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I.INTRODUCTION

Good and Hughes [3] introduced the notion of bi-ideal and Steinfeld [5] introduced the notion of quasi-
ideal. Sioson [4] studied some properties of quasi-ideals of ternary semigroups. In [1], Dixit and Dewan studied
about the quasi-ideals and bi-ideals of ternary semigroups. Quasi-ideals are generalization of right ideals, lateral
ideals, and left ideals whereas bi-ideals are generalization of quasi-ideals. In [2], we introduced the notion of
ternary semiring. Syam Julius Rajendra , Madhusudhana Rao and Sajani Lavanya [6], introduced the completely
regular ternary T'-ideals in partially ordered ternary T'-semiring. Our main purpose of this paper is to introduce
the notions of quasi-ternary I'-ideal and bi-ternary T-ideal in ternary T'-semirings and study regular ternary T'-
semiring in terms of these two subsystems of ternary I'-semirings.

I1.PRELIMINARIES
Definition 2.1: Let T and T be two additive commutative semigroups. T is said to be a Ternary I'-semiring if

there exist a mapping from T xI'’x T xI'x T to T which maps (x,, a, X,, £, X;) = [xaXx,fx,]satisfying
the conditions :

i) [[aabst]yd se] = [aafbstyd] J] = [aabslcydde]]

ii)[(a + b)acAtl] = [aacAt] + [bacst]

iii) [aa (b + c)pd] = [aabpl] + [aac]

iv) [aabplc + d)] = [aabst] + [aabAt] forall a, b, c,de Tand «, 4, », JET.

Definition 2.2: An element Oof a ternary I'-semiring T is said to be an absorbingzero of T provided 0 + x = X
=x+ 0and 0cab = aa0pb = aab0 =0V a,b,x € Tand &, FET.

Note 2.3 :Throughout this paper, T will always denote a ternary I'-semiring with zero and unless otherwise
stated a ternary ['-semiring means a ternary ['-semiring with zero.

Definition 2.4: Let T be ternary I'-semiring. A non empty subset ‘S’ is said to be a ternary subI'-semiring of T
if Sisan additive subsemigroup of T and aabste S forall a,b,ce S and «, FeT.

Note 2.5 : A non empty subset S of a ternary I'-semiring T is a ternary subI'-semiring if and only if S+ S c S
and SI'STS < S.

I1l. TERNARY I'-IDEAL
Definition 3.1 :A ternary I'-semiring T is said to be zero divisor free (ZDF) if for a, b, ¢c € T,a, F€T’, [aabst]
=0impliesthata=0orb=0o0rc=0.
Definition 3.2 :A ternary I'-semiring T is said to be multiplicatively left I'-cancellative (MLC) if al'bI'x = aI'bly
implies that x =y for all a, b, x, ye T.

Definition 3.3: A ternary I'-semiring T is said to be multiplicatively laterally -cancellative (MLLC) if
alx'b = alr'yr'b implies that x =y for all a, b, x, ye T.
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Definition 3.4 :A ternary TI'-semiring T is said to be multiplicatively right I'-cancellative (MRC) if
xI'al'b = yrar’b implies that x =y for all a, b, x, ye T.

Definition 3.5 : A ternary I'-semiring T is said to be multiplicatively I'-cancellative (MC) if it is multiplicative
left T'-cancellative (MLC), multiplicative right I'-cancellative (MRC) and multiplicative laterally I'-cancellative
(MLLC).

Theorem 3.6: A multiplicative I'-cancellative ternary I'-semiring T is zero divisor free.

Proof: Let T be a multiplicative I'-cancellative ternary I'-semiring and al’'bI’c= 0 for a; b; ceT.Suppose b # 0
and c# 0. Then by right I'-cancellativity, al'bI'c= 0 = OT'bI'cimplies that a= 0. Similarly, we can show thatb =0
ifaz0andc#0orc=0ifa#0andb#0. Consequently, T is zero divisor free.

Definition 3.9 : A nonempty subset A of a ternary I'-semiring T is said to be left ternary I'-ideal of T if
(1)a,beAimpliesa+beA. (2)b,ce T,ae A, « Fel implies bacsa € A.

Note 3.10 : A nonempty subset A of a ternary I'-semiring T is a left ternaryl'-ideal of T if and only if A is
additive subsemigroup of T and TTTT'A < A.

Definition 3.11 : A nonempty subset of a ternary I'-semiring T is said to be a lateral ternary I'-ideal of T if (1)
a,beA=a+beA (2)b,ce T,ac A a fel'=baast e A

Note 3.12: A nonempty subset of A of a ternary I'-semiring T is a lateral ternary I'-ideal of T if and only if A is
additive subsemigroup of T and TTAT'T < A.

Definition 3.13 : A nonempty subset A of a ternary I"-semiring T is a right ternary I'-ideal of T if (1) a, b € A
=a+beA. (2)b,ce T,ae A @ fel'=aabst € A

Note 3.14: A nonempty subset A of a ternary I'-semiring T is a right ternary I'-ideal of T if and only if A is
additive subsemigroup of T and ATTIT < A.

Definition 3.15: A nonempty subset A of a ternary I'-semiring T is said to be ternary I'-idealof T if
(a,beA=a+beA
(2)b,ce T,a € A, a fel=bacfac A baast € A aabt € A

Note 3.16 : A nonempty subset A of a ternary I'-semiring T is a ternaryl'-ideal of T if and only if it is left
ternaryl -ideal, lateral ternaryl'-ideal and right ternaryl'-ideal of T.

Definition 3.17: A ternary I'-ideal A of a ternary I'-semiring T is said to be a proper ternary I'-ideal of T if Ais
different from T.

Definition 3.18: A left ternary I'-ideal A of a ternary I'-semiring T is said to be the principal left ternary I-ideal
generated by a if A is a left ternary I'-ideal generated by {a} forsome ae T.Itis denoted by L (a) or <a >;.

Theorem 3.19 : If T is a ternary I'-semiring and a € T then
[ L] - .
<a>= {> ratpa+na:r,teT,a, p el andnez, . Where x denotes a finite sumand z," is
Lin

J

the set of all positive integer with zero.

[ .
Proof :LetA= 4% ratpa+na:r,teT,a, p el andnez, |. Leta beA
Uizt J

a, be A. a= Z ratp, ,a+na and b = Z ret,B,a+na forr, t, 1, t4¢ T, «,,8,,«,, 8, T and

n€z,”. Nowa+b=> ratp a+na +> ra .t a+na=a+bisafinite sum.
Therefore a + be A and hence A is additive subsemigroup of T. For t;,t,€ T and ae A.
Then tiarpa =tiat(Y rat pa+na)=> ratp (tat,pa)+n(tat,fa) €A

Therefore tyot,6a €A and hence A is a left ternary I'-ideal of T.

Let L be a left ternary I'-ideal of T containing a.

Letre A.Thenr= > ratp, ,a+naforr.teT, a,f, elnez, .
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Ifr=> retp a+nacel.
Therefore A €L and hence A is a smallest left ternary I'-ideal containing a.

Therefore A=1L(a) = 4(2 ratpa+na:r,teT,a,pf, el andne ZO+]} .
Lz J

Note 3.20 : if T is ternary I'-semiring and ac T then L(@)=T ‘I'T ‘T'a + na .

Definition 3.21 : A nonempty subset of a ternary I'-semiring T is said to be a lateral ternary I'-ideal of T if
(1) a,b € Alimplies a + be A.
(2)b,ce T,a F€T,aec Aimpliesbaaste A.

Note 3.22: A nonempty subset of A of a ternary I'-semiring T is a lateral ternary I'-ideal of T if and only if A is
additive subsemigroup of T, TTAI'T < A.

Definition 3.23 : A lateral ternary I'-ideal A of a ternary I'-semiring T is said to be the principal lateral ternary
T-ideal generated by a if A is a lateral ternary I'-ideal generated by {a} for some ae T. It is denoted by M (a)

(or) <a>,
Theorem 3.24 : If T is a ternary I'-semiring and ae T then

[ n
| riaiaﬂitiJrz ujajvjﬂjayjpjdjqurna:ri,ti,ujvjqujeT,
j=1

<a>m:{z

| i=1

|

\

t, and X denotes a
| ozi,ﬂl,oz],,,BJ,;/J,éjel"andnezo+ J

finite sum and z_~ is the set of all positive integer with zero.

Definition 3.25 : A nonempty subset A of a ternary I'-semiring T is a right ternary I-idealof T if
(1) a,b € Aimplies a + be A.
(2)b,ce T,a FeT,ac Aimpliesaabste A.

Note 3.26 : A nonempty subset A of a ternary I'-semiring T is a right ternary I'-ideal of T if and only if A is
additive subsemigroup of T, ATTI'T < A.
Definition 3.27 : A right ternary I'-ideal A of a ternary I'-semiring T is said to be a principal right ternary I'-
ideal generated by a if A is a right PO-ternary I'-ideal generated by {a} for some ae T. Itis denoted by R (a)
(or) <a>,.
Theorem 3.28 : If T is a ternary I'-semiring and ae T then
" N . .

<a> ={% aarpt+na:r,teT,a,f el andnez ;, = denotes a finite sum and z," is the set

Uiz J

of all positive integer with zero.
Definition 3.29 : A nonempty subset A of a ternary I'-semiring T is a two sided ternary T'-ideal of T if

(1) a,be Aimpliesa+be A

(2) b,ce T,a, F€T,ac Aimpliesbacsac A, aabsts A.
Note 3.30: A nonempty subset A of a ternary I'-semiring T is a two sided ternary I'-ideal of T if and only if it is
both a left ternary I'-ideal and a right ternary I'-ideal of T.
Definition 3.31 : A two sided ternary I'-ideal A of a ternary I'-semiring T is said to be the principal two sided
ternary I'-ideal provided A is a two sided ternary T'-ideal generated by {a} for some ae T. Itis denoted by T

(a) (or) <a>:.
Theorem 3.32 : If T is a ternary I'-semiring and ae T then

( " " , )
<ca>=|J res,pa+> ac t,fu, +> lhampay pdd +na: and s denotes
t Z j=1 k=1
= |
l i J

s t,um o, p g, eT,a,.8.a,.8,,a.8.,7,5, T andneZ N

i i 0

a finite sum and z " is the set of all positive integer with zero.
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Definition 3.33 : A nonempty subset A of a ternary I'-semiring T is said to be ternary I-ideal of T if
(1) a,b € Alimplies a + be A
(2)b,c e T,a f€T,aec Aimpliesbacsac A baaste A, aabste A.

Note 3.34 : A nonempty subset A of a ternary I'-semiring T is a ternary ['-ideal of T if and only if it is left
ternary I'-ideal, lateral ternary I'-ideal and right ternary I'-ideal of T.

Definition 3.35 : A ternary I'-ideal A of a ternary I'-semiring T is said to be a principal ternary I'-ideal
provided A is aternary I'-ideal generated by {a} for some ae T. Itis denoted by J (a) (or) <a>.

Theorem 3.36 : If T is a ternary I'-semiring and ae T then

<a>={ > opagfa+y aa;rfis, +> taafu +> viawpayxdsy +na
k=1

i=1 j=1 1=1
P AL TS U v WLy €T e Bra Ba Boe, . By, 8, el neZ '}

Where 3 denotes a finite sum and z " is the set of all positive integer with zero.

4.Quasi-ternary I'-ideal and bi-ternary I-ideal in ternary I'-semirings

Definition 4.1: An additivesubsemigroup Q ofa ternaryI'-semiring T is calleda quasi-ternary T'-ideal of T if
QITITN(TTQIT+TITIQITIT)NTITIQEQ.

Note 4.2: Every quasi-ternary I'-ideal of a ternary T'-semiring T is a ternary I'-sub semiring of T.

Lemma 4.3:Every left, right, and lateral ternary I'-ideal of a ternary I'-semiring T is a quasi-ternary I'-
ideal of T.

Proof: Assume that Q is a left ternary I'-ideal of T. Then TTTIQ € Q, but TTTIQ N (TTQI'T U TITIQITIT]
N QI'TIT € TITIrQ € Q. Hence Q is a quasi-ternary I'-ideal of T. Similarly we can prove that the remaining
parts.

Remark 4.4: The converse of Lemma 4.3 is not true, in general, that is, a quasi-ternary I'-ideal may not be a left,
aright, or a lateral ternary I'-ideal of T. This follows from the following example.

Example 4.5: Let T =M , (z,) betheternaryl'-semiringofthesetofall2x2squarematrices over z , the set of all

nonpositive integers and I' be the set of all 2x2 square matrices over Z = , the set of all negative integers. Let

([fa 0) ]
Q=1 hO OJ rae Z, }.Then we can easilyverify that Q is a quasi-ternary T'-ideal of T, butQ is not a right

L J

ternary I'-ideal, a lateral ternary I'-ideal, or a left ternary I'-ideal of T.

Theorem 4.6:1f Q is a quasi-ternary I-ideal of a ternary I'-semiring T and S is a ternary I'-sub semiring of
T, then QNS is a quasi-ternary I-ideal of S.

Proof: Assume that Q; = QNS # @. Since Q;< Q, it follows that

SI'STQ; N SI'Q.I'S N Q,I'SI'S € TITIQ N TIQI'T N QI'TIT € Q.

Since Q:C S and S is a ternary I'-subsmigroup of T. We have STST'Q; N STQ,I'S N Q,I'STS € S.
Then STSI'Q; N SI'Q.I'S N Q.I'ST'S <Q;,.Therefore Q, is quasi-ternary I'-ideal of S.

Lemma 4.7. The intersection of arbitrary collection of quasi-ternary I'-ideals of a ternary I'-semiring T is
a quasi-ternary I'-ideal of T.

Proof: Let {Q }a X be a family of -ternary I'-ideals of T and let Q = ﬂ Q,

ael
Assume that Q is not empty. Since Q is a quasi-ternary I'-ideal for each o € A
Then Q.I'TIT N (TFQIT + TTTIQTIT) N (TTTrQ,]< Q, for each a€ A.
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Now for each @€ ATTTIQ=TITr(() Q. )= (1 TTTICQ, c TrTrQ.,

ael ael

TrQrT=Tr([) Q. )rT= () TIrQ,I'T c TrQ.IT,

ael ael

TITTQITIT =TrTr(() Q. )ITrT= () TITTQ,ITIT ¢ TITIQ.ITIT, and

ael ael

TrTrQ=TrTr(() Q. )= () Q.ITIT c Q. ITIT.

aeA aeA

Then TTTIQ N (TTQIT U TITTQITIT)N QITIT
C TITIQ.N(TTQLT U TTTIQLITIT)N QuI'TIT S Q. for each z€A.

Therefore TTTTQ N (TTQIT + TITIQITIT N QITITc(] Q. =Q.

ael

Therefore Q= ﬂ Q, . isaquasi-ternary I'-ideal of T.

ael

Theorem 4.8:An additive subsemigroup Q of a ternary I'-semiring T is a quasi-ternary I'-ideal of T if Q is
the intersection of a right ternary I'-ideal, a lateral ternary I'-ideal, and a left ternary I'- ideal of T.

Proof: Let R be a right ternary I'-ideal, M be a lateral ternary I'-ideal, and L be a left ternary I'-ideal of T such
that Q=RNMNL. Then, by Lemmas 4.3 and 4.7, we find that Q is a quasi-ternary I'-ideal of T.

The converse of Theorem 4.8 does not hold, in general. But, in particular, we have the following result.

Theorem 4.9: AnadditivesubsemigroupQ ofaternaryl’-semiring T isaminimalquasi-ternary I'-ideal of T if
and only if Q is the intersection of a minimal right ternary I'-ideal, a minimal lateral ternary I'-ideal, and
a minimal left ternary I'-ideal of T.
Proof: Let R be a minimal right ternary I'-ideal, M a minimal lateral ternary T'-ideal, and L a minimal left
ternary I'-ideal of T such that Q = RNMNL.
Then, by Theorem 4.8, it follows that Q is a quasi-ternary I'-ideal of T.
Now it remains to show that Q is minimal.
If possible, let Q < Q be any other quasi-ternary I'-ideal of T.
Then, QI'TI'T is a right ternary I'-ideal of T and QI'TI'T € QI'TI'T € RITIT € R.
Since R is a minimal right ternary I'-ideal of T, we have QI'TI'T = R.
Similarly, we can prove that TTQI'T + TTTTQI'TIT =M and TTTIQ = L.
Therefore, Q = RAMNL=QI'TITN(TTQI T+TITIQI'TIT)NTI'TIQ S Q.
Consequently, Q= Q and hence Q is a minimal quasi-ternary I'-ideal of T.
Conversely, let Q be a minimal quasi-ternary I'-ideal of T.
Then, QCTITN(TTQIT+TITIQITIT)NTITIQEQ. Letq € Q.
Then, gT'TTT is a right ternary T-ideal, (TCQI'T+TTTQI'TI'T) is a lateral ternary I'-ideal, and TT'TIq is a left
ternary I'-ideal of T.
Therefore, by Theorem 4.8, qITITN(TrqI T+TITrQITIT)NTITIq is a quasi-ternary T-ideal of T, and
qrTITN(TIgrT+TITIQITIT)NTITIgEQITITN(TIQIT+TITIQITIT)N TITIQEQ.
Since Q is a minimal quasi-ternary I'-ideal of T, we have
qrTTTA(TTQI T+TITIQITIT)NTI T = Q.
Now it remains to show that qI'TI'T, (TCQIT+TITIQITIT), and TI'Trq are, respectively, a minimal right, a
minimal lateral, and a minimal left ternary I'-ideal of T.
If possible, let R be any right ternary I'-ideal of T such that R € qI'TI'T. Then RTTIT S R S qI'TI'T.
Now, RTTTTN(TIqT+TITIQITIT)NTITIq € qTTITA(TIQIT+TITIQITIT)NTITIG = Q.
Thus, by minimality of Q, we find that Q = RTTTTN(TIqI' T+TI'Trqr TTT)NTITTQ.
This implies that Q € RI'TI'T. Again, gI'TTT € QI'TIT € (RICTIT)ITIT S RITIT.
Thus, gI'TTT = RITI'T € R and hence R = qI'TT'T. Consequently, qI'TI'T is a minimal right ternary I'-ideal of
T. Similarly, we can prove that (TTQIT+TITIQITIT) is a minimal lateral ternary I'-ideal and TI'TIq is a
minimal left ternary I'-ideal of T.
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Theorem 4.10: Any minimal lateral ternary I'-ideal of a ternary I'-semiring T is a minimal ternary I'-ideal
of T.

Proof: Let M be a minimal lateral ternaryl'-ideal of T. We will show that M is a minimal ternary I'-ideal of T.
Letm € M. Then, TTmIT+TITImITIT is a lateral ternary I'-ideal of T and TCmIT+TTTIMITITSTIMI T+
TITTTMITIT € M. Since M is minimal, we have M = TTMI'T + TTTTMITIT.

Now, MITIT = (TTMIT + TITTMITIT)ITIT= (TTMIT)[TIT+ (TTTTMITIT)ITIT STIMIT +
TITTTMITIT € M and TTTTM =I'TTT (TTTTMITIT)=[TIT(TTMIT)+ I'TIT (TTTTMITIT)STIMIT +
TITIMITIT € M. This implies that M is both right ternary I'-ideal and left ternary I'-ideal of T. Consequently,
M is aternary I'-ideal of T. Now it remains to show that M is a minimal ternary I'-ideal of T. If possible, let M be
a ternary T'-ideal of T such that MSM. SinceM is a ternary I'-ideal of T, it is a lateral ternary I'-ideal of T.

By hypothesis, we have M=M. Consequently, M is a minimal ternary I'-ideal of T.

Corollary 4.11. Any minimal quasi-ternary I-ideal of a ternary I'-semiring T is contained in a minimal
ternary I'-ideal of T.

Proof: Let Q be a minimal quasi-ternary I'-ideal of T. Then, by theorem 4.9, Q=RNMNL, where R is a minimal
right ternary I'-ideal, M a minimal lateral ternary T-ideal, and L a minimal left ternary I'-ideal of T. Clearly,
QCSM. By theorem 4.10, it follows that M is a minimal ternary I'-ideal of T.

Theorem 4.12:Let x be an idempotent element of a ternary I'-semiring T, that is, xI'xI'x=x. IfR is a right
ternary I'-ideal, M a lateral ternary I'-ideal, and L a left ternary I'-ideal of T, then RI'XI'X, XIX'MTI'XTX,
and xI'xI'Lare quasi-ternary I'-ideals of T.

Proof: To show RI'xI'x, XI'XI'MI'XI', andxI'xI'Lare quasi-ternary I'-ideals of T, it is sufficient to show that
RIXCx =R N (TOXTT+TITOXCTIT) N TITTX,
XICXTMIXEX = XI'TTTNAMNTITTX,
XOXTL= x[TITN (TOXTT+TTTOXTTIT)NL.

For the first case, clearly we see that RTXI'XSRNTITIX. Leta € RNTITIX.

Then,a € Rand a € TT'TIx. Now, a € TTTIx impliesthat a = >* sa t, 4, x forsome sit€ Tande |, B, € T .

i=1

Therefore, aax = (3 s,a t, B X XK= s,a t, B, (xaxfx)=) st fx=a
i=1 i=1 i=1
Thus, it follows that aeRT'xI'x and hence RI'xI'x= RNTITIX.
Again, a = aaxXeTIXI'T and OETITIXITIT. So we find that a €(TOXIT+TITIXTTIT).
Thus, RNTTTIx € (TOXTT+TTTIXTTIT). Consequently, R[XIx = R N (TTXTT+TTTIXITIT) N TITTX.
For the second case, We see that XPCXTMIXIXEXT TTTNMNTTTIX.
Leta € XTTTTNMNTITIX. Then,a € XI'TI'T,a € M, and a € TI'TTx.

Now, a € xI'TTT and a € TITIx = a =) xa;spt =) u,a,v,p xfor some sytu,ve T
i=1 j=1
anda,, B,,a,, B, € I . Therefore,

Xaxpgapxdx = xax(y. xa s, .t )Xo = (3 (xaxpx)a s Bt )yxdk

i=1 i=1

=(3 xa s, pt )K= (D uja v, B X XK= ua v B (xyx5X) =) ua v, B x =a
i=1 j=1 j=1 j=1

Consequently, a € XPXI'MTI'xI'x and hence XIXT'MI'XI'x = xXTTTTAMNTITIX.

The third case can be proved in the same way as in the first case.

Definition 4.13 :An element a of a ternary I'-semiring. T is said to be regular if there exist xe T, &, €I such that
aaxpfa = a.

Definition 4.14 : A ternary I'-semiring T is said to be regular ternary I'-semiring provided every element is
regular.
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Theorem 4.15: The following conditions in a ternary I'-semiring T are equivalent:

(i) T is regular;

(if) For any right ternary T'-ideal R, lateral ternaryl-ideal M and left ternaryIl-ideal L of T,
RICMTL = RAMNL;

(iii) For a, b, ¢ €T, <a>I'<b>,I'<c> =<a>, N <b>, N<c>y;

(iv) For a €T, <a>TI'<a>,I'<a> = <a> N <a>, N <a>,

Proof: (i) == (ii). Suppose T is a regular ternary I'-semiring.

Let R, M and L be a right ternary I'-ideal, a lateral ternary I'-ideal and a left ternary I'-ideal of T respectively.
Then clearly, RTMI'L € RNM NL.Now for a€ RNM NL, we have a = aaxsa for some xeT, @, FEl. This
implies that a = aaxfa = (aaxsa)(xaasx) I aaxfa)eERTMIL. Thus we have RNM NLERI'MI'L. So we find
that RTMI'L = RNM NL.

Clearly, (ii) = (iii) and (iii) = (iv).

To complete the proof, it remains to show that (iv) = (i).

Let a€ T. Clearly, ae<a>, N <b>, N <c>| = <a>I'<b>,I'<c>,.

Then we have,a € (al'TI'T + na)['(Tral'T + TTTralTI'T + na)[(TT'Tla + na) € al'Tla.

So we find that a € al'TT'a and hence there exists an elements x €T such that a = aaxsa, for all @; F€T. This
implies that a is regular and hence T is regular.

Theorem 4.16. If,for every quasi-ternary I'-ideal Q of T, QrQrQ = Q,then T is a regular ternary I'-
semiring.

Proof: If R is a minimal right ternary I'-ideal, M a minimal lateral ternary I'-ideal, and L a minimal left ternary
I'-ideal of T, then, byTheorem 4.9, it follows that RNMNL is a quasi-ternary I'-ideal of T. Now, by hypothesis,
RNMNL= [(RNMNL)[JARNMNL ) = RNMNL)I(RNAMNL)I(RNMNL)SRIMTL.

Again, clearly RTMILERNMNL.So,RNAMNL=RI'MTI'L and hence, by Theorem 4.15, T is a regular ternary T-
semiring.

Definition 4.17: A ternary I'-subsemiring B of a ternary I'-semiring T is called a bi-ternary I'-ideal of T if
BITIBITBCB.

Lemma 4.18: Every quasi-ternary I'-ideal of a ternary I'-semiring T is a bi-ternary I'-ideal of T.

Proof. Let Q be a quasi-ternary T'-ideal of T. Then we see thatQI'TIQI'TIQEQI(TITIT)IT <QI'TIT,
QITrQrTrQce TIr(TITIMIQ C<TITrQ, andQITrQITrQETITIQITIT.  Again {0}<TrQIT. So
,QITIQITrQ < TrQIT+TITIQITIT. Consequently, it follows that QITIQITIQ < QITITN(TIQIT+
TITIQITIT)N TITIQEQ and hence Q is a bi-ternary I'-ideal of T.

Note 4.19: The converse of Lemma 4.15 does not hold, in general, that is, a bi-ternary I'-ideal of a ternary I'-
semiring T may not be a quasi-ternary I'-ideal of T.

Remark 4.20: Since every left, right, and lateral ternary I'-ideal of T is a quasi-ternary I'-ideal of T, it follows
that every left, right, and lateral ternary I'-ideal of T is a bi-ternary T'-ideal of T, but the converse is not true, in
general.

Theorem 4.21: If B is a bi-ternary I'-ideal of a ternary I'-semiring T and S is a ternary I'-subsemiring of T,
then BNS is a bi-ternary I'-ideal of T.

Lemma 4.22: If B is a bi-ternary TI'-ideal of a ternary I'-semiring T and S;, S, are two ternary I-
subsemirings of T, then BI'S;I'S,, S;I'BT'S,, and S;I'S,I'B are bi-ternary I'-ideals of T.

Corollary 4.23: If B, B,, andBj; are three bi-ternary I'-ideals of a ternary I'-semiring T, then B;I'B,I'B; is a
bi-ternary I'-ideal of T.

Corollary 4.24: If Q;, Q,, andQ; are three quasi-ternary TI-ideals of a ternary I'-semiring T, then
Q.I'Q,I'Q; is a bi-ternary I'-ideal of T.

In general, if B is a bi-ternary I'-ideal of a ternary I'-semiring T and C is a bi-ternary I'-ideal of B,
thenC is not a bi-ternary I'-ideal of T. But, in particular, we have the following result.
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Theorem 4.25. Let B be a bi-ternary I'-ideal of a ternary I'-semiring T, andC a bi-ternary I'-ideal of B such
that CI'CI'C =C. Then C is a bi-ternary I'-ideal of T.

Proof: Since B is a bi-ternary I'-ideal of T, B[TIBI'TIBSB, and since C is a bi-ternary I'-ideal of B,
CIBI'CI'BIC<C.Therefore,
CITICITIC=(CTCIC)I TTCI' TT(CI'CI'C)
=CTCr(Crircrircyrcrc
CCICr(BIrTrBr1IrB)rCrccCrcrercrc
=CI'CI'BI'CIT(Crcrc) c cr(crerererc)yrcecCrcerc = C.

Definition 4.26 :. An element a of a ternary I'-semiring Tis said to be I-invertiblein Tif there exists an element
b in T (called the ternary I'-semiring-inverse of a) such that al'bl't = bl'al't = tfal'b = trbl'a =t for all t €T.

Definition 4.27 :. A ternary I'-semiring (T-ring) T with |S | > 2 is said to be a ternarydivision I'-semiring(T-
ring, resp.) if every non-zero element of Tis I'-invertible.

Theorem 4.28: A ternary I'-semiringThas no nonzero proper bi-ternary I'-ideals if T is a ternary division
[-semiring.
Proof: Let T be a ternary division I'-semiring and B be a nonzero bi-ternary I'-ideal of T.
Let a(+ 0) € B. Then there exists s(+0)€T such that aasfx=saafx=xaass=xaspa=x for all x € T, @, f €r.
This implies that T =BI'TI'T = TI'TI'B.
Now, T=BI'TIT =BI(TITIB)[(TTTIB)

=BI(BITIT)I(TCBIT)I(TITIB)I'B

C BI'(BITIrBITIrB)IBSBI'BI'B < B.

Consequently, B =T and hence T has no nonzero proper bi-ternary I'-ideals.

The converse of Theorem 4.28 is not true, in general. However, in particular, we havethe following result.

Theorem 4.29:A ternary T-semiringT is a ternary division I'-semiring if T is MC and has nononzero
proper bi-ternary I'-ideals.

Proof: Let T be an MC ternary I'-semiring and has no nonzero proper bi-ternary I'-ideals.

Let a(+ 0)€T. Then, al'TT'x and xI'al'T are two bi-ternary I'-ideals of T for anynonzero XeT. Since T is MC, it is
ZDF. So, aI'TTx #{0}and xT'al' T={0}.

By hypothesis, we have al'TI'x = x'al'T = T and hence for x (0)€T, there exist b,c €T, &, £ €I, such that
aabfx = xaafc = x. Lety be any element of T.

Then there existd, e €T, y, € I' such that ayddx = xyade = .

Thus, aab gy = aab(xyade) = (aabsx)yadk = xpade =y forally €T, «, £, y, S€T.

Now, (yaab)yasb = ya(apbya)db = yaadb.

Since T is MC, we find that yaagb =y forally € T, o, F€T.

Similarly, we can show that beafy=yabsa=y forally €T, «, F€T.

Thus, we find that aabfy= yaab=baay= yabpa=y for all yeT, @, F €Tl and hence T is a ternary division I'-
semiring.

Theorem 4.30: Let X, Y, and Z be three ternary I-sub semirings of a ternary I'-semiring T and
B = XT'YTZ. Then, B is a bi-ternary I'-ideal if at least one of X, Y, Z is a right, a lateral, or a left ternary
I'-ideal of T.

Proof: Let B = XI'YTZ. SupposeX is a right ternary I'-ideal of T.

Then we find that (XT'YTZ)[T(XTYTZ)[ TI(XTYTZ)

= X[(TTTID)C(TITIT)ITITIYTZEXT(TITIT)ITIYTZS(XTTIT)I'YTZEXTYTZ.

Consequently, B=XT'YT'Z is a bi- ternary I'-ideal of T. Now suppose that Y is a right ternary I'-ideal of T.

Then (XCYTZ)ITO(XTYTZ)ITI(XLYTZ)SXTYT(TITIT)I(TITIT)ITITIZ < XTY[(TTTIT)ITrZ <
XTYTTITIZ € XT'YTZ. This implies that B=XTYT'Z is a bi-ternary I'-ideal of T.

Again, if Z is a right ternary I'-ideal of T, then
(XTYTZ)LTT(XTYTZ)ITT(XTYTZ)S(XTYTZ)D(TTTIT)I(TITIT)ITITS(XIYTZ)D(TITIT)IT
EXTYT(ZTTIT)SXIYTZ. Consequently, B=XT'YTZ is a bi-ternary I'-ideal of T.

Similar proofs can be given for other cases.

Corollary 4.31: A ternary I'-subsemiring B of T is a bi-ternary I-ideal of T if B = R[TMTIL, where R is
aright ternary I'-ideal, M is a lateral ternary I'-ideal, and L is a left ternary I'-ideal of T.
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Theorem 4.32: Let B be a ternary I'-subsemiring of a ternary I'-semiring T. If R is a right ternary I'-ideal,
M is a lateral ternary I'-ideal, and L is a left ternary I'-ideal of T such that RFTMI'L € B € RNMNL, then
Bis a bi-ternary I'-ideal of T.
Proof: BITIBI'TIB < (RAMNL)ITI(RAMNL)ITC(RAMNL)

C RI(TTMIT)TL € RTMTI'L € B.

The following theorem gives a characterization of a regular ternary semiring S in termsof bi-ternary I'-
ideal and quasi-ternary I'-ideal of T.

Theorem 4.33: The following conditions in a ternary I'-semiring T are equivalent:
(i) T is regular,
(ii) for every bi-ternary I'-ideal B of T, BFTI'BI'TI'B = B,

(iii) for every quasi-ternary I'-ideal Q of T, QI'TTQI'TrQ = Q.

Proof:(i)=(ii). Suppose Tis regular. Let B be a bi-ternary I'-ideal of T. Let b €B. Then thereexists x € T, such
that a = aaxga for all @, AEr. This implies that a = aaxfaypxda € BI'TIBI'TIB. So we find thatB
CBI'TIBI'TI'B. Again, since B is a bi-ternary I'-ideal of T, BTTTBI'TI'BSB. Consequently, BTTTBI'TI'B= B.
Clearly, (ii)=(iii), by using Lemma 4.18.

(iii)=>(i). Suppose (iii) holds. Let R be a right ternary I'-ideal,M a lateral ternary I'-ideal, and L a left ternary I'-
ideal of T. Then, Q = RNMNL is a quasi-ternary I'-ideal of T, by Theorem 4.8. By hypothesis, QITTQI'TQ =
Q.Now, RONMNL = Q = QI'TIQITQE RITIMITIL € RITMTL. Again, clearly RTMI'L< RNMNL.So,RNMNL
= RI'MTIL, and hence, by Theorem 4.15, Tis a regular ternary I'-semiring.

Theorem 4.34:A ternary I'-sub semiring B of a regular ternary I'-semiringT is a bi-ternary I-ideal of T
ifand only if B = BI'TTB.
Proof:1f B = BI'TI'B, then it is easy to see that B is a bi-ternary I'-ideal of T.

Conversely, suppose that B is a bi-ternary I'-ideal of a regular ternary I'-semiring T. Let b €B, thenthere
exists x €Tsuch that b = baxsb, for @, AT This implies that
b eBI'TI'B and hence B €BI'TI'B. Again,BITTBSBI'TI'BI'TI'B =B. Thus we find that
B = BI'TI'B.

Theorem 4.35:A ternary I'-sub semiring B of a regular ternary I'-semiringT is a bi-ternary I'-ideal of T
ifand only if B is a quasi-ternary I-ideal of T.

Proof: Let T be a regular ternary I'-semiring. If B is a quasi-ternary T'-ideal of T, then, from Lemma4.18, it
follows that B is a bi-ternary T'-ideal of T.

Conversely, let B be a bi-ternary I'-ideal of T. From Theorem 4.15, we find that if T is a regular ternary
I'-semiring, then RNMNL = RI'MTIL for any right ternary I'-ideal R, any lateral ternary I'-ideal M, andany left
ternary I'-ideal L.

Now,

BITITON(TCBIT+TITIBITIT)NTITIB

=BITITO(TCBIT +TTTIBITIT)ITITIB
= BI(TITIT)IBI(TCTIT)IB +BI(TTTIT)ITIBI(TITIT)ITIB
CBITIBITIB +BITITIBITITIB
CB +BI'TI'B (since B is a bi-ternary I'-ideal) = B +B (by Theorem 4.34)
cB.

Consequently, B is a quasi-ternary I'-ideal of T.

In view of Lemma 4.22 and Theorem 4.35, we have the following result.

Theorem 4.36:1f Q;and Qare two ternary T-sub semiring and Qsis a bi-ternary T-ideal of a regular
ternary I-semiring T, then Q;I'Q.I'Qs, Q:I'QsI'Q,, and QsI'Q,I'Q, are quasi-ternary I-ideals of T.

In view of Corollary 4.24 and Theorem 4.36, we have the following result.

Corollary 4.37:For any three quasi-ternary I'-ideals Q;, Q,, Qs0f a regular ternary
I-semiring T, Q;I'Q,I'Q; is a quasi-ternary I'-ideal of T.

Conclusion :

In this paper mainly we start the study of quasi-ternary I-ideals, bi-ternary T-ideals in ternary T'-
semirings. We characterize those ternary I'-ideals.
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