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Abstract: This study discusses the applications of univariate control chart especially in assessing its 

performance on autocorrelated data comprising 100 indicators obtained based on a chemical process viscosity 

measured at two minutes intervals. The graph of the autocorrelation function based on the original data showed 

the presence of autocorrelation thereby necessitating data remodeling in order to attain independency as well 

as normality. The data was modeled in order to determine the effectiveness of parameter estimation and Box-

Jenkins methodology was used to determine the estimates of the parameters of the identified model and each 

parameter was statistically tested for significance. The time series plot, autocorrelation and partial 

autocorrelation functions suggested some models for selection, but the Akaike Information Criterion was used to 

select the model that gives the best fit for the data. From the family of identified models, ARIMA (2.0.0) model 

was found to be most adequate due to its ability to capture the presence of autocorrelation in the data. The 

adequacy of the chosen model was subsequently checked using both the residual analysis and Ljung-Box 

statistics. 
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I.     Introduction 
Since before the industrial revolution, the process of monitoring and controlling quality of products in 

industries has been the rallying point of most experienced artisans and craftsmen of the time, and this is made 

possible through interactions with customers aimed at assessing their (customers’) satisfactions on a particular 

product or services. According to Duncan [5], statistical quality control (SQC) is undoubtedly as old as the 

history of the industry itself. Steiner [17] posits that SQC was first introduced in the 1920s by the Inspection 

Department at Telephone Laboratories under the combine efforts of Walter A. Shewhart, Harold F. Dodge, 

Donald A. Quarles and George D. Edwards purposely for non-continuous manufacturing process that generate 

independent data and since then lots of charts have been developed for different process data in order to improve 

the quality of the products or services. SQC comprises some techniques of analyzing the processes involving 

comparison of performances, verifying and studying deviations as well as analyzing the processes again and 

again with the sole aim of achieving the best performance of machinery’s and/or operators (Montgomery [10]). 

The fundamental assumption for statistical process is that, the data generated by the in-control process 

are identically and independently distributed normal variables with mean,  and standard deviation, . However, 

in continuous process the assumption of independency is not always assured, particularly when successive units 

are related to previous one; hence, standard control charts may exhibit an increased frequency of false alarms. 

The data will then tend to be autocorrelated as the process time is longer than the time between samples 

collections (Nembhard and Nembhard [12]).  

Control chart as a major and primary tool for statistical process control (SPC), can only detect 

assignable causes, which need to be eliminated through some managerial, operator, and engineering actions. 

Control charts consist of three parallel lines: Central Line (CL), Upper Control Limit (UCL), and Lower Control 

Limit (LCL). Control chart can be subdivided into variable and attribute control charts and both are sensitive to 

the presence of autocorrelation in the process data even at low level. The degree of dependency between set of 

observations normally interrupt the chart’s properties which may eventually leads to signaling some false alarm 

and shorter average run length. Autocorrelation between observations results from different factors right from 

the operator or the process itself. According to Russo et al. [13], Shewhart control chart is not much sensitive in 

detecting small and moderate shifts in the process parameters and to overcome this insensitivity western electric 

run rules can be applied. However, as the sensitivity to detect assignable causes of variation is increased using 

run rules, the risk of sending false alarms from the chart properties also increases. Alternatively, one can apply 
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Exponential Weighted Moving Average (EWMA) or Cumulative Sum Control Chart (CUSUM) charts. The 

main advantages of employing these lies in their ability to quickly detect relatively small shift in the process 

mean, and this detection is significantly quicker than Shewharts control charts.    

Russo et al. [13] observed that, the quality of a product manufactured by a given process is normally 

subjected to two types of variations. First, no matter how good the design of a process is; there are some special 

or natural causes that may affect the process in an unpredictable manner and any process that operates under the 

influence of relatively special causes is considered to be in control and acceptable. Secondly, there are common 

or assignable causes whose variation affects all the individual values of the process and any process that 

performs in the presence of assignable causes is considered to be an out-of-control process, particularly if the 

resultant variations are significant compared to the specification limits of the product.  

      Karaoglan and Bayhan [7] argued, when there is significant autocorrelation in the process data, 

traditional control chart cannot be applied directly without some modifications which can be achieved through 

three general approaches, namely: (I) modelling the process observations using Autoregressive Integrated 

Moving Average (ARIMA) models and then applying traditional control charts to process the residuals; (II) 

adjusting the standard control limits in the traditional control charts in order to account for the autocorrelations 

from the process observation; (III) eliminating autocorrelation from the process observations using Engineering 

controllers. Kandananond [6] noted that, an effort to adjust a stable process in order to compensate for an 

undesirable disturbances may temper with the process and may also lead to more variations, and so the best 

practice is to integrate forecasting models into the traditional SPC tools.  

      Several quality control researchers [3, 4, 5, 6, 8, 14, 18] studied the behavior of control chart 

performance in the presence of autocorrelation, and the fundamental observation was that autocorrelation affects 

control chart performance of both variable as well as attribute control charts results. According to Alwan and 

Roberts [3], more than 85% of industrial process control applications display incorrect control limit due to the 

autocorrelation of the process observations thereby violating the fundamental assumption of Shewhart control 

chart. According to Sanders and Dan Reid [14], variables control chart can be used to monitor quality 

characteristic that can be measured and having a continuous scale. Descriptive statistics such as measures of 

central tendency and variation can as well be very helpful in describing certain characteristics of a product and a 

process. A control chart for attribute on the other hand, can be used to monitor characteristics that are discrete in 

nature and can be counted and sometimes this can be achieved with a simple ‘yes’ or ‘no’ decision. Nembhard 

and Nembhard [12] considered the effect of autocorrelation in attribute control chart and the study is related to 

injection modeling production target produced by various models of leak proof plastic containers. 

Shey and Shin [15] posits that, it is more advisable to use EWMA control charts in detecting small 

shifts than Shewhart control charts especially for observations drawn from AR (1) model with random error. 

However, it was argued that, Generalized Weighted Moving Average (GWMA) control charts are more 

powerful than their EWMA counterparts in detecting small shift in the process mean and variable. This study, 

motivated by the observance of fluctuation in some production processes, is aimed at providing better 

understanding on how to minimize the production and consumption of substandard products. The study is 

believed to shed more light on the applicability of the ARIMA modeling techniques in SPC using chemical 

process viscosity data obtainable in Montgomery and Johnson [9]; and this can be attained by exploring the 

effect of autocorrelation on control chart performance and proposing an approach for constructing control charts 

that removes the impact of autocorrelation on observations. The models developed in this study are expected to 

have some degree of accuracy which may be useful in process setting, monitoring and decision making.     

 

II.     Materials and methods 
The data used in this study was obtained from a research conducted by Montgomery and Johnson [9] 

comprising 100 indicators of chemical process viscosity measured and recorded at two-minute intervals. The 

essence is to assess control chart performance and obtain a prediction model that measures and as well removes 

the impact of autocorrelation on the data. EWMA control charts were applied to the data as well as the residuals; 

and the two results were compared to determine effect of autocorrelation on control chart performance. The data 

analysis was conducted using a statistical software package - MINITAB.  

 

2.1.    EWMA Control Charts  

Roberts introduced EWMA control charts in 1959 as alternative to the conventional Shewhart control 

charts especially when one is interested in detecting a small shift in the process. It was established that, CUSUM 

and EWMA charts are suitable and good candidates for detecting small process shift; for further details, consult 

Shu and Tsung [16]. EWMA control charts are approximately equivalent to their CUSUM counterparts and in 

some cases are easier to set up and operate. EWMA control charts are usually applied in industrial process set 

up where the products comes one by one. The EWMA statistic is given by: 
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Where 
t

Z  is the moving average at time t,  is the smoothing constant taking values in the interval (0, 1) and 

mostly chosen between 0.05 and 0.3. Karaoglan and Bayhan [7] as well as Lucass and Saccucci [8] developed 

tables that serve as a guide on how to select an optimal value for . 

 

According to Ajit and Dutta [1], EWMA control limit for independent and normally distributed data 

are given by: 
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Where L is the number of standard deviations from the CL, if the observations
t

x are independent random 

variables with variance 
2

 , then the variance of 
t

Z will be given as:  
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approaches unity as t get larger, so after several time periods, the control limits will 

eventually approach: 
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Douglas [7] observed that in many situations, the sample size used for process control is n = 1, meaning that the 

sample consist of an individual unit only.  

 

2.2   Time series models 

One of the methods of removing autocorrelation from a given process data is the concept of modeling 

using ARIMA model. ARIMA control charts are normally used to find an appropriate time series model, and the 

residual from the model are applied to control charts. An ARIMA of order p, q, d {i.e. ARIMA (p, d, q)} is 

chosen based on the characteristics shape of estimated autocorrelation function (EACF) and estimated partial 

autocorrelation function (EPACF). For instance, Russo et al. [13] suggested Box Jenkins and Reinse general 

shape of the model {i.e. ARIMA (p, d, q)} is given by: 
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Where B is backward shift operator,   is a backward difference operator, ( )
p

   is autoregressive polynomial 

of order p and ( )
q

   is moving average polynomial of order q. The observation at time period t, is denoted 

by
t

X . Lastly 
t

  denote independent white noise at time period t having normal distribution with mean 0 and 

variance 
2
.  

 

The most commonly ARIMA model used in applications can be summarized in the following equation: 
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Where 
t

X  is a p
th
 order autoregressive process or AR (P) process for short. 

1 2
, , ,

p
   denote estimated 

coefficients and each lies within the interval of 1 1   , and   is an unknown constant, 
t

  is an error term 

at time t. 

 

For instance, a first order autoregressive {AR (1)} model is given by:  
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In this process, the estimated/fitted values ˆ
t

X are subtracted from the sample data
t

X , the residuals that are 

approximately normal and independently distributed with mean 0 and constant variance 
2
are of the form: 
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and at this stage the residuals can be applied to the conventional control chart. The estimators of process mean 

and variance for AR models are given as:  
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Thus, a first order moving average model is given as: 
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where 
t

X is the observation at time t,  is the moving average parameter whose range of values lie within the 

interval (-1 <  < 1), , 
t

  is a random error term at time t. The dependency between Xt and Xt-1 is captured in 
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 and is zero at all other lags, the estimators of process mean and variance for MA models are thus 

computed as:  
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The Autoregressive Moving Average (ARMA) model which combines the autoregressive and moving average 

parameters, the first order mixed model as: 

 

1 1t t t t
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The estimators of process mean and variance for ARMA model are:  
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Where 
2


 is the variance of the residuals, j the order parameter j of AR or ARMA model, pj is the correlation 

coefficient of lag j and 
j

  auto-covariance of lag j. 

   

ARIMA combines both Autoregressive and Moving Average parameters and also include differencing, the 

model is given by: 
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      The above model comprises three types of parameters including autoregressive parameter (p), number 

of differencing passes (d), and moving average parameter (q), the model can be rewrite as ARIMA (p, d, q). 

Modeling using Box and Jenkins methodology establishes certain steps before the best model can be 

determined. These include identification, estimation, checking and forecast. ARIMA input series need to be a 

stationary process.  

 

2.2.1. Autocorrelation 

Autocorrelation measures the dependency between series of observations collected at difference time 

intervals. The graphical representation of autocorrelation function is called Correlogram. Let 
t

X  denote a time 

series, the ratio between the covariance (
t

X ,
t k

X


) and variance (
t

X ) defines as simple autocorrelation 

coefficient (
k

r ), while he sequence of 
k

r  value is called autocorrelation function simple (AFS). The 

autocorrelation coefficient simple between 
t

X  and their 
t k

X


 lagged values are defined by Russo et al. [13] as 

follows: 
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Where  1
, , ,

t t t k
C ov X X X

 
  is the covariance of observations that are k periods apart, 

k
X is the auto-

covariance of lag k, 
0

X is the auto-variance of lag k = 0, and N is the total number of observations in the 

dataset. 

  

The standard error, 
e k

s  at lag k is given by: 
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III.     Result and discussions 
      In the previous sections, we described the effect of autocorrelation on control chart performance and 

modeling techniques using Box-Jenkins methodology. As for this section, we present an analysis of a numerical 

data on chemical process viscosity measurements. After comparing the ACF with the PACF; we discovered that, 

ARIMA (2, 0, 0) provided the best fit having the lowest value of Akaike Information Criterion (AIC).  The 

residuals obtained from the model were also analyzed to confirm the removal of autocorrelation from the data 

and the analysis was performed using MINITAB version 15 package. 

 

3.1.   Time series plot of data 

The following figure (Fig. 1) shows time series plot of the original data and some runs which indicates 

the dependency embedded in the dataset between the set of observations due to the presence of autocorrelation. 

   

 
Fig. 1: Time series plot of the original data before modifications. 

 

3.2. Results of Autocorrelation Function 

Figure (2) and (3) illustrate the graphs of ACF and PACF and both indicate the presence of 

autocorrelation in the data. It is clear that, one can assess lags significantly different from zero and the series is 

not a white noise indicating the need for data modeling. 

  

   
Fig. 2: Autocorrelation function (ACF) of the data.  Fig. 3: Partial autocorrelation function (PACF) of the data 
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3.3. Result of removing autocorrelation 

To remove autocorrelation effect from a given data set; Montgomery and Johnson [9] recommended 

data modeling as well as control charting the residuals directly. Table 1 below gives information about the final 

estimates of the parameters showing how the ARIMA (2, 0, 0) model fits in well.    

  

Table 1: Final estimates of parameters 

Type Coef SE Coef T P 

AR 1 0.7182 0.0923 7.78 0.000 

AR 2 -0.4338 0.0922 -4.70 0.000 

Constant 20.5022 0.3281 62.49 0.000 

Mean 28.6512 0.4585   

 

Number of observations = 100   

Residuals: SS = 1043.73,    MS = 10.76,    DF = 97    (back forecast excluded). 

It can easily be observed from Table 1 that, the values of the estimates of the parameters 
1

  and 
2

  are as given 

below: 

 

  = 20.5022, 
1

  = 0.7182, 
2

  = -0.4338 

 

Thus, the resultant AR (2) model is as follows: 
1 2

ˆ 20 .5022 0 .7182 0 .4338
t t t

X X X
 

    

And now the residuals are independently and identically distributed normal variables. 

 

3.4. Results of normal probability as well as residuals time series plots. 
 

Figures 4 and 5 respectively show a normal probability plot of the residuals as well as residual time 

series plots in which both showcase the fitness of the ARIMA (2, 0, 0) in fitting the data well. 

 

   
       Fig. 4: Normal probability plot of the residual   Fig. 5: Time series plot of the residual.                            

 

3.5. Result of ACF and PACF 

After fitting the model, there is the need to further check ACF and PACF of the residuals obtained. The 

model is considered adequate and fit if the autocorrelation is completely removed from the data and as well the 

residuals maintain the feature of a white noise. Both ACF and PACF of the residual are basically zero for all 

lags, this is also an indication that, the model fit the data well. 
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     Fig. 6: ACF of the residuals           Fig. 7: PACF of the residuals 

 

IV.    Main result 
Figures 8 and 9 show the comparisons between EWMA control chart for data and EWMA control chart 

for Residuals. Using equations (2 - 4), the original data on chemical product viscosity is plotted for EWMA 

chart using MINITAB 15 with a default value 0 .2  . 

 

   
              Fig. 8:  EWMA Control Chart for data      Fig. 9:  EWMA Control Chart for Residual 

 

      It can easily be observed from Fig (8) that, some of the observations on EWMA control 

chart for the original data appear to be out of control due to some points shooting out beyond both the upper and 

lower control limits. Hence, the test failed at points 30, 31, 40, 59, 60, 86, 87. However, after modelling  and 

confirmation of the removal of autocorrelation from the data, the EWMA control chart for residuals {see Fig 

(9)} indicates the processes are statistically in control. 

 

V.   Conclusion 
      In this study, we examined the effect of control chart performance when process data are 

autocorrelated. We presented modelling techniques that are aimed at removing autocorrelation effect from the 

process data using Box-Jenkins methodology. We also compared the performance of the methods before and 

after modelling the data. The results obtained reveal that, EWMA control charts can be used to detect a false 

alarm provided the process data exhibit the presence of autocorrelation. Furthermore, it is evident that, some 

popular control charts other than EWMA can also be employed to detect autocorrelation effect. 
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