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ABSTRACT : In this article we prove two important results. Let  L considered as a lattice. A congruence of L 

is agree to be uniform, if any two congruences classes of L are uniform. We prove that every finite distributive 

lattice D can be represented as the congruence lattice of a finite uniform lattices.  

 

I. INTRODUCTION 

 In this article we prove that every finite distributive lattice D can be represented as the congruence 

lattice of finite uniform lattice L. In fact we prove that “For any finite distributive lattice D, there exists a finite 

uniform lattice L such that the congruence lattice of L is isomorphic to D, and L satisfies the properties (P) and 

(Q) where 

(P)    Every join-irreducible congruence of L is of the form  (0,p), for a suitable atom p of L. 

(Q)    If 1, 2 ,………….,  n  J (ConL) are pair wise incomparable, then L contains atoms p1, 

p2,………., pn that generate an ideal isomorphic to Bn and satisfy i= (0,pi), for all i  n. 

 

To prove this result, we introduce a new lattice construction which is described in section 1.2. Then we 

find the congruences on this new lattice in section 1.3. In 1.4, we introduce a very simple kind of chopped 

lattices.  In section 1.5, we prove that the ideal lattice of this chopped lattice is uniform.  The proof of the 

theorem is presented in section 1.6.  

 

NOTATION: 

 Bn will denote the Boolean algebra with 2n elements.  For a bounded lattice A with bounds 0 and 1, A- 

will denote the lattice A – {0,1} 

 We start with the definition of uniform lattices.   

 

DEFINITION : 1.1.1 

           A congruence  of a lattice L is uniform, if any two congruence classes A and B of  are of the same size.  

That is, A =B. 

 

DEFINITION : 1.1.2 

 A lattice L is said to be uniform, if all of its congruences are uniform.  

NOTE : 1.1.3  
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         Every lattice need not be a uniform lattice. 

For example, the lattice N6, given below is not uniform. 

 

 

 

The lattice has exactly one non-trivial congruence  and  has exactly two congruence classes {0, a, b, d} and 

{e,l}.These two congruence classes are not of the same order. 

 

 

NOTE :  1.1.4  

   There exists uniform lattices.   

 

 

Its congruence lattice is also B2. It has 4 congruences.  The null congruence , the all congruence i and 

two non-trivial congruences      1 and  2. 

 

 1 has two congruence classes {{0, a,},{b, l}} and 2 has two congruence classes {{0,b},{a,1}} and 

both 1 and 2 are uniform congruences. 

                      Hence B2 is a uniform lattice. 

 

II.  A LATTICE CONSTRUCTION 

          Let A and B be lattices.  Let us assume that A is bounded with bounds 0 and 1 with 0 1.  We introduce a 

new lattice construction N(A,B).  
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 If u  AxB, then u = (uA,uB) where uAA and uBB.  The binary relation X will denote the partial 

ordering on AxB, and VX and X the join and the meet in AxB respectively. 

 

         On the set AxB, we define a new binary relation denoted by N as follows : 

           N = X – {(u,v) / u,v  A-xB and uBvB}. 

 We denote (AxB, N) by (N(A,B), N). 

 

 

EXAMPLE : 1.2.1 

 

 

AxB= {(0,0), (0,1), (a,0), (a,1), (b,0), (b,1), (1,0), (1,1)} 

 

 

 

But N (A, B) has elements the same as AxB. But the partial ordering differs. 
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Now we prove that N(A,B) is a lattice. 

LEMMA : 1.2.4 

         Let A and B be lattices.  Let A be a bounded lattice with bounds 0 and 1 

and 01. Then N(A,B) is a lattice.  The meet and join in N(A,B) of N -

incomparable elements can be computed by the formulae. 

    (0,uBvB),  if uXv  A
-
xB and uB  vB; 

  uNv  =     

                      uXv,     otherwise. 

 

    (1,uBVvB ),  if uVXv  A
-
xB and uB  vB; 

 uVNv  =   

             uVXv,      other wise. 

  

Proof:- 

First we claim that (N(A,B), N) is a poset. 

(i) N is reflexive. 

 Let aA, bB. 

 Then (a,b)  (a,b) in AxB. 
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 Therefore, ( (a,b), (a,b) ) x. 

 But ((a,b), (a,b)) {(u,v) / u,vA
-
xB, uBvB} for b=b. 

  ((a,b), (a,b))  N. 

  N is reflexive. 

 

(ii) N is antisymmetric.  

 Let (a,b) N (c,d)  and (c,d) N (a,b). 

 Then (a,b) X (c,d) and (c,d) X (a,b). 

 But X is antisymmetric, hence (a,b) = (c,d) in AxB. 

  a=c and b=d. 

  (a,b) = (c,d) under N for b=d. 

  N is antisymmetric.  

(iii) N is transitive. 

 Let (a,b) N (c,d) and (c,d) N (e,f) 

 Then (a,b) X (c,d) and (c,d) X (e,f) 

 But X is a transitive relation. 

 Hence (a,b) X (e,f). 

 (a,b) N (c,d) implies ((a,b), (c,d)) {(u,v)/u,vA
-
xB, uBvB} 

  b=d. 

 Similarly, (c,d) N(e,f) implies d=f. 

 b=d, d=f implies b=f. 

 (a,b) X (e,f) and b=f implies 

 ((a,b),(e,f))  {(u,v) / u,vA
-
xB, uBvB}. 

  (a,b) N (e,f). 

 N is a transitive relation. 

 That is (N(A,B), N) is a poset. 

To prove (N(A,B)N) is a lattice.   
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For that we have to prove uNv, uVNv exist for all elements u,vN(A,B). 

For that, it is enough if we prove that uNv, uVNv exist for N- 

incomparable elements u, vN(A,B). 

Because of duality principle, it is enough if we prove that uNv exists for 

N-incomparable elements u, v N(A,B). 

Let u, vN(A,B) and u, v be N -incomparable.   

Let t be a lower bound of u and v in N(A,B). 

Case : 1 

uxv is not a lower bound of both u and v in N(A,B). 

If uxv is not a lower bound of both u and v in N(A,B), then either 

uxvN u or uxvN v. 

Suppose uxv N u , 

then u, uxv A
-
xB and uB   ( uxv)B . 

But (uxv)B  uB implies that uBvB . 

          Since t x uxv, it follows that tB  (uxv)B < uB and so t  A
-
xB.  

 For, if tA
-
xB, u A

-
xB  and tB  uB implies that t N u. 

 Which is a contradiction to t is a lowerbound of u. 

 Since t  A
-
xB , the first element of t must be 0 or 1. 

 If t = (1, tB), then it gives a contradiction to t x uxv. 

  t must be equal to (0, tB). 

 That is, t=(0,tB).   

 Since tB x uB and tB X vB, it follows that tB  uBvB.  

  t  (0,uBXvB). 

  uNv = (0,uBXvB). 

Case : 2 

 uXv is a lower bound of both u and v in N(A,B) 
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 We claim that uNv = uXv 

          For that it is enough if we prove that t N uXv 

          Suppose t N uXv,  then t, uXv A
-
xB and tB  (uXv)B 

  tB < (uXv)B.  

           uA
-
xB or vA

-
xB 

           Suppose uA
-
xB 

 The assumption of case 2, namely, uXv N u, implies that           

(uXv)B = uB,  

t, uA
-
xB and tB  uB, contradicting that t N u. 

 Similarly, for vA
-
xB  

Thus, t N uXv leads to a contradiction. 

  t  N uXv .  

Hence in case 2, uNv = uXv. 

This verifies the meet formula. 

Hence the lemma. 

NOTATION :  

  

 B = {0} x B, B

 = {1} x B and for bB, Ab = A x {b}. We observe that 

B is an ideal of N(A,B) and B
 

is a dual ideal of N(A,B). 

 

1.3 CONGRUENCES ON N(A,B) 

DEFINITION : 1.3.1 

 Let K and L be lattices and let  be an embedding of K into L. Let  be a 

congruence on L. We can define a congruence 1 on K via .  That is for a, 

bK define 1 by a  b(1) if, and only if, (a) (b) () . 
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 We call 1 the restriction of  transferred via the isomorphism  to K. 

 

REMARK : 1.3.2 

 Let A be a bounded lattice and B be a lattice.  Then N(A,B) is a lattice.  

Define  : B  N(A,B) by (b)=(0,b) for all bB. Then  is an isomorphism of 

B into N(A,B) with image of  equal to B. Similarly, if we define   : B  

N(A,B) by (b)=(1,b) for all bB, then  is an isomorphism of B into N(A,B) 

with image of  equal to B. Define a map   b : A  N(A,B) by b(a) = (a,b) for 

all  aA and for a fixed bB.  Then b is an isomorphism of A into N(A,B) with 

the image of b equal to Ab . 

REMARK : 1.3.3 

 Let  be a congruence relation on N = N(A,B). Using the natural 

isomorphisam  of B into N(A,B), we define Φ as the restriction of  to B. 

Using the natural isomorphism  of B into N(A,B), we define Φ* as the 

restriction of  to B

. Using the natural isomorphism b of A into N(A,B). We 

define b as the restriction of  to Ab for bB. 

 

LEMMA : 1.3.4  

 Φ  = Φ
 
 

Proof :- 

 Let b0  b1 (Φ). 

 Then (0,b0)  (0, b1) (). 

 Joining both sides with (1,b0b1) we get, 

   (0,b0) V (1,b0b1)  (0,b1) V (1,b0b1) (). 

             (ie) (0V1, b0 V (b0b1))  (0V1, b1V (b0b1)) () 

                     (ie)      (1,b0)  (1,b1) ()  

                                            b0  b1 (Φ
 
). 
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Conversely, if b0  b1(Φ
 
) then (1,b0)  (1,b1)(). 

          Taking meet on both sides with (0, b0 V b1) we get,  

          (1, b0)  (0,b0Vb1)  (1,b1)  (0,b0Vb1) () 

  (ie)  (10,b0 (b0Vb1))  (10, b1  (b0Vb1)) () 

                        (ie) (0, b0)  (0,b1) () 

                                  b0  b1 (). 

Hence  = 

 . 

NOTE :1.3.5  

 It is easy to see that  =  = 

 Con B and {b bB}  Con A. 

Further  and b describe . 

 

DEFINITION : 1.3.6 

 Let A be a bounded lattice. A congruence  of A is said to separate 0 if 

[0]  = {0}. That is x  0 () implies that x = 0. similarly, a congruence  of A 

is said to separate 1 if [1]  = {1}. That is x  1 () implies that x = 1.  The 

lattice A is said to be non-separating, if  0 and 1 are not separated by any 

congruence   . 

 

EXAMPLE : 1.3.7 

 Consider the lattice B2. 

        

 

    

  

 

 

Then Con (B2) = {, i,  (0,a),  (0,b)}. 

B2 1 

0 

a b 

. 
. 

. 
. 
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 Con (B2) is the lattice      

   Con (B2) 

   

  

 

 

  Here  is the only congruence separating 0 and 1. 

              Hence B2 is a non-separating lattice. 

 

LEMMA : 1.3.8 

 Let A and B be lattices with A > 2 and B > 1. Let A be bounded with 

bounds 0 and 1. Let us further assume that A is non-separating.  Let      N be 

a congruence of N(A,B). Define a map   by   () = ,where   is the 

restriction of  to B via the natural isomorphism . Then  is a bijection 

between the non-N congruences of N(A,B) and the congruences of B. 

Therefore, Con N(A,B) is isomorphic to Con B with a new zero added.  

Proof : - 

            Let    N be congruence relation of N(A,B).  

              We  start with the following statement. 

Claim 1 :  

               There are elements a1 < a2 in A and an element b1B such that (a1,b1)  

(a2,b2) ()  

Proof of Claim 1 : 

      Assume that (u1,v1)  (u2,v2) () with (u1,v1) <N (u2,v2) 

We distinguish two cases : 

case (i) u1=u2  

 Then (u1,v1) <N (u2,v2) implies v1<v2 and either u1 = u2 =0 or u1 = u2=1. 

 That is either (0,v1)  (0, v2) () or (1,v1)  (1, v2) (). 

i 

. 
 (0,a) 

 (0,b) 

 

. 
. . 
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 But (0,v1)  (0,v2) () implies (1,v1)  (1,v2) () 

 and (1,v1)  (1,v2) () implies (0,v1)  (0,v2) () 

 Hence we have both the congruences hold. 

 Since A > 2, we can choose aA
-
. 

 Then (a,v1) V (0,v1) = (aV0, v1Vv1) = (a,v1) 

 (a,v1) = (a,v1) V (0,v1)  (a,v1)V (0,v2) 

           = (aV0, v1Vv2) 

       = (1,v2) (since  v1<v2 and by definition of N                                                        

      in N(A,B), aV0=1) 

                       (a,v1)  (1,v2) (). 

From this we get (a,v1)  (1,v1)  (1,v2)  (1,v1) (). 

           That is (a,v1)  (1,v1) (). 

Hence the claim is true with a1 = a, a2 = 1 and b1 = v1. 

Case (ii) u1< u2 

 Since we have assumed that (u1,v1) <N (u2,v2) it follows from the 

definition of N that either v1 = v2 or u1 = 0 or u2  = 1. 

 If v1 = v2, then (u1,v1)  (u2,v1) () and so the claim is true with               

a1 = u1, a2 = u2 and b1 = v1 . 

 If u = 0, then (0, v1)   (u2,v2) () 

 As (u1,v1) <N (u2,v2), (ie) (0,v1) <N (u2,v2) we get v1 = v2 

 (0,v2)  (u2,v2) (). 

 Hence the claim is verified with a1 = 0, a2 = u2 and b1 = v2. 

 If u2 = 1, then (u1,v1)  (1,v2) (). 

 As (u1,v1) <N (1, v2), it follows that v1 = v2. 

 (u1,v1)  (1,v1) (). 

 Hence the claim is true with a1 = u1, a2 = 1 and b1 = v1. 
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 Thus there are elements a1 < a2 in A and an element b1B such that 

(a1,b1)  (a2,b1) (). 

Claim 2 :- 

There is an element b2B such that Ab  is a single congruence class of  . 

proof of claim 2 :- 

By claim 1, there are a1<a2 in A and b1 in B such that (a1,b1)  (a2, b1) ( ). 

          Since A is non-separating, there exists a3 in A with 0<a3 and               

0a3((a    , a   )).   

As  Ab   is a sublattice of N(A,B), it follows that  

(0,b1) ( a3,b1)((a   , b   ), (a     , b  )) 

 (0,b1)  (a3,b1) (). 

 So, for any b2B with b1<b2, joining both sides with (0,b2)  we obtain that 

(0,b1) V (0,b2)  (a3,b1) V (0,b2) (). 

 That is (0,b2)  (1,b2) (). 

(ie) Ab    is in a single congruence -class. 

          If b1 is the unit element 1B of B we cannot find a b2B such that b1<b2.  

 Hence the proof is complete if b1 is not the unit element of B. 

 If b1 is the unit element of B, then we have  (0, 1B)  (a3,1B) (). 

Since A is non-separating, there exists a4A with a4<1 and a41((0,a  )). 

 Moreover A1  is a sublattice of N(A,B). 

          So, it follows that (a4,1B)  (1,1B) ((0 , 1   ),(a  , 1  ) ). 

           Therefore, (a4,1B)  (1,1B) (). 

           Now choose any b2 < 1B. 

  As B>1, such a b2 exists.  

           Meeting bothsides with (1,b2), we obtain that  

           (a4,1B)  (1,b2)  (1,1B)  (1,b2) (). 

           That is (0,b2)  (1,b2) (). 

2 

1 2 

1 

1 1 2 1 

2 

3 

B 

B 3 B 
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           That is Ab   is in a single congruence class of . 

Claim 3 :  

 Ab is in a single congruence class of  for each bB. 

Proof of claim 3 :    

 Let bB 

 By claim 2, there is an element b2B such that Ab   is in a single 

congruence class of .  

 (ie)  (1,b2)  (0,b2) ()  

         (1,b) = ( (1,b2) V (0,b V b2) )  (1,b) 

         ( (0,b2) V (0,b V b2) )  (1,b) 

        = (0,b) (). 

 That is, (1,b)  (0,b) (). 

  Ab is in a single congruence class of  . 

Proof of lemma :- 

 Let   Con (N(A,B)) - {N} 

 Define  : Con (N(A,B)) - {N}  Con (B) by  

 () = , where  is the restriction of  to B. 

Claim :  is one-one 

 Let  1,  2  Con (N(A,B)) -{N} be such that  ( 1) =   ( 2). 

 That is (1) = (2) 

 Let b1  b2 (1) ,  then (0,b1)  (0,b2) (  1). 

 (1)  = (2) and b1  b2 (1)  implies that b1  b2(2)  

  (0,b1)  (0,b2) (2). 

 Thus (0, b1)  (0, b2) (  1) implies  (0,b1)  (0,b2) ( 2). 

 Again b1  b2 (1)  implies b1  b2 (2)  

           (0,b1)  (0,b2) ( 1) implies (1,b1)  (1,b2) ( 1) and  

     (0,b2)  (0,b2) ( 2) implies (1,b1)  (1, b2) ( 2). 

2 

2 
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          Thus (1,b1)  (1,b2)(  1) implies (1,b1)  (1,b2) ( 2). 

 This implies  1= 2.   

  is one-one. 

Claim :-  is onto 

 Let   Con (B) 

 Define a relation  on N(A,B) by 

          (u1,v1)  (u2,v2) () if, and only if, v1  v2 (). 

 

Claim :-  is a congruence relation 

(i)  is reflexive  

 Let (u1,v1)  N(A,B). 

          Then v1  B. 

 Since  is reflexive, v1  v2 (). 

 By definition of  ,(u1,v1)  (u1,v1)( ). 

          is reflexive. 

(ii)  is symmetric  

 Let (a,b) ,(c,d)  N (A,B) be such that (a,b)  (c,d) (). 

(a,b)  (c,d) ()   b  d () 

        d  b () 

 (c,d)  (a,b) () 

  is symmetric. 

(iii)  is transitive  

 Let (a,b), (c,d), (e,f)N(A,B) be such that  

 (a,b)  (c,d)( ) and (c,d)  (e,f) () 

 Then b  d () and d  f (). 

           b  f (). 

          This implies (a,b)  (e,f) (). 
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           is transitive.  

          is an equivalence relation. 

Let (u1,v1), (u2,v2), (u3,v3), (u4,v4)  N(A,B) be Such that (u1,v1)  (u2,v2) () 

and (u3,v3)  (u4,v4) (). 

 Then v1  v2 () and v3  v4 (). 

 Since  is a congruence relation, 

 v1 V v3  v2 V v4() and v1  v3  v2  v4 (). 

  (u1 V u3,v1 V v3)  (u2 V u4,v2 V v4) () and 

              (u1  u3,v1   v3)  (u2   u4, v2   v4) (). 

 is a congruence relation. 

 By  definition of  and , we get () =  

  is onto 

  is a bijection from Con (N(A,B)) - {N}  Con (B). 

Hence the lemma. 

             

              1.4 CHOPPED LATTICES 

 

DEFINITION : 1.4.1  

 Let M be a finite poset satisfying the following two conditions. 

(i) Inf {a,b} exists in M, for any a,b  M 

(ii) Sup {a,b} exists for any a,b  M having a common upper bound in 

M. 

In M, we define a b = inf{a,b}and aVb = sup{a,b}   whenever sup{a,b} exists 

in M. 

 Then M is a partial lattice called a chopped lattice. 
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DEFINITION : 1.4.2 

 Let M be a finite chopped lattice.  An equivalence relation  of a chopped 

lattice M is a congruence relation if, and only if, a  b() and c  d () imply 

that ac  bd() and whenever aVc and bVd exist, aVc  bVd(). The set Con 

M of all congruence relations of M partially ordered by set inclusion is again a 

lattice.   

DEFINITION : 1.4.3  

 Let M be a finite chopped lattice. A subset I of M is said to be an ideal of     

           M if 

(i) i  I and a  M imply ai  I 

(ii) a,b  I implies aVb  I provided that aVb exists in M. The set IdM of 

all ideals of M partially ordered by set inclusion is a lattice.  

LEMMA : 1.4.4  

      Let M be a finite chopped lattice.  Then for every congruence  of M, 

there exists exactly one congruence   of IdM, such that for a, b  M , 

(a]  (b] () if, and only if, a  b () 

Proof :- 

     Since arbitrary meet exists in M, (m] is a finite lattice for every mM.  

      If {x, y} has an upperbound then xVy exists.  

      Let  be a congruence relation on M. 

     For X  M, set [X]  =  { [x] xX }. 

     That is, [X]  = {yx  y() for some xX}. 

     If, I, J  IdM, define I  J() if, and only if, [I] = [J]. 

     Then  is an equivalence relation.      
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For, 

(i) [I] = [I] implies I  I(). 

   is reflexive.  

(ii) Let I  J(). Then [I] = [J]. 

 [J] = [I], which implies J  I (). 

  is symmetric.  

(iii) Let I  J() and J  K(). 

 Then [I]  = [J] and [J]  = [K] . 

 Hence [I]  = [K].  

  I  K (). 

   is transitive.  

 So,  is an equivalence relation.  

 Let I  J(), NIdM and xI  N. 

 I  J()  [I] = [J]. 

xI implies [x] = [y] for some yJ. 

x  y () for some yJ. 

xx  xy(). 

 That is x  xy(). 

 yJ, xN implies xyJ  N.  

 xyJN, x  xy() implies xJ  N . 

 Thus xI  N implies x J  N.  

 [I  N]  [J  N]. 

Similarly, we can prove that [ J  N]  [I  N]. 

Hence [I  N] = [J  N]. 

 I  N  J  N(). 

Next we claim that IVN  JVN(). 

Let Ao = I  N. 
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Let An = {x x  toVt1,  to,t1An-1}, for 0 < n < w 

 Then I  N = {An  n<w}. 

We claim that An    [JVN]. 

 We prove this result using induction on n. 

 When n = 0, A0 = I  N  [J]  N    [JVN] 

 A0    [JVN]. 

 Therefore the result is true when n = 0. 

 By induction assumption assume that An-1  [JVN]. 

 Let xAn.  Then x  t0V t1 for some t0,t1An-1. 

 t0  An-1,An-1  [JVN] implies  

 t0  u0() for some u0 JVN. 

 t1  An-1, An-1   [JVN] implies 

 t1  u1() for some u1 JVN. 

 t0  t0uo() and t1  t1 u1().  

 t0V t1 is an upper bound for {t0u0, t1u1}. 

 (t0 u0) V (t1 u1) exists. 

 t0V t1(t0u0) V (t1u1)(). 

 x = x  (t0V t1) 

    x   [ (t0u0) V (t1u1) ] (). 

 Now x  [ (t0u0) V (t1u1) ]  JVN. 

 x  [ JVN ](). 

  An   [ JVN ](). 

 Thus by induction each An  [ JVN ](). 

  { An  / n < }  [ JVN ](). 

 IVN    [ JVN ](). 

 Similarly JVN   [ IVN ] (). 

 IVN  JVN(). 
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           is a congruence relation on IdM. 

           Let a  b() and x  (a] 

 a  b() implies xa  xb() 

 That is x  xb(). 

 (a]  (b](). 

     Similarly, (b]  (a]() 

 Hence (a] = (b]. 

 (a]  (b](). 

           Thus a  b () implies (a]  (b] (). 

Conversely, let (a]  (b](). 

 Then a  b1() for some b1  b and  

 a1  b() for some a1  a . 

 aVa1  b1Vb(). 

That is a  b (). 

 Thus (a]  (b]() implies a  b(). 

 Thus  has all the properties. 

To prove uniqueness:- 

 Let  be a congruence relation of IdM satisfying (a]  (b]() if, and only 

if, a  b(). 

 Let I,JIdM, I  J() and xI. 

 I  J() implies (x]  I  (x]  J(). 

 But xI implies (x] I=(x]. 

 (x]  J = (y] for some yJ. 

 (x]  I  (x]  J()  implies (x]  (y]() for some yJ. 

 (x]  (y]() implies x  y(). 

 Thus given xI, there exists yJ such that x  y(). 

 x  [J].  
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 That is I  [J](). 

 Similarly J  [I](). 

 Hence [I]()  [J](). 

 Therefore I  J(). 

 Thus I  J() implies I  J(). 

 Conversely, let I  J() . 

Then x  y() for some xI and yJ. 

  Take all congruences of the form x  y(), xI, yJ. 

 By our assumption of , (x]  (y]() and by our definition of , the join 

of all these congruences yields I  J(). 

 Thus  = . 

  Hence the lemma. 

DEFINITION : 1.4.5  

 Let C and D be finite lattices such that J = C  D is an ideal in C and J is 

an ideal in D. Let m denote the generator of J. Then M(C,D) = C  D is a finite 

chopped lattice with the natural partial ordering. We observe that if aVb = c in 

M(C,D), then either a,b,cC and aVb =c in C or a,b,cD and aVb = c in D. 

LEMMA : 1.4.6  

 Let C and D be finite lattices such that J = C  D is an ideal in C and an 

ideal in D. Let m denote the generator of J. 

          Let M(C,D) = {(x,y)  CxD / xm = ym}, a subposet of CxD. Then 

M(C,D) is a finite lattice and Id M(C,D)  M(C,D). 

Proof :- 

 Let I be an ideal of M(C,D).  

Then I can be written uniquely in the form IC   ID where IC is an ideal of 

C and ID is an ideal of D satisfying IC   J = ID  J. 

 Let IC = (x] and ID = (y]. 
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Then IC  J = ID  J is the same as xm = ym. 

Define a map  : Id M(C,D)  M(C,D) by  

 (I) =  ( (x]  (y] ) = (x, y). 

We claim that  is an isomorphism. 

(i)  is one-one 

 Let  (I) =  (J) Where I and J are ideals of M(C,D). 

Then I = IC  ID where IC = (x] and ID = (y] and J = JC  JD  

where JC = (a] and JD = (b]. 

 (I) = (J) implies (x,y) = (a,b). 

 This implies x = a, y = b. 

 That is (x]  (y] = (a]  (b]. 

 That is I = J. 

 Hence  is one-one. 

(ii)  is onto 

 Let (x,y)  CxD be such that xm = ym. 

 Let I = (x]V(y], Then  (I) = (x,y). 

    is onto. 

(iii)  is a homomorphism 

 Let I, JId M(C,D). 

 Then I = (x]V(y]and J = (a]V(b] for some x,a  C and y,b  D such that 

xm = ym and am = bm. 

  (IVJ)      =  ( ((x]V(y]) V ((a]V(b]) ) 

          =  ( ((x]V(a]) V ((y]V(b]) ) 

          =  ( (xVa] V (yVb]) ) 

          = (xVa,yVb) 

 (I) V  (J)   = ( (x]V(y] ) V  ( (a]V(b] )   

               = (x,y)V(a,b) 
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                = (xVa,yVb) 

    (IVJ)      =  (I) V  (J). 

         (IJ)     =  ( ((x]V(y])  ((a]V(b]) ) 

                =  ( ((x](a]) V ((y](b]) ) 

                =  ( (xa] V (yb] ) 

                = (xa, yb) 

   (I)   (J)  =  ( (x]V(y] )   ( (a]V(b] ) 

      = (x,y)  (a,b) 

      = (xa, yb) 

         (IJ) =  (I)  (J). 

 is a homomorphism. 

Hence  is an isomorphism. 

IdM(C,D)  M(C,D). 

  

LEMMA : 1.4.7  

 Let C and D be finite lattices such that J = C  D is an ideal in C and an 

ideal in D. Let m be the generator of J.  Let U be an ideal of C and let V be an 

ideal of D. Let us regard U  V as a subset of IdM(C,D) by identifying an 

element with the principal ideal it generates. If U  V = {0}, then the sublattice 

generated by U  V in IdM(C,D)  is an ideal and it is 

 isomorphic to UxV. 

Proof :- 

 Let U = (x] and V = (y]. 

 Then xC and  yD. 

Define  : U  V  IdM (C,D) by (a) = ( (aVb) ) = (aVb]. 

 Then  is an embedding of U  V into IdM(C,D). 

Suppose U  V = {0} 
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Let < U  V > be the sublattice generated by U  V. 

Let p,q  < U  V > 

Then pVq  < U  V > . 

Let xC  D and p  < U  V > 

Then x = x1V x2 and p   t1V t2 

p   x   p = (x1 V x2)  (t1V t2) 

                             (x1  t1) V (x2  t2)  < U  V > 

 p  < U  V >. 

 Hence < U  V >  is an ideal . 

Let a  < U  V >,  then a ( (x]   (y] ) 

Then a  a1V a2 where a1 (x] and a2 (y]. 

By identifying a  (a1,a2) we get      

    < U  V >  UXV. 

LEMMA : 1.4.8  

 Let C and D be finite lattices such that J = C  D = (m] is an ideal in C 

and in D. Then Con IdM(C,D)  {(, ) Con C x Con D /  J=J}. 

Proof :- 

 Let  be a congruence of the chopped lattice M(C,D). 

 Let C and D be the restrictions of  to C and D respectively. 

Then C is a congruence of C and D is a congruence of D Satisfying the 

condition C restricted to J equals D restricted to J. 

 : Con (M(C,D))  {(,)  Con C x Con D /  J =   J } 

defined by () = (C, D) is a well defined map. 

Conversely, let  be a congruence on C and  be a congruence on D satisfying 

that  restricted to J equals  restricted to J. 

Define a congruence  on M(C,D) as follows : 

(i)  x  y() if, and only if, x  y () for x,y  C 
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(ii) x  y()if, and only if, x  y() for x, y  D 

(iii) If xC and yD, x  y() if, and only if,  

 x  xy() and y  xy () and symmetrically. 

 Then  : {(, )  Con C x ConD  J=J}  Con(M(C,D)) 

defined by  ((,)) =  is a well defined map. 

           (  )() = (  (  ) ) 

                  =   ( C, D ) 

                           =   

(  )( C, D ) = (  ( C, D ) ) 

                 =  (  ) 

                = ( C, D )      

    = identity map and    = identity map. 

  is an isomorphism. 

Therefore Con M(C,D)  {(,)  ConC x ConD / J=J}. 

But by lemma (1.4.4), Con M(C,D)  Con(IdM(C,D)). 

Hence Con(IdM(C,D))  {(,)  ConC x ConD / J=J}. 

                                   Hence the lemma. 

LEMMA : 1.4.9 

 Let U be a finite lattice with an ideal V isomorphic to Bn.  We identify V 

with the ideal (Bn) = ((0,1)] of N(B2,Bn) to obtain the chopped lattice 

K=M(U,N(B2,Bn)). Let m denote the generator of V=(Bn). Then                    

IdKM(U,N(B2,Bn)). Let uU. Then {yN(B2,Bn)(u,y)M(U,N(B2,Bn))} is 

isomorphic to B2. 

 

Proof :- 

 There are exactly four elements y of N(B2,Bn) satisfying that um = 

ym, namely the elements of (B2) um. 
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 They form a sublattice isomorphic to B2. 

` Therefore { yN(B2,Bn) /(u,y)M(U,N(B2,Bn))} is a four element set 

closed under co-ordinatewise meets and joins. 

                                        Hence the lemma. 

      1.5. CONGRUENCE CLASSES 

LEMMA: 1.5.1 

 Let U be a finite lattice with an ideal V isomorphic to Bn. Then                         

V  ((0,1)].  Let us assume that U is uniform.  Let K be a chopped lattice 

M(U,N(B2,Bn)).  Then IdK  M (U,N(B2,Bn)). Then IdK is uniform. 

Proof :- 

A congruence  of IdK can be described by lemma (1.4.8) . 

 That is   (, ) where  is a congruence of U,  is a congruence of 

N(B2,Bn) and  and  restrict to the same congruence of V=(Bn). 

 The trivial congruences IdK = ( U,N(B   ,B  )  ) and   

 iIdK = ( iU, iN (B   ,B  )  ) are obviously uniform. 

 We need to look at only two cases.  

First case :  is represented by (, ) 

So V = V. Let (x,y) be an element of IdK. 

Then [(x,y)](,) = { (t,y)IdK  t  x() }. 

It t  x(), then tm = xm(). 

But V = V so tm = xm. 

[(x,y) ] (,) = { (t,y)  t  x() } and so  

[(x,y)] (,) = [[x]]. 

   Each congruence class of    is of the same size as a congruence class 

of . 

 So  is uniform. 

2 n 

2 n 
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Second case :    is represented by (, ) where   . 

Let (x,y) be an element of IdK. 

Then [(x,y)] (,) = {(,z)IdKx  () and y  z()}. 

For a given , if (,t1) and (,t2)  IdK, then t1  t2() because (B2) is in 

a single congruence class of    by lemma 1.3.8 (Claim 3). 

Therefore {tN(B2,Bn)(,t)IdK} = (B2)m by lemma 1.4.9. 

Therefore {tN(B2,Bn)(,t)  IdK}=(B2)m= 4. 

We conclude that 

 [(x,y)] (,) = {(,z)IdKx  () ,z (B2)m} 

and so  [(x,y)](,)  = 4[x]. 

Therefore each congruence class of  is four times the size of a 

congruence class of  . 

Hence  is uniform. 

Hence the lemma. 

     1.6.    PROOF OF THE MAIN RESULT 

THEOREM : 1.6.1 

For any finite distributive lattice D, there exists a finite uniform lattice  L 

such that the congruence lattice of L is isomorphic to D and L satisfies the 

properties (P) and (Q) where  

 (P)  :  Every join-irreducible congruence of L is of the form (0,p), for a 

suitable atom p of L. 

(Q) : If 1,2,….,n  J(ConL) are pairwise incomparable, then L contains 

atoms p1,p2,….,pn that generate an ideal isomorphic to Bn and satisfy i= (0,pi), 

for all in. 

Proof :- 

We prove the result using induction on n, where n is the number of join-

irreducible elements. 
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 Let D be a finite distributive lattice with n join-irreducible elements. 

If n = 1, then D  B1, so there is a lattice L=B1 that satisfies the theorem 

1.6.1.  

Let us assume that,  for all finite distributive lattices with fewer than n 

join-irreducible elements, there exists a lattice L satisfying theorem 1.6.1 and 

properties (P) and (Q).   

Assume that D has n join-irreducible elements. 

Let q be a minimal element of J(D). 

Let q1,q2,…,qk(k0) be all upper bounds of q in J(D). 

Let D1 be a distributive lattice with J(D1)=J(D)-{q}. 

By induction assumption there exists a lattice L1 satisfying Con L1D1 

and  (P) and (Q).  

 If k = 0, then D  B1 x D1 and L = B1 x L1, obviously  satisfies all the 

requirements of the theorem and so the proof is over.   

 So, assume k  1 

The congruences of L1 corresponding to the qi’s are pairwise 

incomparable and therefore can be written in the form (0,pi) and the pi’s 

generate an ideal I1 isomorphic to Bk. 

The lattice N(B2,Bk) also contains an ideal (Bk) isomorphic to Bk.  

 Identifying I1 and (Bk), We get the chopped lattice K and the lattice 

L=IdK. 

By lemma 1.5.1., IdK is uniform. 

 That is L is uniform. 

Let  be a join-irreducible congruence of L. 

Then we can write  as (a,b) where a is covered by b. 

By lemma 1.4.6., it follows that we can assume that either a, b  L1, or a, 

b  N(B2,Bk) 
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In either case, there exists an atom q in L1 or q in N(B2, Bk) so that  

 (a,b)= (0,q) in L1 or  (a,b)=(0,q) in N(B2, Bk). 

 Obviously, q is an atom of Land (a,b)=(0,q) in L verifying (P)for L. 

 Let 1, 2,….,t be pairwise in-comparable join-irreducible congruences 

of L. 

 To verify condition (Q), we have to find atoms p1,p2,…,pt of L satisfying 

i = (0,pi) for all i  t and such that p1,p2,…,pt generate an ideal of L 

isomorphic to Bt. 

Let p denote an atom in N(B2,Bk) - I1 

Infact, there are two atoms but they generate the same congruence (0,p). 

If (0,p) is not one of 1,2,……,t then clearly we can find  

p1,p2, …, pt in L1 as required and p1,p2, …..,pt also serves in L. 

 If (0,p) is one of 1,2,……,t say (0,p) = t, then let p1,p2,…..,pt-1 be 

the set of atoms establishing (Q) for 1,2,..,t-1 in L1 and therefore in L. 

Then p1,p2,…..,pt-1,p represent the congruences 1,2,……,t and they 

generate an ideal isomorphic to Bt by lemma 1.4.7.  

         Therefore L satisfies (Q). 

 It is clear from this discussion that J(ConK) has exactly one more element 

than J(ConL1), namely, (0,p). 

 This join-irreducible congruence relates to the join-irreducible 

congruences of ConL, exactly as q relates to the join-irreducible           elements 

of D. 

 Therefore D  ConL. 

Hence the theorem. 
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EXAMPLE : 1.6.2 

  

 

The uniform construction for the four-element chain is 

 

 

  

 

 

 

 

 

 

 

 

 

  

 

This lattice has four congruences. 

Co has 32 blocks. 

C0 is a null congruence  

C1 has 8 blocks. 

C1 = { {0,1,2,3}, {4,5,6,7},{8,9,10,11},{12,13,14,15}, 

 (16,17,18,19}, {20,21,22,23}, {24,25,26,27},{28,29,30,31} }. 

C2 has 2 blocks. 

C2 = { {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}, 

 {16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31} }. 
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C3 has 1 block. 

C3 is all congruence. 

  

 

 

 

 

 

 

 

 

The congruence lattice of this lattice is  

 Every finite distributive lattice D can be represented as the congruence lattice 

of a finite uniform lattice L. 
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