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I.INTRODUCTION 
Good and Hughes [3] introduced the notion of bi-ideal and Steinfeld [5] introduced the notion of quasi-

ideal. Sioson [4] studied some properties of quasi-ideals of ternary semigroups. In [1], Dixit and Dewan studied 

about the quasi-ideals and bi-ideals of ternary semigroups. Quasi-ideals are generalization of right ideals, lateral 

ideals, and left ideals whereas bi-ideals are generalization of quasi-ideals. In [2], we introduced the notion of 

ternary semiring. Syam Julius Rajendra , Madhusudhana Rao and Sajani Lavanya [6], introduced the completely 

regular ternary Γ-ideals in partially ordered ternary Γ-semiring.  Our main purpose of this paper is to introduce 

the notions of quasi-ternary Γ-ideal and bi-ternary Γ-ideal in ternary Γ-semirings and study regular ternary Γ-

semiring in terms of these two subsystems of ternary Γ-semirings. 

II.PRELIMINARIES 
Definition 2.1: Let T and Γ be two additive commutative semigroups.   T is said to be a Ternary 𝚪-semiring if 

there exist a mapping from T ×Γ× T ×Γ× T to T  which maps (
1 2 3
,  ,  ,  ,  x x x  )   1 2 3

x x x  satisfying 

the conditions : 

i) [[a𝛼b𝛽c]γd𝛿e] = [a𝛼[b𝛽c𝛾d]𝛿e] = [a𝛼b𝛽[c𝛾d𝛿e]] 

ii)[(a + b)𝛼c𝛽d] = [a𝛼c𝛽d] + [b𝛼c𝛽d]   

iii) [a (b + c)βd] = [a𝛼b𝛽d] + [a𝛼c𝛽d] 

iv) [a𝛼b𝛽(c + d)] = [a𝛼b𝛽c] + [a𝛼b𝛽d] for all a, b, c, d∈ T and 𝛼, 𝛽, 𝛾, 𝛿∈ Γ. 

Definition 2.2: An element 0of a ternary Γ-semiring T is said to be an absorbingzero of T provided 0 + x = x  

= x + 0and 0𝛼a𝛽b = a𝛼0βb = a𝛼b𝛽0 = 0 a, b, x   T and 𝛼, 𝛽∈Γ. 

Note 2.3 :Throughout this paper, T will always denote a ternary Γ-semiring with zero and unless otherwise 

stated a ternary Γ-semiring means a ternary Γ-semiring with zero. 

Definition 2.4: Let T be ternary Γ-semiring. A non empty subset ‘S’ is said to be a ternary sub𝚪-semiring of T 

if  S is an additive subsemigroup of T and a𝛼b𝛽c S for all a,b,c S and 𝛼, 𝛽∈Γ. 

Note 2.5 : A non empty subset S of a ternary Γ-semiring T is a ternary subΓ-semiring if and only if S + S ⊆ S 

and SΓSΓS   S. 

III. TERNARY 𝚪-IDEAL 
Definition 3.1 :A ternary Γ-semiring T is said to be zero divisor free (ZDF) if for a,  b, c ∈ T,𝛼, 𝛽∈Γ,  [a𝛼b𝛽c] 

= 0 implies that a = 0 or b = 0 or c = 0. 

Definition 3.2 :A ternary Γ-semiring T is said to be multiplicatively left 𝚪-cancellative (MLC) if aΓbΓx = aΓbΓy 

implies that x = y for all a, b, x, y∈ T. 

Definition 3.3: A ternary Γ-semiring T is said to be multiplicatively laterally 𝚪-cancellative (MLLC) if  

aΓxΓb = aΓyΓb implies that x = y for all a, b, x, y∈ T. 
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Definition 3.4 :A ternary Γ-semiring T is said to be multiplicatively right 𝚪-cancellative (MRC) if  

xΓaΓb = yΓaΓb implies that x = y for all a, b, x, y∈ T. 

Definition 3.5 :A ternary Γ-semiring T is said to be multiplicatively 𝚪-cancellative (MC) if it is multiplicative 

left Γ-cancellative (MLC), multiplicative right Γ-cancellative (MRC) and multiplicative laterally Γ-cancellative 

(MLLC). 

Theorem  3.6: A multiplicative 𝚪-cancellative ternary 𝚪-semiring T is zero divisor free. 

Proof: Let T be a multiplicative Γ-cancellative ternary Γ-semiring and aΓbΓc= 0 for a; b; c∈T.Suppose b ≠ 0 

and c≠ 0. Then by right Γ-cancellativity, aΓbΓc= 0 = 0ΓbΓcimplies that a= 0. Similarly, we can show that b = 0 

if a ≠ 0 and c ≠ 0 or c = 0 if a ≠ 0 and b ≠ 0. Consequently, T is zero divisor free. 

Definition  3.9 : A nonempty subset A of a ternary Γ-semiring T is said to be left ternary 𝚪-ideal of T if  

(1) a, b ∈ A implies a + b ∈ A.  (2) b, c   T, a  A, 𝛼, 𝛽∈Γ implies b𝛼c𝛽a  A. 

Note  3.10 : A  nonempty subset A of a ternary Γ-semiring T is a left ternaryΓ-ideal of T if and only if A is 

additive subsemigroup of T and TΓTΓA   A. 

Definition  3.11 : A nonempty subset of a ternary Γ-semiring T is said to be a lateral ternary 𝚪-ideal of T if (1) 

a, b ∈ A ⇒a + b ∈ A.  (2) b, c  T, a  A, 𝛼, 𝛽 ∈Γ⇒b𝛼a𝛽c   A. 

Note 3.12: A nonempty subset of A of a ternary Γ-semiring T is a lateral ternary Γ-ideal of T if and only if A is 

additive subsemigroup of T and TΓAΓT   A. 

Definition 3.13 : A nonempty subset A of a ternary Γ-semiring T is a right ternary 𝚪-ideal of T if (1) a, b ∈ A 

⇒a + b ∈ A.  (2) b, c   T , a  A, 𝛼, 𝛽 ∈Γ⇒a𝛼b𝛽c   A. 

Note 3.14: A nonempty subset A of a ternary Γ-semiring T is a right ternary Γ-ideal of T if and only if A is 

additive subsemigroup of T and AΓTΓT   A. 

Definition 3.15: A nonempty subset A of a ternary Γ-semiring T is said to be ternary 𝚪-idealof T if   

(1) a, b ∈ A ⇒a + b ∈ A 

(2) b, c   T , a   A, 𝛼, 𝛽 ∈Γ⇒b𝛼c𝛽a A, b𝛼a𝛽c   A, a𝛼b𝛽c   A. 

Note 3.16 : A nonempty subset A of a ternary Γ-semiring T is a ternaryΓ-ideal of T if and only if it is left 

ternaryΓ-ideal, lateral ternaryΓ-ideal and right ternaryΓ-ideal of T. 

Definition 3.17: A ternary Γ-ideal A of a ternary Γ-semiring T is said to be a proper ternary 𝚪-ideal of T if A is 

different from T. 

Definition 3.18: A left ternary Γ-ideal A of a ternary Γ-semiring T is said to be the principal left ternary 𝚪-ideal 

generated by a if A is a left ternary Γ-ideal generated by  a  for some a  T. It is denoted by L (a) or <a >l. 

Theorem 3.19 : If T is a ternary 𝚪-semiring and a   T then  

<a>l= 
0

1

: , , ,  an d  

n

i i i i i i i i

i

r t a n a r t T n z   




 
     

 
 . Where  denotes a finite sum and 

0
z


is 

the set of all positive integer with zero. 

Proof :Let A = 
0

1

: , , ,  an d  

n

i i i i i i i i

i

r t a n a r t T n z   




 
     

 
 .  Let a, b∈ A.   

a, b∈ A .  a = 
i i i i i

r t a na    and b = 
j j j j

r t a na    for ri, ti, rj, tj∈ T, , , ,
i i j j

       and 

n∈
0

z


.  Now a + b = 
i i i i i

r t a na    + 
j j j j

r t a na   ⇒a + b is a finite sum. 

Therefore a + b∈ A and hence A is additive subsemigroup of T.  For t1,t2∈ T and a∈ A. 

Then t1αt2𝛽a = t1𝛼t2( i i i i
r t a na   ) = 

1 2 1 2
( ) ( )

i i i i
r t t t a n t t a      ∈ A 

Therefore t1αt2𝛽a ∈A and hence A is a left ternary Γ-ideal of T. 

Let L be a left ternary Γ-ideal of T containing a.   

Let r A. Then r = 
i i i i i

r t a na   for 
0

, ,  , ,
i i i i

r t T n z 


    .   
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If r = 
i i i i i

r t a na   ∈ L.    

Therefore A ⊆L and hence A is a smallest left ternary Γ-ideal containing a.   

Therefore A = L(a) = 
0

1

: , , ,  an d  

n

i i i i i i i i

i

r t a n a r t T n z   




 
     

 
 . 

Note 3.20 : if T is ternary Γ-semiring and a T then L(a) = 
e e

T T a n a   . 

Definition 3.21 : A nonempty subset of a ternary Γ-semiring T is said to be a lateral ternary 𝚪-ideal of T if  

(1) a, b ∈ A implies a + b∈ A. 

(2) b, c  T , 𝛼, 𝛽  ∈ Γ, a A implies b𝛼a𝛽c  A. 

Note 3.22: A nonempty subset of A of a ternary Γ-semiring T is a lateral ternary Γ-ideal of T if and only if A is 

additive subsemigroup of T, TΓAΓT   A. 

Definition 3.23 : A lateral ternary Γ-ideal A of a ternary Γ-semiring T is said to be the principal lateral ternary 

𝚪-ideal generated by a if A is a lateral ternary Γ-ideal generated by  a  for some a T. It is denoted by M (a) 

(or) <a>m.  

Theorem 3.24 : If T is a ternary 𝚪-semiring and a T then  

1

1

0

 : , , ,  

, , , , ,  a n d  

n

n
i i i i j j j j j j j j i i j j j j

j
m

i

i i j j j j

r a t u v a p q n a r t u v p q T

a

n z

     

     



 

 
  

 
    

 
  

 


 , and  denotes a 

finite sum and 
0

z


is the set of all positive integer with zero. 

Definition 3.25 : A nonempty subset A of a ternary Γ-semiring T is a right ternary 𝚪-idealof T if  

(1) a, b ∈ A implies a + b∈ A. 

(2) b, c   T , 𝛼, 𝛽 ∈ Γ, a A implies a𝛼b𝛽c  A. 

Note 3.26 : A  nonempty subset A of a ternary Γ-semiring T is a right ternary Γ-ideal of T if and only if A is 

additive subsemigroup of T, AΓTΓT   A. 

Definition 3.27 : A right ternary Γ-ideal A of a ternary Γ-semiring T is said to be a principal right ternary 𝚪-

ideal generated by a if A is a right PO-ternary Γ-ideal generated by  a  for some a T. It is denoted by R (a) 

(or) <a>r.  

Theorem 3.28 : If T is a ternary 𝚪-semiring and a T then  

<a>r =
0

1

 : , , ,  an d  

n

i i i i i i i i

i

a r t n a r t T n z   




 
     

 
 , denotes a finite sum and 

0
z


is the set 

of all positive integer with zero. 

Definition 3.29 : A nonempty subset A of a ternary Γ-semiring T is a two sided ternary 𝚪-ideal of T if  

(1) a, b ∈ A implies a + b∈ A 

(2) b, c  T ,𝛼, 𝛽 ∈ Γ, a A implies b𝛼c𝛽a A, a𝛼b𝛽c A. 

Note 3.30: A nonempty subset A of a ternary Γ-semiring T is a two sided ternary Γ-ideal of T if and only if it is 

both a left ternary Γ-ideal and a right ternary Γ-ideal of T. 

Definition 3.31 : A two sided ternary Γ-ideal A of a ternary Γ-semiring T is said to be the principal two sided 

ternary 𝚪-ideal provided A is a two sided ternary Γ-ideal generated by  a  for some a T. It is denoted by T 

(a) (or) <a>t. 

Theorem 3.32 : If T is a ternary 𝚪-semiring and a T then  

< a >t =
1 1

1

0

 : 

, , , , , , , , , , , , , ,  a n d  

n n

n
i i i i j j j j k k k k k k k k

j k

i

i i j j k k k k i i j j k k k k

r s a a t u l m a p q n a

r s t u l m p q T n Z

       

       

 

 

 
  

 
 

 
   

 

 


 and  denotes 

a finite sum and 
0

z


is the set of all positive integer with zero. 
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Definition 3.33 : A nonempty subset A of a ternary Γ-semiring T is said to be ternary  𝚪-ideal of T if   

(1) a, b ∈ A implies a + b∈ A 

(2) b, c   T ,𝛼, 𝛽 ∈ Γ,a A implies b𝛼c𝛽a A, b𝛼a𝛽c A, a𝛼b𝛽c A. 

Note 3.34 : A nonempty subset A of a ternary Γ-semiring T is a ternary Γ-ideal of T if and only if it is left 

ternary Γ-ideal, lateral ternary Γ-ideal and right ternary Γ-ideal of T. 

Definition 3.35 : A ternary Γ-ideal A of a ternary Γ-semiring T is said to be a principal ternary 𝚪-ideal 

provided A is aternary Γ-ideal generated by  a  for some a T. It is denoted by J (a) (or) <a>. 

Theorem 3.36 : If T is a ternary 𝚪-semiring and a T then  

<a>=
1 1 1 1

{  
n n n n

i i i i j j j j k k k k l l l l l l l l

i j k l

p q a a r s t a u v w a x y n a         

   

        

0
: , , , , , , , , , , , , , , , , , , , }

i i j j k k l l l l i i j j k k l l l l
p q r s t u v w x y T n Z         


    . 

Where  denotes a finite sum and 
0

z


is the set of all positive integer with zero. 

4.Quasi-ternary 𝚪-ideal and bi-ternary 𝚪-ideal in ternary 𝚪-semirings 

Definition 4.1: An additivesubsemigroup Q ofa ternaryΓ-semiring T is calleda quasi-ternary Γ-ideal of T if 

QΓTΓT∩(TΓQΓT+TΓTΓQΓTΓT)∩TΓTΓQ⊆Q.  

Note 4.2: Every quasi-ternary Γ-ideal of a ternary Γ-semiring T is a ternary Γ-sub semiring of T. 

Lemma 4.3:Every left, right, and lateral ternary Γ-ideal of a ternary Γ-semiring T is a quasi-ternary Γ-

ideal of T. 

Proof: Assume that Q is a left ternary Γ-ideal of T.  Then TΓTΓQ ⊆ Q, but  TΓTΓQ ∩ (TΓQΓT ∪ TΓTΓQΓTΓT] 

∩ QΓTΓT ⊆ TΓTΓQ ⊆ Q.  Hence Q is a quasi-ternary Γ-ideal of T.  Similarly we can prove that the remaining 

parts. 

Remark 4.4: The converse of Lemma 4.3 is not true, in general, that is, a quasi-ternary Γ-ideal may not be a left, 

a right, or a lateral ternary Γ-ideal of T. This follows from the following example. 

 Example 4.5: Let T =
2 0

( )M z


betheternaryΓ-semiringofthesetofall2×2squarematrices over 
0

Z


, the set of all 

nonpositive integers and Γ be the set of all 2×2 square matrices over Z


 , the set of all negative integers. Let 

Q=
0

0
:

0 0

a
a Z


  

  
  

. Then we can easilyverify that Q is a quasi-ternary Γ-ideal of T, butQ is not a right 

ternary Γ-ideal, a lateral ternary Γ-ideal, or a left ternary Γ-ideal of T.  

Theorem 4.6:If Q is a quasi-ternary 𝚪-ideal of a ternary 𝚪-semiring T and S is a ternary 𝚪-sub semiring of 

T, then Q∩S is a quasi-ternary 𝚪-ideal of S. 

Proof: Assume that Q1 = Q∩S ≠ ∅.  Since Q1⊆ Q, it follows that  

SΓSΓQ1 ∩ SΓQ1ΓS ∩ Q1ΓSΓS ⊆ TΓTΓQ ∩ TΓQΓT ∩ QΓTΓT ⊆ Q.   

Since Q1⊆ S and S is a ternary Γ-subsmigroup of T.  We have SΓSΓQ1 ∩ SΓQ1ΓS ∩ Q1ΓSΓS ⊆ S.   

Then SΓSΓQ1 ∩ SΓQ1ΓS ∩ Q1ΓSΓS ⊆Q1.Therefore Q1 is quasi-ternary Γ-ideal of S. 

Lemma 4.7. The intersection of arbitrary collection of quasi-ternary 𝚪-ideals of a ternary 𝚪-semiring T is 

a quasi-ternary 𝚪-ideal of T. 

Proof: Let  Q
  

 be a family of -ternary Γ-ideals of T and let Q = Q


  

  

Assume that Q is not empty.  Since Q


is a quasi-ternary Γ-ideal for each    .  

Then Q𝛼ΓTΓT ∩ (TΓQαΓT + TΓTΓQαΓTΓT) ∩ (TΓTΓQα]⊆ Qα for each 𝛼∈ Δ. 
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Now for each 𝛼∈ Δ TΓTΓQ = TΓTΓ( Q


  

 ) = T T Q


 

  ⊆ TΓTΓQ𝛼 ,  

TΓQΓT = TΓ( Q


  

 )ΓT = T Q T


 

  ⊆ TΓQαΓT,  

TΓTΓQΓTΓT = TΓTΓ( Q


  

 )ΓTΓT = T T Q T T


 

    ⊆ TΓTΓQαΓTΓT, and  

TΓTΓQ = TΓTΓ( Q


  

 ) = Q T T


 

  ⊆ QαΓTΓT.   

Then TΓTΓQ ∩ (TΓQΓT ∪ TΓTΓQΓTΓT)∩ QΓTΓT  

⊆ TΓTΓQ𝛼∩(TΓQαΓT ∪ TΓTΓQαΓTΓT)∩ QαΓTΓT ⊆ Qα for each 𝛼∈Δ.   

Therefore TΓTΓQ ∩ (TΓQΓT + TΓTΓQΓTΓT ∩ QΓTΓT ⊆ Q


  

  = Q.   

Therefore Q= Q


  

 , is a quasi-ternary Γ-ideal of T. 

Theorem 4.8:An additive subsemigroup Q of a ternary Γ-semiring T is a quasi-ternary Γ-ideal of T if Q is 

the intersection of a right ternary Γ-ideal, a lateral ternary Γ-ideal, and a left ternary Γ- ideal of T.  

Proof: Let R be a right ternary Γ-ideal, M be a lateral ternary Γ-ideal, and L be a left ternary Γ-ideal of T such 

that Q=R∩M∩L. Then, by Lemmas 4.3 and 4.7, we find that Q is a quasi-ternary Γ-ideal of T. 

 The converse of Theorem 4.8 does not hold, in general. But, in particular, we have the following result. 

Theorem 4.9: AnadditivesubsemigroupQ ofaternaryΓ-semiring T isaminimalquasi-ternary Γ-ideal of T if 

and only if Q is the intersection of a minimal right ternary Γ-ideal, a minimal lateral ternary Γ-ideal, and 

a minimal left ternary Γ-ideal of T. 

Proof: Let R be a minimal right ternary Γ-ideal, M a minimal lateral ternary Γ-ideal, and L a minimal left 

ternary Γ-ideal of T such that Q = R∩M∩L.  

Then, by Theorem 4.8, it follows that Q is a quasi-ternary Γ-ideal of T.  

Now it remains to show that Q is minimal.  

If possible, let Q ⊆ Q be any other quasi-ternary Γ-ideal of T.  

Then, QΓTΓT is a right ternary Γ-ideal of  T and QΓTΓT ⊆ QΓTΓT ⊆ RΓTΓT ⊆ R.  

Since R is a minimal right ternary Γ-ideal of T, we have QΓTΓT = R.  

Similarly, we can prove that TΓQΓT + TΓTΓQΓTΓT = M and TΓTΓQ = L.  

Therefore, Q = R∩M∩L=QΓTΓT∩(TΓQΓT+TΓTΓQΓTΓT)∩TΓTΓQ ⊆ Q.  

Consequently, Q= Q and hence Q is a minimal quasi-ternary Γ-ideal of T.  

Conversely, let Q be a minimal quasi-ternary Γ-ideal of T. 

Then, QΓTΓT∩(TΓQΓT+TΓTΓQΓTΓT)∩TΓTΓQ⊆Q.  Let q ∈ Q.  

Then, qΓTΓT is a right ternary Γ-ideal, (TΓqΓT+TΓTqΓTΓT) is a lateral ternary Γ-ideal, and TΓTΓq is a left 

ternary Γ-ideal of T.  

Therefore, by Theorem 4.8, qΓTΓT∩(TΓqΓT+TΓTΓqΓTΓT)∩TΓTΓq is a quasi-ternary Γ-ideal of T, and 

qΓTΓT∩(TΓqΓT+TΓTΓqΓTΓT)∩TΓTΓq⊆QΓTΓT∩(TΓQΓT+TΓTΓQΓTΓT)∩ TΓTΓQ⊆Q.  

Since Q is a minimal quasi-ternary Γ-ideal of T, we have  

qΓTΓT∩(TΓqΓT+TΓTΓqΓTΓT)∩TΓTΓq = Q.  

Now it remains to show that qΓTΓT, (TΓqΓT+TΓTΓqΓTΓT), and TΓTΓq are, respectively, a minimal right, a 

minimal lateral, and a minimal left ternary Γ-ideal of T.  

If possible, let R be any right ternary Γ-ideal of T such that R ⊆ qΓTΓT.  Then RΓTΓT ⊆ R ⊆ qΓTΓT.  

Now, RΓTΓT∩(TΓqΓT+TΓTΓqΓTΓT)∩TΓTΓq ⊆ qΓTΓT∩(TΓqΓT+TΓTΓqΓTΓT)∩TΓTΓq = Q.  

Thus, by minimality of Q, we find that Q = RΓTΓT∩(TΓqΓT+TΓTΓqΓTΓT)∩TΓTΓq.  

This implies that Q ⊆ RΓTΓT. Again, qΓTΓT ⊆ QΓTΓT ⊆ (RΓTΓT)ΓTΓT ⊆ RΓTΓT.  

Thus, qΓTΓT = RΓTΓT ⊆ R and hence R = qΓTΓT.  Consequently, qΓTΓT is a minimal right ternary Γ-ideal of 

T.  Similarly, we can prove that (TΓqΓT+TΓTΓqΓTΓT) is a minimal lateral ternary Γ-ideal and TΓTΓq is a 

minimal left ternary Γ-ideal of T. 
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Theorem 4.10: Any minimal lateral ternary 𝚪-ideal of a ternary 𝚪-semiring T is a minimal ternary 𝚪-ideal 

of T. 

Proof: Let M be a minimal lateral ternaryΓ-ideal of T. We will show that M is a minimal ternary Γ-ideal of T. 

Let m ∈ M.  Then, TΓmΓT+TΓTΓmΓTΓT is a lateral ternary Γ-ideal of T and TΓmΓT+TΓTΓmΓTΓT⊆TΓMΓT+ 

TΓTΓMΓTΓT ⊆ M. Since M is minimal, we have M = TΓMΓT + TΓTΓMΓTΓT.  

Now, MΓTΓT = (TΓMΓT + TΓTΓMΓTΓT)ΓTΓT= (TΓMΓT)ΓTΓT+ (TΓTΓMΓTΓT)ΓTΓT ⊆TΓMΓT + 

TΓTΓMΓTΓT ⊆ M and TΓTΓM =ΓTΓT (TΓTΓMΓTΓT)=ΓTΓT(TΓMΓT)+ ΓTΓT (TΓTΓMΓTΓT)⊆TΓMΓT + 

TΓTΓMΓTΓT ⊆ M. This implies that M is both right ternary Γ-ideal and left ternary Γ-ideal of T. Consequently, 

M is aternary Γ-ideal of T. Now it remains to show that M is a minimal ternary Γ-ideal of T. If possible, let M be 

a ternary Γ-ideal of T such that M⊆M. SinceM is a ternary Γ-ideal of T, it is a lateral ternary Γ-ideal of T.  

By hypothesis, we have M=M. Consequently, M is a minimal ternary Γ-ideal of T. 

Corollary 4.11. Any minimal quasi-ternary 𝚪-ideal of a ternary 𝚪-semiring T is contained in a minimal 

ternary 𝚪-ideal of T. 

Proof: Let Q be a minimal quasi-ternary Γ-ideal of T. Then, by theorem 4.9, Q=R∩M∩L, where R is a minimal 

right ternary Γ-ideal, M a minimal lateral ternary Γ-ideal, and L a minimal left ternary Γ-ideal of T. Clearly, 

Q⊆M. By theorem 4.10, it follows that M is a minimal ternary Γ-ideal of T. 

Theorem 4.12:Let x be an idempotent element of a ternary Γ-semiring T, that is,  xΓxΓx=x. IfR is a right 

ternary Γ-ideal, M a lateral ternary Γ-ideal, and L a left ternary Γ-ideal of T, then RΓxΓx, xΓxΓMΓxΓx, 

and xΓxΓLare quasi-ternary Γ-ideals of T. 

Proof: To show RΓxΓx, xΓxΓMΓxΓx, andxΓxΓLare quasi-ternary Γ-ideals of T, it is sufficient to show that 

RΓxΓx = R ∩ (TΓxΓT+TΓTΓxΓTΓT) ∩ TΓTΓx,  

xΓxΓMΓxΓx = xΓTΓT∩M∩TΓTΓx,  

xΓxΓL= xΓTΓT∩ (TΓxΓT+TΓTΓxΓTΓT)∩L. 

For the first case, clearly we see that RΓxΓx⊆R∩TΓTΓx. Let a ∈ R∩TΓTΓx.  

Then, a ∈ R and a ∈ TΓTΓx.  Now, a ∈ TΓTΓx implies that 
1

n

i i i i

i

a s t x 



  for some si,ti∈ T and ,
i i

    .  

Therefore, a𝛼x𝛽x = (
1

n

i i i i

i

s t x 



 )x𝛽x=
1

( )

n

i i i i

i

s t x x x   



 =
1

n

i i i i

i

s t x 



 = a.  

Thus, it follows that a∈RΓxΓx and hence RΓxΓx= R∩TΓTΓx.  

Again, a = a𝛼x𝛽x∈TΓxΓT and 0∈TΓTΓxΓTΓT.  So we find that a ∈(TΓxΓT+TΓTΓxΓTΓT).  

Thus, R∩TΓTΓx ⊆ (TΓxΓT+TΓTΓxΓTΓT).  Consequently, RΓxΓx = R ∩ (TΓxΓT+TΓTΓxΓTΓT) ∩ TΓTΓx.  

For the second case, We see that xΓxΓMΓxΓx⊆xΓTΓT∩M∩TΓTΓx.  

Let a ∈ xΓTΓT∩M∩TΓTΓx. Then, a ∈ xΓTΓT, a ∈ M, and a ∈ TΓTΓx. 

Now, a ∈ xΓTΓT and a ∈ TΓTΓx ⇒ a =
1

m

i i i i

i

x s t 



 =
1

n

j j j j

j

u v x 



 for some si,ti,uj,vj∈ T 

and , , ,
i i j j

      .  Therefore,  

x𝛼x𝛽a𝛾x𝛿x = x𝛼x(
1
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m
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j
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j j j j

j
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= a.   

Consequently, a ∈ xΓxΓMΓxΓx and hence xΓxΓMΓxΓx = xΓTΓT∩M∩TΓTΓx.  

The third case can be proved in the same way as in the first case.  

Definition 4.13 :An element a of a ternary Γ-semiring. T is said to be regular if there exist x∈ T, 𝛼, ∈Γ such that 

a𝛼x𝛽a = a. 

Definition 4.14 : A ternary Γ-semiring T is said to be regular ternary 𝚪-semiring provided every element is 

regular. 
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Theorem 4.15: The following conditions in a ternary Γ-semiring T are equivalent:  

(i) T is regular;  

(ii) For any right ternary Γ-ideal R, lateral ternaryΓ-ideal M and left ternaryΓ-ideal L of T,  

       RΓMΓL = R∩M∩L;  

(iii) For a, b, c ∈T, <a>rΓ<b>mΓ<c>l =<a>r ∩ <b>m ∩<c>l;  

(iv) For a ∈T, <a>rΓ<a>mΓ<a>l = <a>r ∩ <a>m ∩ <a>l. 

Proof: (i) =⇒ (ii). Suppose T is a regular ternary Γ-semiring. 

Let R, M and L be a right ternary Γ-ideal, a lateral ternary Γ-ideal and a left ternary Γ-ideal of T respectively. 

Then clearly, RΓMΓL ⊆ R∩M ∩L.Now for a∈ R∩M ∩L, we have a = a𝛼x𝛽a for some x∈T, 𝛼, 𝛽∈Γ. This 

implies that a = a𝛼x𝛽a = (a𝛼x𝛽a)(x𝛼a𝛽x)δ( a𝛼x𝛽a)∈RΓMΓL. Thus we have R∩M ∩L⊆RΓMΓL. So we find 

that RΓMΓL = R∩M ∩L.  

Clearly, (ii) ⇒ (iii) and (iii) ⇒ (iv).  

To complete the proof, it remains to show that (iv) ⇒ (i).  

Let a∈ T. Clearly, a∈<a>r ∩ <b>m ∩ <c>l = <a>rΓ<b>mΓ<c>l.  

Then we have,a ∈ (aΓTΓT + na)Γ(TΓaΓT + TΓTΓaΓTΓT + na)Γ(TΓTΓa + na) ⊆ aΓTΓa.  

So we find that a ∈ aΓTΓa and hence there exists an elements x ∈T such that a = a𝛼x𝛽a, for all 𝛼, 𝛽 ∈Γ. This 

implies that a is regular and hence T is regular. 

Theorem 4.16. If,for every quasi-ternary 𝚪-ideal Q of T, Q𝚪Q𝚪Q = Q,then T is a regular ternary 𝚪-

semiring. 

Proof: If R is a minimal right ternary Γ-ideal, M a minimal lateral ternary Γ-ideal, and L a minimal left ternary 

Γ-ideal of T, then, byTheorem 4.9, it follows that R∩M∩L is a quasi-ternary Γ-ideal of T. Now, by hypothesis, 

R∩M∩L= [(R∩M∩L)Γ]
2
(R∩M∩L ) =(R∩M∩L)Γ(R∩M∩L)Γ(R∩M∩L)⊆RΓMΓL. 

Again, clearly RΓMΓL⊆R∩M∩L.So,R∩M∩L=RΓMΓL and hence, by Theorem 4.15, T is a regular ternary Γ-

semiring. 

Definition 4.17: A ternary Γ-subsemiring B of a ternary Γ-semiring T is called a bi-ternary 𝚪-ideal of T if 

BΓTΓBΓTB⊆B. 

Lemma 4.18: Every quasi-ternary 𝚪-ideal of a ternary 𝚪-semiring T is a bi-ternary 𝚪-ideal of T. 

Proof. Let Q be a quasi-ternary Γ-ideal of T. Then we see thatQΓTΓQΓTΓQ⊆QΓ(TΓTΓT)ΓT ⊆QΓTΓT, 

QΓTΓQΓTΓQ⊆ TΓ(TΓTΓT)ΓQ ⊆TΓTΓQ, andQΓTΓQΓTΓQ⊆TΓTΓQΓTΓT.  Again {0}⊆TΓQΓT.  So 

,QΓTΓQΓTΓQ ⊆ TΓQΓT+TΓTΓQΓTΓT. Consequently, it follows that QΓTΓQΓTΓQ ⊆ QΓTΓT∩(TΓQΓT+ 

TΓTΓQΓTΓT)∩ TΓTΓQ⊆Q and hence Q is a bi-ternary Γ-ideal of T. 

Note 4.19: The converse of Lemma 4.15 does not hold, in general, that is, a bi-ternary Γ-ideal of a ternary Γ-

semiring T may not be a quasi-ternary Γ-ideal of T. 

Remark 4.20: Since every left, right, and lateral ternary Γ-ideal of T is a quasi-ternary Γ-ideal of T, it follows 

that every left, right, and lateral ternary Γ-ideal of T is a bi-ternary Γ-ideal of T, but the converse is not true, in 

general. 

Theorem 4.21: If B is a bi-ternary Γ-ideal of a ternary Γ-semiring T and S is a ternary Γ-subsemiring of T, 

then B∩S is a bi-ternary Γ-ideal of T. 

Lemma 4.22: If B is a bi-ternary Γ-ideal of a ternary Γ-semiring T and S1, S2 are two ternary Γ-

subsemirings of T, then BΓS1ΓS2, S1ΓBΓS2, and S1ΓS2ΓB are bi-ternary Γ-ideals of T. 

Corollary 4.23: If B1, B2, andB3 are three bi-ternary Γ-ideals of a ternary Γ-semiring T, then B1ΓB2ΓB3 is a 

bi-ternary Γ-ideal of T. 

Corollary 4.24: If Q1, Q2, andQ3 are three quasi-ternary Γ-ideals of a ternary Γ-semiring T, then 

Q1ΓQ2ΓQ3 is a bi-ternary Γ-ideal of T. 

In general, if B is a bi-ternary Γ-ideal of a ternary Γ-semiring T and C is a bi-ternary Γ-ideal of B, 

thenC is not a bi-ternary Γ-ideal of T. But, in particular, we have the following result. 
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Theorem 4.25. Let B be a bi-ternary Γ-ideal of a ternary Γ-semiring T, andC a bi-ternary Γ-ideal of B such 

that CΓCΓC =C. Then C is a bi-ternary Γ-ideal of T. 

Proof: Since B is a bi-ternary Γ-ideal of T, BΓTΓBΓTΓB⊆B, and since C is a bi-ternary Γ-ideal of B, 

CΓBΓCΓBΓC⊆C.Therefore, 

CΓTΓCΓTΓC=(CΓCΓC)ΓTΓCΓTΓ(CΓCΓC)  

=CΓCΓ(CΓTΓCΓTΓC)ΓCΓC 

⊆CΓCΓ(BΓTΓBΓTΓB)ΓCΓC⊆CΓCΓBΓCΓC  

=CΓCΓBΓCΓ(CΓCΓC) ⊆ CΓ(CΓBΓCΓBΓC)ΓC⊆CΓCΓC = C. 

Definition 4.26 :. An element a of a ternary Γ-semiring Tis said to be Γ-invertiblein Tif there exists an element 

b in T (called the ternary 𝚪-semiring-inverse of a) such that aΓbΓt = bΓaΓt = tΓaΓb = tΓbΓa = t for all t ∈T. 

Definition 4.27 :. A ternary Γ-semiring (Γ-ring) T with 2S   is said to be a ternarydivision 𝚪-semiring(𝚪-

ring, resp.) if every non-zero element of Tis Γ-invertible. 

Theorem 4.28: A ternary Γ-semiringThas no nonzero proper bi-ternary Γ-ideals if T is a ternary division 

Γ-semiring. 

Proof: Let T be a ternary division Γ-semiring and B be a nonzero bi-ternary Γ-ideal of T.  

Let a(≠ 0) ∈ B.  Then there exists s(≠0)∈T such that a𝛼s𝛽x=s𝛼a𝛽x=x𝛼a𝛽s=x𝛼s𝛽a=x for all x ∈ T, 𝛼, 𝛽 ∈Γ. 

This implies that T =BΓTΓT = TΓTΓB.  

Now,     T = BΓTΓT = BΓ(TΓTΓB)Γ(TΓTΓB)  

         = BΓ(BΓTΓT)Γ(TΓBΓT)Γ(TΓTΓB)ΓB  

                              ⊆ BΓ(BΓTΓBΓTΓB)ΓB⊆BΓBΓB ⊆ B.  

Consequently, B = T and hence T has no nonzero proper bi-ternary Γ-ideals. 

The converse of Theorem 4.28 is not true, in general. However, in particular, we havethe following result. 

Theorem 4.29:A ternary 𝚪-semiringT is a ternary division 𝚪-semiring if T is MC and has nononzero 

proper bi-ternary 𝚪-ideals. 

Proof: Let T be an MC ternary Γ-semiring and has no nonzero proper bi-ternary Γ-ideals.  

Let a(≠ 0)∈T. Then, aΓTΓx and xΓaΓT are two bi-ternary Γ-ideals of T for anynonzero x∈T. Since T is MC, it is 

ZDF. So, aΓTΓx ≠{0}and xΓaΓT≠{0}.  

By hypothesis, we have aΓTΓx = xΓaΓT = T and hence for x (≠0)∈T, there exist b,c ∈T, 𝛼, 𝛽 ∈Γ, such that 

aαbβx = xαaβc = x.  Let y be any element of T.  

Then there exist d, e ∈T, γ, δ ∈ Γ such that aγdδx = xγaδe = y.   

Thus, a𝛼b𝛽y = a𝛼b(xγaδe) = (a𝛼b𝛽x)𝛾a𝛿e = x𝛾a𝛿e = y for all y ∈T, 𝛼, 𝛽, 𝛾, 𝛿 ∈Γ.   

Now, (yαaβb)γaδb = yα(aβbγa)δb = yαaδb.  

Since T is MC, we find that yαa𝛽b = y for all y ∈ T, 𝛼, 𝛽 ∈ Γ.  

Similarly, we can show that b𝛼a𝛽y= y𝛼b𝛽a= y for all y ∈T, 𝛼, 𝛽 ∈ Γ.  

Thus, we find that a𝛼b𝛽y= y𝛼a𝛽b=b𝛼a𝛽y= y𝛼b𝛽a= y for all y∈T, 𝛼, 𝛽 ∈Γ and hence T is a ternary division Γ-

semiring. 

Theorem 4.30: Let X, Y, and Z be three ternary Γ-sub semirings of a ternary Γ-semiring T and  

B = XΓYΓZ. Then, B is a bi-ternary Γ-ideal if at least one of X, Y, Z is a right, a lateral, or a left ternary 

 Γ-ideal of T. 

Proof: Let B = XΓYΓZ. SupposeX is a right ternary Γ-ideal of T.  

Then we find that (XΓYΓZ)ΓTΓ(XΓYΓZ)ΓTΓ(XΓYΓZ) 

= XΓ(TΓTΓT)Γ(TΓTΓT)ΓTΓTΓYΓZ⊆XΓ(TΓTΓT)ΓTΓYΓZ⊆(XΓTΓT)ΓYΓZ⊆XΓYΓZ. 

Consequently, B=XΓYΓZ is a bi- ternary Γ-ideal of T.  Now suppose that Y is a right ternary Γ-ideal of T.  

Then (XΓYΓZ)ΓTΓ(XΓYΓZ)ΓTΓ(XΓYΓZ)⊆XΓYΓ(TΓTΓT)Γ(TΓTΓT)ΓTΓTΓZ ⊆ XΓYΓ(TΓTΓT)ΓTΓZ ⊆ 
XΓYΓTΓTΓZ ⊆ XΓYΓZ.  This implies that B=XΓYΓZ is a bi-ternary Γ-ideal of T.   

Again, if Z is a right ternary Γ-ideal of T, then 

(XΓYΓZ)ΓTΓ(XΓYΓZ)ΓTΓ(XΓYΓZ)⊆(XΓYΓZ)Γ(TΓTΓT)Γ(TΓTΓT)ΓTΓT⊆(XΓYΓZ)Γ(TΓTΓT)ΓT 

⊆XΓYΓ(ZΓTΓT)⊆XΓYΓZ.  Consequently, B=XΓYΓZ is a bi-ternary Γ-ideal of T. 

Similar proofs can be given for other cases. 

Corollary 4.31: A ternary 𝚪-subsemiring B of T is a bi-ternary 𝚪-ideal of T if B = R𝚪M𝚪L, where R is 

aright ternary 𝚪-ideal, M is a lateral ternary 𝚪-ideal, and L is a left ternary 𝚪-ideal of T. 
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Theorem 4.32: Let B be a ternary 𝚪-subsemiring of a ternary 𝚪-semiring T. If R is a right ternary 𝚪-ideal, 

M is a lateral ternary 𝚪-ideal, and L is a left ternary 𝚪-ideal of T such that R𝚪M𝚪L ⊆ B ⊆ R∩M∩L, then 

Bis a bi-ternary 𝚪-ideal of T. 

Proof:  BΓTΓBΓTΓB ⊆ (R∩M∩L)ΓTΓ(R∩M∩L)ΓTΓ(R∩M∩L)  

                                   ⊆ RΓ(TΓMΓT)ΓL ⊆ RΓMΓL ⊆ B. 

The following theorem gives a characterization of a regular ternary semiring S in termsof bi-ternary Γ-

ideal and quasi-ternary Γ-ideal of T. 

Theorem 4.33: The following conditions in a ternary 𝚪-semiring T are equivalent: 

(i) T is regular, 

(ii) for every bi-ternary 𝚪-ideal B of T, B𝚪T𝚪B𝚪T𝚪B = B, 

(iii) for every quasi-ternary 𝚪-ideal Q of T, Q𝚪T𝚪Q𝚪T𝚪Q = Q. 

Proof:(i)⇒(ii). Suppose Tis regular. Let B be a bi-ternary Γ-ideal of T. Let b ∈ B. Then thereexists x ∈  T, such 

that a = a𝛼x𝛽a for all 𝛼, 𝛽∈Γ. This implies that a = a𝛼x𝛽a𝛾x𝛿a ∈  BΓTΓBΓTΓB. So we find thatB 

⊆BΓTΓBΓTΓB. Again, since B is a bi-ternary Γ-ideal of T, BΓTΓBΓTΓB⊆B. Consequently, BΓTΓBΓTΓB= B. 

Clearly, (ii)⇒(iii), by using Lemma 4.18. 

(iii)⇒(i). Suppose (iii) holds. Let R be a right ternary Γ-ideal,M a lateral ternary Γ-ideal, and L a left ternary Γ-

ideal of T. Then, Q = R∩M∩L is a quasi-ternary Γ-ideal of T, by Theorem 4.8. By hypothesis, QΓTΓQΓTQ = 

Q.Now, R∩M∩L = Q = QΓTΓQΓTQ⊆ RΓTΓMΓTΓL ⊆ RΓMΓL. Again, clearly RΓMΓL⊆ R∩M∩L.So,R∩M∩L 

= RΓMΓL, and hence, by Theorem 4.15, Tis a regular ternary Γ-semiring. 

Theorem 4.34:A ternary 𝚪-sub semiring B of a regular ternary 𝚪-semiringT is a bi-ternary 𝚪-ideal of T 

ifand only if B = B𝚪T𝚪B. 

Proof:If B = BΓTΓB, then it is easy to see that B is a bi-ternary Γ-ideal of T. 

Conversely, suppose that B is a bi-ternary Γ-ideal of a regular ternary Γ-semiring T. Let b ∈B, thenthere 

exists x ∈Tsuch that b = b𝛼x𝛽b, for 𝛼, 𝛽∈Γ. This implies that  

b ∈BΓTΓB and hence B ⊆BΓTΓB. Again,BΓTΓB⊆BΓTΓBΓTΓB ⊆B. Thus we find that  

B = BΓTΓB. 

Theorem 4.35:A ternary 𝚪-sub semiring B of a regular ternary 𝚪-semiringT is a bi-ternary 𝚪-ideal of T 

ifand only if B is a quasi-ternary 𝚪-ideal of T. 

Proof: Let T be a regular ternary Γ-semiring. If B is a quasi-ternary Γ-ideal of T, then, from Lemma4.18, it 

follows that B is a bi-ternary Γ-ideal of T. 

Conversely, let B be a bi-ternary Γ-ideal of T. From Theorem 4.15, we find that if T is a regular ternary 

Γ-semiring, then R∩M∩L = RΓMΓL for any right ternary Γ-ideal R, any lateral ternary Γ-ideal M, andany left 

ternary Γ-ideal L. 

Now, 

BΓTΓT⋂(TΓBΓT+TΓTΓBΓTΓT)⋂TΓTΓB 

= BΓTΓTΓ(TΓBΓT +TΓTΓBΓTΓT)ΓTΓTΓB 

= BΓ(TΓTΓT)ΓBΓ(TΓTΓT)ΓB +BΓ(TΓTΓT)ΓTΓBΓ(TΓTΓT)ΓTΓB 

  ⊆BΓTΓBΓTΓB +BΓTΓTΓBΓTΓTΓB 

  ⊆B +BΓTΓB (since B is a bi-ternary Γ-ideal) = B +B (by Theorem 4.34) 

 ⊆B. 

Consequently, B is a quasi-ternary Γ-ideal of T. 

In view of Lemma 4.22 and Theorem 4.35, we have the following result. 

Theorem 4.36:If Q1and Q2are two ternary 𝚪-sub semiring and Q3is a bi-ternary 𝚪-ideal of a regular 

ternary 𝚪-semiring T, then Q1𝚪Q2𝚪Q3, Q1𝚪Q3𝚪Q2, and Q3𝚪Q1𝚪Q2 are quasi-ternary 𝚪-ideals of T. 

In view of Corollary 4.24 and Theorem 4.36, we have the following result. 

Corollary 4.37:For any three quasi-ternary 𝚪-ideals Q1, Q2, Q3of a regular ternary  

𝚪-semiring T, Q1𝚪Q2𝚪Q3 is a quasi-ternary 𝚪-ideal of T. 

Conclusion :  

In this paper mainly we start the study of quasi-ternary Γ-ideals, bi-ternary Γ-ideals in ternary Γ-

semirings.  We characterize those ternary Γ-ideals.  
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