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Abstract

The notion of convergence in H(G) can be used to solve the following problem. Let

sequence {a;} be a sequencein G which has no limit point in G and {m;} be a

sequence of integers. Is there a function f which is analytic on G and such that only

zeros of f are at the points a;, with multiplicity of zero at ax equal to m; 7 The

answer to such type of problem is due to Weierstrass Factorization theorem

L Introduction
The power of complex methods is exhibited by an efficient theorem of complex analysis, Weierstrass
factorization theorem . In the first section, we introduce notation and representation of infinite product . The
Weierstrass Factorization Thorem is stated in section 2 and in section 3 , Factorization of cosine function is
displayed using Weierstrass Factorization Theorem.

II. The Infinite Product
Let 2z, be a sequence of complex numbers and if z = limlII}_, 2, exists, then z is

called the infinite poduct of the nmbersz,, and it is denoted by

7 — I3

n=1~n

Definition 1. An elementary factor is one of the following functions E,(z) for
P =012 3 5y

Eo(2)=1—=2
Ep(2) =1 — 2)exp(z + :—_,') + ...+ :—:). p>1.
Note that the function E),(2) has a simple zero at 2 = 1 and no other zero .

Lemma 1. If |2| <1 and p > 0 then |1 — E,(2)| < |2|PT.

Theorem 1. Let {a,} be a sequence in C' such that lim|a,| = oo and a,, # 0 for all

n > 1 . If sequence{p,} is any sequence of integers such that

Y= Rt <o ... (8

for all v > 0 then

www.ijmsi.org 1 | Page



Factorization Of Cosine Function...

f(2) = T4 By, (35)

converges in H(c). The function f is an entire function with zeros only at the points
a,. If 29 occurs in the sequence a, exactly m times then f has a zero at z = zy of

multiplicity m. If p, =n — 1 then (1) will be satisfied.

Theorem 2. Let sequence {f,} is a sequence in H(G) and f belongs to C(G,C)
such that f, — f then f is analytic and f* — f* for each integer k > 1 . Here
H(G) denote the set of all analytic functions on G and C(G,C') denote set of all

continuous functions from G to C.

Lemma 2. Suppose G is an open set and {f,} is a sequence in H(G) such that
f(z) = I, fu(2) converges in H(G). Assume that f is not the identically zero
function and let K be a compact subset of G such that f(z) # 0 for all z € K, then

f () 0 ful2)
: = Zn’x;l FalZ)

and the convergence is uniform over K.

Proof:- Since the infinite product converges in H(G) to f(z)

f(2) = limIli_, fi(2)

then 2 W =HmY .

o) f(z
Zk 1;(2

f

and the convergence is uniform over K.

Theorem 3 (The Weierstrass Factorization Theorem). Let f be an entire function
and let sequence{a,} be the non-zero zeros of f repeated according to multiplicity;
suppose f has a zero at z = 0 of order m > 0. Then there is an entire function g

and a sequence of integers {p,} such that

f(2) = 2meSOM2 By, (Z)
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II1. Factorization of the Cosine Function

In this section an application of the Weierstrass Factorization Theorem to cosmz is

given
Theorem 4. cosmz can be factored as

422 ]

cosmz =112, [1 — @n-1)2

and the convergence is uniform over compact subsets of C.

- e 2n—1
('™ + e7"™*) are exactly at 2 = ( - \nez,;

1
2

Proof: The zeros of costz =

moreover each zero is simple . Since

Y (m=x)%<o0, forallr >0
2

—0o

. By theorem (1) one can choose the Weierstrass factorization theorem for all n and

choose p,, = 1, then
cosmz = eI __ Fy(w&r)
2

:eg(s)ﬂ.fz_m(l - ?%_)Q(F;—_f)

The terms of the product can be rearranged
- z) oo 422 ;
COosSTzZ = eg( )anl (]. — m) . (2)

for some entire function g(z). If f(2) = cosmz, then according to lemma (2)

—Tmtanmz =

L ) 2z
=9 (2) H4 0L o
and the convergence is uniform over compact subsets of the plane. But

00 2
—mtanmz =4) ) ey
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So it must be that gis a constant, say g(z) = a, for all z. It follows from (2) that
for0< |zl <1
cosmz = eI, (1 — —(2,:1)2)

Letting z approach zero gives that e* = 1. This gives that

cosmz =112, (1 - W)
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