𝛾 + 2)−2𝑀𝛾
−1  𝑄2𝑟

𝑠 𝑡𝑟−1 (𝑄2𝑟  𝑎𝑁 𝑟  )
𝑡𝑟 𝛾 + 2 2−𝑡𝑟/𝑝𝑟𝑀𝛾

1−𝑝𝑟(𝛾 + 2)2−𝑡𝑟− 𝑝𝑟 +𝑡𝑟/𝑝𝑟  

𝑛 𝛾+1 −1

𝑟=𝑛(𝛾)

 

                          = (𝛾 + 2)−2𝑀𝛾
−1𝑀𝛾   𝑀𝛾

1−𝑝𝑟 𝛾 + 2 1−𝑝𝑟    

                           = (𝛾 + 2)−2𝑀𝛾
−𝑝𝑟/𝑡𝑟 𝛾 + 2 −𝑝𝑟/𝑡𝑟    

                          =
(𝛾 + 2)−2

𝑀𝛾
𝑝𝑟/𝑡𝑟 𝛾 + 2 𝑝𝑟/𝑡𝑟

< (𝛾 + 2)−2 < ∞. 

Therefore 
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  (𝑄2𝑟)−𝑠  
1

𝑄2𝑟
 𝑞𝑘   𝑥𝑘  

𝑟

 

𝑝𝑟

≤ (𝛾 + 2)−2 < ∞

∞

𝑟=0

 

That is, 𝑥 ∈ 𝑐𝑒𝑠(𝑝, 𝑞, 𝑠) which is a contradiction to our assumption.  

Hence  𝑎 ∈ 𝜇(𝑡, 𝑠). That is, 𝜇 𝑡, 𝑠 ⊃ 𝑐𝑒𝑠+ 𝑝, 𝑞, 𝑠 . 
Then combining the two results, we get       𝑐𝑒𝑠+ 𝑝, 𝑞, 𝑠 = 𝜇(𝑡, 𝑠). 

The continuous dual of  𝑐𝑒𝑠(𝑝, 𝑞, 𝑠) is determined by the following theorem.  

Theorem 2: Let 1 < 𝑝𝑟 ≤
𝑠𝑢𝑝 
𝑟
𝑝𝑟 < ∞. Then continuous dual  𝑐𝑒𝑠∗(𝑝, 𝑞, 𝑠) is isomorphic to  𝜇(𝑡, 𝑠), which is 

defined by (3) 

Proof: It is easy to check that each  𝑥 ∈ 𝑐𝑒𝑠(𝑝, 𝑞, 𝑠) can be written in the form         

                        𝑥 =  𝑥𝑘𝑒𝑘

∞

𝑘=1

, 𝑤𝑕𝑒𝑟𝑒  𝑒𝑘 = (0, 0, 0, ………0, 1, 0, ……………… . . ) 

and the 1 appears at the k-th place. Then for any  𝑓 ∈ 𝑐𝑒𝑠∗(𝑝, 𝑞, 𝑠) we have 

                           𝑓 𝑥 =  𝑥𝑘𝑓 𝑒𝑘 =  𝑥𝑘
∞
𝑘=1

∞
𝑘=1 𝑎𝑘 .                                                                               

 (4) 

where 𝑓 𝑒𝑘 = 𝑎𝑘 . By theorem 1, the convergence of   𝑎𝑘𝑥𝑘   for every x  in  𝑐𝑒𝑠(𝑝, 𝑞, 𝑠) implies that  𝑎 ∈
𝜇(𝑡, 𝑠). 

If 𝑥 ∈ 𝑐𝑒𝑠(𝑝, 𝑞, 𝑠)  and if we take  𝑎 ∈ 𝜇(𝑡, 𝑠), then by theorem 1,  𝑎𝑘𝑥𝑘  converges and clearly defines a linear 

functional on  𝑐𝑒𝑠(𝑝, 𝑞, 𝑠). Using the same kind of argument as in theorem 1, it is easy to check that 

  𝑎𝑘𝑥𝑘  ≤ 𝐸   𝑄2𝑟
𝑠 𝑡𝑟−1   𝑄2𝑟

𝑚𝑎𝑥
𝑟
 𝑞𝑘

−1  𝑎𝑘    
𝑡𝑟

𝐸−𝑡𝑟 + 1

∞

𝑟=0

 

∞

𝑘=1

𝑔(𝑥) 

whenever  𝑔(𝑥) ≤ 1, where  𝑔(𝑥) is defined by (2). Hence  𝑎𝑘𝑥𝑘  defines an element of  𝑐𝑒𝑠∗ 𝑝, 𝑞, 𝑠 . 
Furthermore, it is easy to see that representation (4) is unique. Hence we can define a mapping 

𝑇:   𝑐𝑒𝑠∗ 𝑝, 𝑞, 𝑠 → 𝜇 𝑡, 𝑠 . 
By 𝑇 𝑓 = (𝑎1 , 𝑎2, ……………… ) where the  𝑎𝑘  appears in representation (4). It is evident that  𝑇 is linear and 

bijective. Hence  𝑐𝑒𝑠∗ 𝑝, 𝑞, 𝑠  is isomorphic to 𝜇 𝑡, 𝑠 . 
 

III. MATRIX TRANSFORMATIONS 

In the following theorems we shall characterize the matrix classes  (𝑐𝑒𝑠 𝑝, 𝑞, 𝑠 , 𝑙∞) and  𝑐𝑒𝑠 𝑝, 𝑞, 𝑠 , 𝑐 . Let 

𝐴 =  𝑎𝑛,𝑘  𝑛, 𝑘 = 1,2, …… .. be an infinite matrix of complex numbers and X, Y two subsets of the space of 

complex sequences. We say that the matrix  A defines a matrix transformation from X into Y and denote it by  

𝐴 ∈ (𝑋, 𝑌) if for every sequence 𝑥 =  𝑥𝑘 ∈ 𝑋 the sequence 𝐴 𝑥 = 𝐴𝑛  (𝑥) is in Y, where            

𝐴𝑛 𝑥 =  𝑎𝑛,𝑘𝑥𝑘

∞

𝑘=1

 

provided the series on the right is convergent.                

Theorem 3: Let 1 < 𝑝𝑟 ≤
𝑠𝑢𝑝
𝑟
𝑝𝑟 < ∞. Then  𝐴 ∈ (𝑐𝑒𝑠 𝑝, 𝑞, 𝑠 , 𝑙∞) if and only if there exists an integer  𝐸 > 1, 

such that  𝑈 𝐸, 𝑠 < ∞,  where 

𝑈 𝐸, 𝑠 =
𝑠𝑢𝑝
𝑛
  𝑄2𝑟𝐴𝑟 𝑛  

𝑡𝑟

∞

𝑟=0

 𝑄2𝑟 
 𝑠 𝑡𝑟−1  𝐸−𝑡𝑟  

and  
1

𝑝𝑟
+

1

𝑡𝑟
= 1, 𝑟 = 0, 1, 2, …………… 

Proof: Sufficiency: Suppose there exists an integer 𝐸 > 1, such that 𝑈 𝐸, 𝑠 < ∞. Then by inequality (1), we 

have 

  𝑎𝑛,𝑘𝑥𝑘  =   |𝑎𝑛,𝑘 |  𝑥𝑘  

𝑟

∞

𝑟=0

∞

𝑘=1

=   
 𝑎𝑛,𝑘  

𝑞𝑘
𝑟

 𝑞𝑘

∞

𝑟=0

 𝑥𝑘   

                        ≤  
𝑚𝑎𝑥
𝑟

 
 𝑎𝑛,𝑘  

𝑞𝑘

∞

𝑟=0

   𝑞𝑘  𝑥𝑘  

𝑟

 

                       =  (𝑄2𝑟)
𝑠

𝑝𝑟    𝑄2𝑟  
𝑚𝑎𝑥
𝑟

 𝑎𝑛,𝑘  

𝑞𝑘
   (𝑄2𝑟)

− 
𝑠

𝑝𝑟  
1

𝑄2𝑟
  𝑞𝑘   𝑥𝑘  

𝑟

∞

𝑟=0

 

                      ≤ 𝐸  (𝑄2𝑟)
𝑠 𝑡𝑟
𝑝𝑟   𝑄2𝑟  𝐴𝑟(𝑛) 𝑡𝑟  𝐸−𝑡𝑟 +   (𝑄2𝑟)

− 
𝑠 

𝑝𝑟  
1

𝑄2𝑟
  𝑞𝑘   𝑥𝑘  

𝑟

   

𝑝𝑟

  

∞

𝑟=0
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                    ≤ 𝐸    𝑄2𝑟  
𝑠 (𝑡𝑟−1)

∞

𝑟=0

 𝑄2𝑟  𝐴𝑟(𝑛) 𝑡𝑟  𝐸−𝑡𝑟 +   𝑄2𝑟 
−𝑠 

∞

𝑟=0

  
1

𝑄2𝑟
  𝑞𝑘   𝑥𝑘  

𝑟

 

𝑝𝑟

  

                    < ∞. 
Therefore,      𝐴 ∈  𝑐𝑒𝑠 𝑝, 𝑞, 𝑠 , 𝑙∞ . 
Necessity: Suppose that  𝐴 ∈  𝑐𝑒𝑠 𝑝, 𝑞, 𝑠 , 𝑙∞ , but 

𝑠𝑢𝑝
𝑛
  𝑄2𝑟𝐴𝑟 𝑛  

𝑡𝑟
  𝑄2𝑟  

𝑠 (𝑡𝑟−1)

∞

𝑟=0

𝐸−𝑡𝑟 = ∞ 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝐸 > 1. 

Then       𝑎𝑛,𝑘𝑥𝑘
∞
𝑘=1  converges for every 𝑛 𝑎𝑛𝑑 𝑥 ∈ 𝑐𝑒𝑠 𝑝, 𝑞, 𝑠 , 

whence  𝑎𝑛,𝑘 𝑘=1,2,……
∈ 𝑐𝑒𝑠+(𝑝, 𝑞, 𝑠) for every n. By theorem 1, it follows that each  𝐴𝑛  defined by  

𝐴𝑛 𝑥 =  𝑎𝑛,𝑘𝑥𝑘

∞

𝑘=1

 

is an element of 𝑐𝑒𝑠∗(𝑝, 𝑞, 𝑠). Since 𝑐𝑒𝑠 𝑝, 𝑞, 𝑠  is complete and since 
𝑠𝑢𝑝
𝑛
 𝐴𝑛(𝑥) < ∞ on 𝑐𝑒𝑠 𝑝, 𝑞, 𝑠 , by the 

uniform boundedness principle there exists a number  L independent of  n and a number 𝛿 < 1, such that 

 

                                                  𝐴𝑛(𝑥) ≤ 𝐿                                                                                                   

(5) 

for every n and 𝑥 ∈ 𝑆[𝜃, 𝛿], where 𝑆[𝜃, 𝛿] is the closed sphere in  𝑐𝑒𝑠 𝑝, 𝑞, 𝑠  with centre at the origin  𝜃 and 

radius  𝛿. 

Now choose an integer  𝐺 > 1, such that  

                                                                    𝐺𝛿𝑀 > 𝐿. 

Since   

𝑠𝑢𝑝
𝑛
  𝑄2𝑟𝐴𝑟(𝑛) 𝑡𝑟

∞

𝑟=0

 𝑄2𝑟 
𝑠 (𝑡𝑟−1) 𝐺−𝑡𝑟 = ∞ 

there exists an integer  𝑚0 > 1, such that  

               𝑅 =   𝑄2𝑟𝐴𝑟(𝑛) 𝑡𝑟   𝑄2𝑟 
𝑠 (𝑡𝑟−1)

𝑚0

𝑟=0

𝐺−𝑡𝑟

> 1                                                                                         (6) 

Define a sequence  𝑥 =  𝑥𝑘  as follows:  

 

                                                   𝑥𝑘 = 0  𝑖𝑓  𝑘 ≥ 2𝑚0+1 
 

𝑥𝑁(𝑟) = 𝑄2𝑟
𝑡𝑟𝛿𝑀/𝑝𝑟 𝑠𝑔𝑛 𝑎𝑛 ,𝑁(𝑟)   𝑎𝑛,𝑁(𝑟) 

𝑡𝑟−1
𝑅−1𝐺−𝑡𝑟/𝑝𝑟 𝑄2𝑟 

𝑠 (𝑡𝑟−1)    

and 𝑥𝑘 = 0  𝑖𝑓 𝑘 ≠ 𝑁(𝑟)  for 0 ≤ 𝑟 ≤ 𝑚0, where  𝑁(𝑟) is the smallest integer such that 

 𝑎𝑛,𝑁(𝑟) =
𝑚𝑎𝑥
𝑟

|𝑎𝑛,𝑘 |

𝑞𝑘
 

Then one can easily show that 𝑔 𝑥 ≤ 𝛿  but    𝐴𝑛 𝑥  > 𝐿, which contradicts (5). This complete the proof of 

the theorem. 

Theorem 4. Let   1 < 𝑝𝑟 ≤
𝑠𝑢𝑝
𝑟
𝑝𝑟 < ∞. Then 𝐴 ∈ (𝑐𝑒𝑠 𝑝, 𝑞, 𝑠 , 𝑐) if and only if 

(i)   𝑎𝑛,𝑘 → 𝛼𝑘 𝑛 → ∞, 𝑘 𝑖𝑠 𝑓𝑖𝑥𝑒𝑑  and 

 

(ii) there exists an integer 𝐸 > 1, such that  𝑈 𝐸, 𝑠 < ∞, where  

 

𝑈 𝐸, 𝑠 =
𝑠𝑢𝑝
𝑛
  𝑄2𝑟𝐴𝑟 𝑛  

𝑡𝑟∞
𝑟=0   𝑄2𝑟 

𝑠 (𝑡𝑟−1)𝐸−𝑡𝑟  and  
1

𝑝𝑟
+

1

𝑡𝑟
= 1, 𝑟 = 0, 1, 2, …………… 

Proof: Necessity. Suppose 𝐴 ∈ (𝑐𝑒𝑠 𝑝, 𝑞, 𝑠 , 𝑐). Then 𝐴𝑛(𝑥)exists for each  𝑛 ≥ 1  𝑎𝑛𝑑   
𝐿𝑖𝑚
𝑛 → ∞

𝐴𝑛(𝑥) exists 

for every  𝑥 ∈ 𝑐𝑒𝑠 𝑝, 𝑞, 𝑠 . Therefore by an argument similar to that in theorem 3 we have condition (ii). 

Condition (i) is obtained by taking  𝑥 = 𝑒𝑘 ∈ 𝑐𝑒𝑠 𝑝, 𝑞, 𝑠 , where  𝑒𝑘  is a sequence with 1 at the  k-th place and 

zeros elsewhere. 

Sufficiency. The conditions of the theorem imply that 
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                                 𝑄2𝑟
𝑚𝑎𝑥
𝑟

 
|𝛼𝑘 |

𝑞𝑘
 
𝑡𝑟

 𝑄2𝑟 
𝑠 (𝑡𝑟−1)𝐸−𝑡𝑟 ≤ 𝑈 𝐸, 𝑠 

∞

𝑟=0

< ∞                                                                 (7)       
By (7) it is easy to check that  𝛼𝑘𝑘 𝑥𝑘  is absolutely convergent for each  𝑥 ∈ 𝑐𝑒𝑠 𝑝, 𝑞, 𝑠 . For each   𝑥 ∈
𝑐𝑒𝑠 𝑝, 𝑞, 𝑠  and   𝜀 > 0, we can choose an integer  𝑚0 > 1, such that     

𝑔𝑚0
 𝑥 =   𝑄2𝑟 

− 𝑠   
1

𝑄2𝑟
 𝑞𝑘   𝑥𝑘  

𝑟

 

𝑝𝑟∞

𝑟=𝑚0

< 𝜀𝑀  

Then by the proof  of  theorem 2 and  by inequality (1), we have 

  𝑎𝑛,𝑘 − 𝛼𝑘   𝑥𝑘  

∞

𝑘=2𝑚0

≤ 𝐸    𝑄2𝑟  
𝑠 (𝑡𝑟−1)   𝑄2𝑟𝐵𝑟(𝑛) 𝑡𝑟

∞

𝑟=𝑚0

𝐸−𝑡𝑟 + 1  𝑔𝑚0
(𝑥) 

1/𝑀
 

                                                                  < 𝐸 2𝑈 𝐸, 𝑠 + 1 𝜀, 

                                               where     𝐵𝑟 𝑛 =
𝑚𝑎𝑥
𝑟

 
|𝑎𝑛 ,𝑘−𝛼𝑘 |

𝑞𝑘
      and 

      𝑄2𝑟 
𝑠 (𝑡𝑟−1)  𝑄2𝑟𝐵𝑟 𝑛  

𝑡𝑟
𝐸−𝑡𝑟 ≤ 2𝑈 𝐸, 𝑠 < ∞

∞

𝑟=𝑚0

 

It follows immediately that  

𝐿𝑖𝑚
𝑛 → ∞

 𝑎𝑛,𝑘  𝑥𝑘 =  𝛼𝑘𝑥𝑘

∞

𝑘=1

∞

𝑘=1

 

This shows that 𝐴 ∈ (𝑐𝑒𝑠 𝑝, 𝑞, 𝑠 , 𝑐) which proved the theorem. 

Corollary 1. Let 1 < 𝑝𝑟 ≤
𝑠𝑢𝑝
𝑟

 𝑝𝑟 < ∞. Then 𝐴 ∈ (𝑐𝑒𝑠 𝑝, 𝑞, 𝑠 , 𝑐0) if and only if 

(i) 𝑎𝑛,𝑘 → 0  𝑛 → ∞, 𝑘 𝑖𝑠 𝑓𝑖𝑥𝑒𝑑  
(ii) there exists an integer E >1 such that 𝑈 𝐸, 𝑠 < ∞, where 

         𝑈 𝐸, 𝑠 =
𝑠𝑢𝑝
𝑛
 (𝑄2𝑟𝐴𝑟(𝑛))𝑡𝑟

∞

𝑟=0

 𝑄2𝑟 
𝑠 (𝑡𝑟−1)𝐸−𝑡𝑟  𝑎𝑛𝑑 

1

𝑝𝑟
+

1

𝑡𝑟
= 1, 𝑟 = 0, 1, 2, ………. 

Remarks:  

(1) If  𝑠 = 0 then we   get the results of Khan and Rahman [4]  

(2) If  𝑠 = 0,  𝑞𝑛 = 1   for every n then we get the results of Lim [11]    

(3) When   𝑠 = 0,  𝑞𝑛 = 1 𝑎𝑛𝑑 𝑝𝑛 = 𝑝     for all n then the results of Lim [10] follows. 

(4) If 𝑠 ≥ 1 then specializing the sequences (𝑝𝑛) and (𝑞𝑛) we get many unknown results. 

(5)  
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