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ABSTRACT:  In this paper we determine some internal properties of non abelian groups where the centre 

Z(G) takes its maximum size. With this restriction we discover that the group G is necessarily a group with 

perfect square root as shown in our results. We also show that the property of Z(G) is inherited by direct 

product of groups. Furthermore groups whose centre is as large as possible were constructed. 
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I. INTRODUCTION 

Let G be a finite group and  H the subset of G. We denote by |G| the order of G and  Z(G) the centre of the 

group G. On finite non abelian group a bound for the size of the centre has been achieved. Previous work on 

groups with perfect square roots have been identified. Furthermore other works discussed the necessary 

conditions on groups having perfect square roots. In this paper we use the centre to determine some of the 

properties of finite non abelian groups with perfect square roots. In particular the group whose centre is of 

maximum size. Throughout this paper unless otherwise stated, G is finite and non abelian. 

Definition 1.1 

 If a group G has the property that r s s r for every ,r s G , we say that the group is abelian. A group is 

non-abelian if there exists some pairs of elements  ,r s G  such that .rs sr This definition characterises 

abelian and non abelian groups.  

Definition 1.2 

Let G be a group and H < G.  For q   G the subset Hq = {hq:h   H} of G is called a right coset of H in G. 

Distinct right cosets of H in G form a partition of G. Left coset is similarly defined. The number of distinct right 

cosets of H in G is written as |G:H| = |G/H| and is called the index of H in G. If G is finite so is H and G is 

partitioned into |G:H| cosets each of order |H|. We note that |H| and |G:H| divide |G|.  

Next we define an important concept. 

Definition 1.3 

 A subgroup N of G such that every left coset is a right coset and vice versa is called a normal subgroup of G. 

That is Nx = xN or x
-1

Nx ≤ N and we write N G. Normal subgroup is  characterized by the fact that it does not 

possess any conjugate subgroup apart from itself. That is aH = Ha or a
-1

Ha = H for all a in G. If G is abelian 

then every subgroup of G is normal in G. 

Definition 1.4 

 Let G be a non-abelian group and N G . Then the set / { | }G N rN r G   is a group under the operation  

( )( )rN sN rsN  called the factor or quotient group of G by N. It is the set of cosets of N in G. 

Definition 1.5 

The number of elements in a group G written |G| in called the order or cardinality of the group. If G is finite of 

order n we have |G| = n otherwise |G| =   if G has infinite order.  The least number n if it exists such that        

a
n
 = 1for a in G is called the order of a and we write o(a) = n. If no such n exists then o(a ) = ∞. An element of 

order two is said to be an involution.   
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If a in G is such that o(a) = 2 then a = a
-1

 so a, a
-1

 have the same order. However, if a, b   G such that a = g
-1

bg 

then o(a) = o(b). Furthermore the order of an element of G divides |G|. In particular a
|G|

 = 1 where G is finite. 

This naturally leads to an important theorem in group theory:  The Lagrange’s Theorem which is next. 

Theorem 1.1 

If G is a finite group and H is a subgroup of G then the order of H divides  the order of G.  

Proof 

By Definition 1.2 we have that the right cosets of H form a partition of G. Thus each element of G belongs to at 

least one right coset of H in G and no element can belong to two distinct right cosets of H in G. Therefore every 

element of G belongs to exactly one right coset of H. Moreover each right coset of H in G contains |H| elements. 

Therefore if the number of right cosets of H in G is n, then   |G| = n|H|. Hence the order of H divides the order of 

G. 

Remark 1.1 

If H, K are subsets of G then HK = {hk:h   H, k  K}. When K = {g}, we denote H{g} by Hg. In particular if 

H < G then Hg is called a right coset of H. This is the equivalence class of q in G. These equivalence classes 

yield a decomposition of G into disjoint subsets. 

 Definition 1.6 

The subgroup G
/
 or [G,G] of a group G generated by the elements of the form sts

-1
t
-1

 , for all s, t  G is called 

the derived group or commutator subgroup of G. We write [s,t] = sts
-1

t
-1

 and call this the  commutator of  s and t. 

Thus:  

                                    G
/
 = { [s,t] : s, t  G }. 

The derived subgroup G
/
 is normal in G and the quotient G/G

/
 is called the abelianization of G which we denote 

by Gab.  

Definition 1.7 

 A group that is generated by its own commutators is called a perfect group. That is groups with the property 

that G’=G. The abelianization  Gab of such groups is trivial. That is     |G/G
/
| = 1. Each element of such a group 

can be written as a product of commutators. 

 Abelian groups are generally perfect groups. We have that the quotient of perfect group by its centre is trivial. 

 Definition 1.8 

Let a,q  G. Then a is conjugate to q in G if there exist an element g G  such that q=g
-1

ag. The set of all 

elements of G that are conjugate to a in G is called the conjugacy class of a in G denoted by C(a). And as such: 

                                      C(a) ={g
-1

 ag:g G} 

 The order of the conjugacy class divides |G|. Subgroups belonging to the same conjugacy class are conjugates. 

Such subgroups are isomorphic. However conjugate elements lie in  the same conjugacy class and have the 

same order.  

Definition 1.9 

The centre Z(G) of a group G is the set of all elements z in G that commute with every element q in G. We 

write: 

                           Z(G)={z G:zq=qz,  for all q G} 

and note that Z(G) is a commutative normal subgroup of G  and  G modulo its centre Z(G) is isomorphic to the 

inner automorphism,  inn(G) of G.  
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   If Z(G) = {1} where 1 is the identity element of G, then G is said to have a trivial centre .  The centre of a 

group G is its subgroup of largest order that commute with every element in the group.  

Next we make an important remark 

Remark 1.3 

The centre Z(G) of G is maximum when G is abelian. In such case  Z(G) = G and          G/Z(G) = {1}. On the 

other hand the centre Z(G) is minimum when Z(G) = {1}. In this case G/Z(G) is equal to G itself. The centre of 

a group is the union of the conjugacy classes of size one. However in this work we are interested in non abelian 

groups. That is where {1}<Z(G)<G. An element z Z(G) if and only if its conjugacy class has only one element 

which is z itself.  We call the elements x Z(G) central elements and y G-Z(G) non central elements. Such 

elements do not commute with all elements q G. The divisors of |G| reveal a lot about the order of Z(G) and 

the conjugacy classes of G.  

 Definition 1.10 

The centralizer CG(q) of an element q in G is the set of all elements g  G that commute with q. That is: 

                                     CG(q) ={g G:gq=qg, for some q G}. 

 This is a subgroup of G and the index of CG(q) in G is the size of the conjugacy class C(q) of q in G. That is 

           |C(q)|=|G:CG(q)|. 

In particular |C(q)| divides |G|. If  q is a central element q Z(G) then |C(q)|=1 and q
-1

 gq=q. So that CG(q) = G.  

The centralizer CG(q) of q in G is a subgroup of G but not a normal subgroup in general. Consequently the 

quotient of G by CG(q) is not a group.  

 From [1] we have a theorem on the size of the conjugacy class of an element of G. 

Theorem 1.2 

Let G be a finite group and q G, then the conjugacy class C(q) of q in G is given by: 

                                      |C(q)|=|G:CG(q)|=|G|/|CG(q)|. 

 Theorem 1.3 

Let G be a finite group then 

|G| = ∑|G: CG(qi)|           (1), 

 where the sum runs over the elements from each conjugacy class of G.  

We note that from Theorem  1.2 equation (i) becomes  

                          |G|= |Z(G)| + ∑|G: CG(qi)|        (2)  

    Here the sum in (ii) runs over qi from each conjugacy class such that qi is not an element of Z(G). From 

Theorem 1.2 and equation (ii) above we have:  

      |G|=|Z(G)| + ∑|C(qi)|                     (3)  

Remark 1.4 

  In the abelian environment, the sum in equation (3) of Theorem 1.3 is zero. Consequently, the class equation is 

relevant only when we are in the non abelian environment. The fact that each element of Z(G) forms a 

conjugacy class containing just itself gives rise to the class equation. From Theorems .1.1 and .1.3 we have: 
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Corollary 1.1 

 For a finite non abelian group G and any element q in G: 

  (i)       |CG(q)|=|Z(G)||CG(q):Z(G)| and |G|=| CG(q)||G: CG(q)|.  

  (ii)      Equivalently |Z(G)|=| CG(q)|/(| CG(q):Z(G)|) and  | CG(q)|=|G|/| G:CG(q)|.  

 Where | CG(q):Z(G)|≥2 and | G:CG(q)|≥2, since G is finite and non abelian. 

 We measure the maximum size of the centre of finite non abelian groups in the theorem that follows according 

to [1] 

Theorem 1.4 

  If G is a finite non abelian group, then the maximum possible order of the centre of G is ¼|G|.That is, |Z(G)| ≤ 

1/4|G|. 

Proof 

    Let z Z(G). Since G is non abelian, Z(G) ≠ G. Thus there exist an element q G such that q is not in the 

centre. This imply that CG(q) ≠ G and CG(q) ≠ Z(G). Since z Z(G) every element in G commute with z, so qz = 

zq. It follows that z   CG(q). As q   CG(q), we have that Z(G)  is a proper subset of CG(q).  Since a group that 

is a subset of a subgroup under the same operation is itself a subgroup of the subgroup, we find that Z(G) is  a 

proper subgroup of CG(q). By Theorem .1.1 and Corollary 1.1, it follows that: 

                                |Z(G)| ≤  1/2|CG(q)|. 

 Now, since we assumed CG(q) ≠ G, then CG(q) is a proper subset of G. Therefore by Theorem 1.1 and the fact 

that the centralizer of any group element is a subgroup of G, we find that   |CG(q)| ≤ 1/2|G|.That is:  

                         |Z(G)| ≤  1/2|CG(q)| 

                                    ≤  1/2(1/2|G|) 

                                     =  1/4|G|. 

  Next is a lemma in which we measure the size of the centralizer as in [1] 

 Lemma 1.1  | ( ) | | | 2
G

C t G . 

Proof 

 Since |Z(G)|=|G|/4, the number of centralizers of t such that ( )
G

C t G  is |G|/4. We claim that the remaining 

¾ elements of G each has order equal to |G|/2  as (G:Z(G)) =4. Suppose t is an element of  G such that  

( )t Z G we have that  

| : ( ) | | : ( ) || ( ) : ( ) |
G G

G Z G G C t C t Z G . 

  From theorem 1.1 we also have that ( )
G

C t G  and ( ) ( )
G

C t Z G .since ( )t Z G  and ( )
G

t C t , then: 

 | ( ) : ( ) | 2
G

C t Z G  . 

 We conclude that | : ( ) | 2
G

G C t   implying that | ( ) | | | / 2
G

C t G . 

Definition 1.11 
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 Let G1, G2, . . . Gr be a collection of groups. The external direct products of the Gi,1 i r  written 

1 2
. . .

r
G G G   is the set of all the r- tupples for which the 

th
i  component is an element of Gi with a 

component wise operation. 

Remark 1.5 

 In an abelian group, ( )
G

C t G  for all t in G but ( )
G

C t G  if G is non abelian. In this case, ( )
G

C t G . 

The number of the centralizers that are equal to G is |Z(G)|.   

 From [1] we have: 

Theorem 1.4  

  There are no groups of order 4 m o d 8  such that ( ) | | 4Z G G . 

Proof   

Let | | 4 m o d 8G   and ( ) | | 4Z G G , t an arbitrary element , then 

                                          | | | : ( ) |
G

G G C t   

  where the sum runs over an element t from each conjugacy class of G. From theorem 1.3: 

                               | | ( ) | : ( ) |
G

G Z G G C t   . 

 Here the sum runs over element t from each conjugacy class of non central elements. Since, the centralizer of 

the element t in G satisfying  ( )t Z G  can be atmost | | 2G , lemma 1.1. The element t commutes with itself 

as well as with the 
1

| |
4

G  elements of Z(G). This implies that 
1

| ( ) | | |
4

G
C t G . By assumption G is even. So 

3 does not divide |G| in general. Hence | ( ) | | | 2
G

C t G  ( G is non abelian and t is non central).  Also 

( )
G

C t G . By the choice of  
1

, ( ) | |
2

G
t C t G  for all , ( )t G t Z G  . This implies that: 

                                             | |
| : ( ) | 2

| | 2
G

G
G C t

G
  . 

 By this we have that  | : ( ) |
G

G C t  is even. However since 
1

| | 4 m o d 8, ( ) | |
4

G Z G G   is odd. The 

sum of the  | : ( ) |
G

G C t  which is even  and  | ( )Z G |which is odd cannot be |G|. Here we arrive at a 

contradiction and so the theorem holds. 

 The next definition, theorem and corollary that follow are from [2] and [3] 

Definition 1.12 

 The subset H of a finite group  G of order n
2
  is a perfect square root of G if :  

           
2

2

( )

( ) | | | |

i H G

ii H G





 

 This implies that each element of G occurs exactly once in the multiplication table for H and we have that no 

two elements of  a perfect square root commute. Equivalently there are no repeated products in 
2

H  and we 

have  
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Theorem 1.5 

(i)  If G has a perfect square root then G is non abelian; 

(ii) If G has a perfect square root H then H contains no element of Z(G); 

(iii) Let ,r s H , then r is not in the centralizer of s if r s . 

From theorem 1.5 (iii) we have the following corollary  

Corollary 1.2 

The intersection of H with the centre of G is trivial, particularly, the identity element is not in H 

If 
1

,r r H

 , then     

1
r r


     

H contains a unique involution     

 The following proposition is from [2]  

Proposition 1.1  

 If G has a perfect square root H then 4 divides |G|. 

Proof 

 The identity element of G must be the product of two elements of H. As inverse pairs always commute and 

distinct elements of H do not commute we must have that 
2

1h   for some h in H. Since 1 ( )Z G  there does 

not exist 1 h H  . Hence h must have order 2 and so G has an even order. It follows that |G| with G having a 

perfect square root is a multiple of 4.  

We are now equipped to proof:  

Theorem 1.6 

 If H is a perfect square root of G, then H contains a unique involution. 

Proof  

 Since 
2

1 H , there exists ,r s H , such that rs=1. That is 
1

r s


 . From corollary 1.1(b) r=s so r is and 

involution. If H contains two involutions r and s then 
2

H  contains repeated products, rr = ss 

 Next is a corollary  from [3] 

Corollary 1.3 

  If G is a group with a perfect square root then 36 divides the order of G. 

In proposition 1.2 we have a necessary condition on groups having perfect square roots where the size of  the 

centre places a lower bound on the square root of the order of G  as contained in [2] 

Proposition 1.2 

 If G has a perfect square root then 
2

| ( ) | | |Z G G  

Proof 
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  Let H be the perfect square root of G . Since elements of H do not commute  no two elements of H are in the 

same coset of Z(G). For if 
1 2

, ( )z z Z G , then 
1 2 2 1

( )( ) ( )( )tz tz tz tz . Let 
2

| |G n  so that there are at 

least n cosets of Z(G) from which to choose as elements of H. That is we have:  

                              
| |

| : ( ) |
| ( ) |

G
G Z G n

Z G
   or | ( ) |n Z G . 

Accordingly we have 
2

| ( ) | | |Z G G  as H contains no element of Z(G).  

 The next proposition gives relationship between the elements of Z(G) and H according to [2] 

Proposition 1.3 

  Let G be finite with perfect square root H. Then for each ( )z Z G  there is some h in H such that 
2

h z . In 

other words each element of Z(G)  occurs in the main diagonal of the multiplication table of G. 

Proof  

 Each ( )z Z G  there is a product of  some 
1 2

,h h H .Since z is in the ( )Z G  and the pairs 
1 2

h h  and 
2 1

h h  

are conjugates. It follows that 
1 2 2 1

h h h h . This  is a contradiction of the fact that no two elements of a perfect 

square root commute, definition 1.12.  Hence 
1 2

h h  and 
2

1
z h . 

Theorem 1.7 

 The number of elements of order 4 in G is odd if G is finite group with a square root. 

Proof  

 Consider 
2

{ 1}I t G t   . Then I has even order since |G| is even and | |G I  is even. The latter holds 

because each element may be paired with its distinct inverse for all , ,r s H rs I  . This implies that sr I , 

since rs and sr have the same order there is exactly  one element of order 2 in H and the square of this element is 

an element in I . So we have that all ,r s H yields either 0 or 2 elements of I when r s . Therefore there 

must be an odd number of elements u H such that 
2

u I . Each of these elements has order 4. 

 From [3] we have: 

 Lemma 1.2 

If G has a perfect square root H then it has at least |H| perfect square roots; 

Let H be a subset of a group G such that 
| |

| |
2

G
H   then 

2
H G ; 

 G has subset of size 
1

| |
2

G  such that 
2

H G  if and only if the graph of G associated with some t G  has 

only even length cycles. 

 Next is a corollary on direct products from [3].  

Corollary 1.4 

 If G and K have perfect square roots, then G K  has a perfect root.  

Proof 
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  Let M and N be perfect square roots of G and K respectively. Then M N  is a perfect square root of G K  

such that 
2 2 2

( )M N M N G K      and hence 
2

| | | |G K M N   . 

II. OUR RESULTS 
Our results show that having a maximum size of Z(G) is a condition for G to have a perfect square root. We 

construct groups of order 8n where n is an integer. 

Theorem  2.1 

(a)   A group G such that the number of elements in its centre is at most 
1

| |
4

G  contains a perfect square root.  

(b) Let H  be a subset of a group G. If 
2

H G  implies that 
2

| | | |H G , then  H cannot be normal in G . 

(c) A group G  is  non abelian with  perfect square root if | ( ) | 2Z G  . 

Proof  

If ( )Z G  takes at most the given value then we have that G  is non abelian from theorem 1.5(i) and so 

{1} ( )Z G G  . Hence  there exists a subset H  say of G  such that for any , ( )r H r Z G   and 

2
1 ( )r Z G  . That is 

2
H G  and hence 

2
| | | |H G . From definition 1.12 and proposition 1.1, H has a 

perfect square root . 

2
,H G H G   implies that 

2
| | | |H G , then we have that there is an element  r H  such that 

2
1r   

with the property that ( )r Z G . 

 Now 
2

( )r Z G for all r H  and 1r  . We observe that with H G  and 1 H , it is obvious that H

cannot be normal in G . 

Given that 2 | ( ) |Z G , we need to show that G  is divisible by 4.  

We have that 
2

4 | ( ) |Z G . So that 
2

4 | ( ) | | |Z G G  , from proposition 1.2. 

 This implies that 4 ( ) | |Z G G  and 
1

| ( ) | | |
4

Z G G . 

 Hence, we have that | |G  is even and it is divisible by 4 and the theorem follows since G is non abelian. 

Remark 2.1 

In  theorem 2.1(b) we observe that in a non abelian group with the central property discussed G has a subset H 

which is not a subgroup. So that neither ( )H Z G  nor ( )Z G H . In (b) of the same theorem we set a 

lower bound for the size of the centre of the group, if it must contain a perfect square root. The centre has a 

lower bound of 2 where the group is non abelian. 

 In theorem 2.3 we construct new groups whose centres are as large as possible, motivated by definition 1.11 

and [1] 

Theorm 2.3 

  The property  ( ) | | 4Z G G  is preserved by direct products of groups. 

Proof 
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  Let 
1 2

{ , , . . . , }
n

G t t t be a finte abelian group. Consider a non abelian group D4. We wish to show that 

4
D G  is non abelian with the stated property of Z(G). Let 

4
( , )

i x
d t D G   where 

4
,

i x
d D t G  . 

Suppose that 
4

( , ) .( , )
i x j y

d t d t D G  . Then:  

                                   ( , ) .( , ) ( , )
i x j y i j x y

d t d t d d t t . 

 Now when 
i j j i

d d d d  we have: 

                            ( , ) .( , ) ( , ) ( , ) .( , )
i x j y j i y x j y i x

d t d t d d t t d t d t   

  We also have that 
x y y x

t t t t  by the choice of G. However,                   ( , ) .( , ) ( , ) .( , )
i x j y j y i x

d t d t d t d t  

whenever 
i j j i

d d d d . 

 Thus as | |G n  was arbitrarily chosen 
4

| | 8D G n   in which ( ) | | 4Z G G . We have constructed 

groups of order 8n which satisfy the property on the size of Z(G).  

 In the next result we have that the property of groups with perfect square root is inherited by direct products of 

groups. 

Theorem 2.4 

  A non abelian group that is a direct product of two groups has a perfect square root. 

Proof 

 Let G be an abelian group. We chose a non abelian group 
4

D  the dihedral group of order 8. Let K and H be 

subgroup such that 
4

,K D H G  . We consider the direct products
4

D G and K H . 

Clearly 
4

K H D G   . Let 
4

,x y D G  , where 
4

,x D y G  . Then xy K H  such that 

1x y   and ( )xy Z N  where 
4

N D G  . N has the property that 
2

( ) 1x y  . That is 
2

( ) ( )x y Z N . 

By this we have that the elements of K H  are involutions and so N is even. That is for any ,r s K H   

such that: 

                                                  
2 2 2

( )r s r s N   

then 
2

( )K H N   and 
2

| | | |K H N  . From, Corollary 1.2(c) and Corollary 1.3 we conclude the proof.  

III. CONCLUSION 
The results show that for a non abelian group to have a perfect square root the size of the centre must be at most   

1 / 4 | |G . Such a group possesses a subset H say. This subset is not a subgroup of G and it does not contain the 

centre. Our results hold mostly in p – groups. Our choice of D4 in the result is because it is the lowest group for 

which we have ( ) | | 4Z G G . The sizes of the centres of the groups in this paper have a lower bound of 2 

and an upper bound of  1 / 4 | |G . 
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