E-ISSN: 2321 – 4767 *P-ISSN:* 2321 - 4759 www.Ijmsi.org || Volume 3 Issue 2 || February. 2015 || PP-35-38

Exact value of pi $\pi = (17 - 8\sqrt{3})$

Mr. Laxman S. Gogawale

Fulora co-operative society, Dhankawadi, Pune-411043 (India)

Abstract: In this paper, I show that exact area of circle = $(\pi r^2) = (17 - 8\sqrt{3}) r^2$. I found that the exact value of *pi* is = $(17 - 8\sqrt{3})$. My findings are based on geometrical constructions, formula and proofs.

I. INTRODUCTION

Is it possible or impossible?

100% exact value of pi, 100% exact area of circle, area of circle = area of square Yes, it is Possible!

We know that, where $C/D = A/R^2$ = approximate value of pi = 3.1415926535897...which is endless value. C = circumference of circle, D = diameter of circle, A = area of circle, R = radius of circle,

If we calculate C / D we cannot measure end point of circumference. So it will give approximate results. I started research to find exact area of circle using A $/R^2$ method.

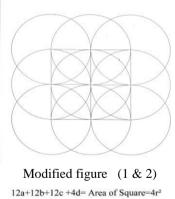
There are different proofs to find the old value of pi but no one get 100% exact answer. Like using number series, Trigonometry, Dividing circle into infinite parts, as practically we can't measure endpoint etc. In order to find 100% exact area of circle I found the new method.

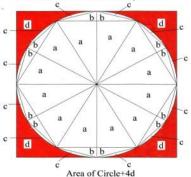
I have made number of proofs but here I am giving simple proof out of it.

Reason why I am 100% sure about my research is that I estimated pi value by number of different algebraic methods. Why should we discuss pi is transcendental or algebraic? This is not important. But we are more concentrated on calculating 100% exact answer which is most important.

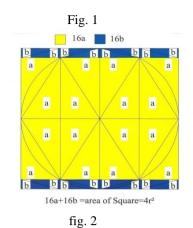
New methods are also discovered .i.e. algebraic table method. By all the methods the answer remains same.

Basic Figure





www.ijmsi.org



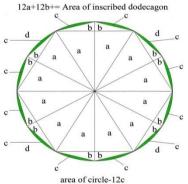
From fig. 1 & 2

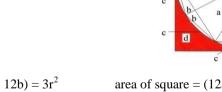
Note: let a, b, c & d each part shows area Area of square = $(12a + 12b + 12c + 4d) = (16a + 16b) = 4r^{2}$ (12a + 12b + 12c + 4d) - (16a + 16b) = 0= (-4a - 4b + 12c + 4d) = 0i.e. (4a + 4b = 12c + 4d)(a + b) = (3c+d)equation no. 1 From fig. no. 2 $16a = [2r \times 2(\sqrt{3}/2) r] = (2\sqrt{3}) r^2$ $=(2\sqrt{3}) r^2/16$ $= (0.125\sqrt{3}) r^2$ а $= (4 - 2\sqrt{3}) r^2 / 16$ $= (0.25 - 0.125\sqrt{3}) r^2$ $16b = [2r - 2(\sqrt{3}/2) r] \times 2r = (4 - 2\sqrt{3}) r^{2}$ b

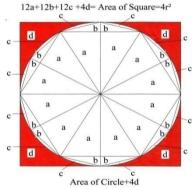
Problems faced during the research of pi that:

How to estimate the exact values of part c & part d?

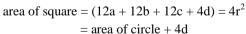
I found number of equations for calculating area of square = $4r^2$. Few of them is mentioned in the following table. On the basis of these equations I estimated the exact area of circle in following manner.







Area of inscribed dodecagon $(12a + 12b) = 3r^2$ = area of circle - 12c



I have geometric proofs for all of the following equations				
S. r. no.	Equations of area of square	$e = 4r^2$	Equations total	$= \dots 4r^2$
1	12a + 12b + 12c + 4d	$=4r^2$	12a + 12b + 12c + 4d	$=4r^2$
2	64b + 12c + 8d	$=4r^2$	12a + 76b + 24c + 12d	$= 2(4r^2)$
3	4a + 100b - 18c	$=4r^2$	16a + 176b + 6c + 12d	$= 3(4r^2)$
4	-8a + 120b + 8d	$=4r^{2}$	8a + 296b + 6c + 20d	$=4(4r^{2})$
5	32a - 96b + 24c	$=4r^2$	40a + 200b + 30c + 20d	$= 5(4r^2)$
6	20a - 12b + 6c	$=4r^2$	60a + 188b + 36c + 20d	$= 6(4r^2)$
7	96b - 6c + 4d	$=4r^{2}$	60a + 284b + 30c + 24d	$=7(4r^{2})$

Exact value of pi $\pi = (17-8\sqrt{3})$

		2	1	2
8	48a - 208b + 48c	$=4r^2$	108a + 76b + 78c + 24d	$= 8(4r^2)$
9	24a - 40b + 12c	$=4r^{2}$	132a + 36b + 90c + 24d	$= 9(4r^2)$
10	128b – 24c	$=4r^2$	132a + 164b + 66c + 24d	$= 10(4r^2)$
11	-20a + 172b + 12d	$=4r^2$	112a + 336b + 66c + 36d	$= 11(4r^2)$
12	12a + 44b - 6c	$=4r^2$	124a + 380b + 60c + 36d	$= 12(4r^2)$
13	28a - 68b + 18c	$=4r^2$	152a + 312b + 78c + 36d	$= 13(4r^2)$
14	8a + 72b - 12c	$=4r^{2}$	160a + 384b + 66c + 36d	$= 14(4r^2)$
15	4a + 68b + 4d	$=4r^2$	164a + 452b + 66c + 40d	$= 15(4r^2)$
16	60a - 292b + 66c	$=4r^{2}$	224a + 160b + 132c + 40d	$= 16(4r^2)$
17	104a - 600b + 132c	$=4r^{2}$	328a - 440b + 264c + 40d	$= 17(4r^2)$
18	18a + 2b + 3c	$=4r^2$	346a - 438b + 267c + 40d	$= 18(4r^2)$
19	36a - 124b + 30c	$=4r^{2}$	382a - 562b + 297c + 40d	$= 19(4r^2)$
20	48c + 16d	$=4r^2$	382a - 562b + 345c + 56d	$= 20(4r^2)$
Total area of 20 square =	382a - 562b + 345c + 56d =	$= 20(4r^2)$		

In the following proof I used area of inscribed dodecagon.

How I am getting the values of c & d for that see the following examples

Area of square = $(12a + 12b + 12c + 4d)$	main equation
---	---------------

(Area of 15 square – area of 10 square)	= (164a + 452b + 66c + 40d) - 10(12a + 12b + 12c + 4d)		
= area of 5 square	= (164a + 452b + 66c + 40d) - (120a + 120b + 120c + 40d)		
	= 44a + 332b - 54c		
	= 44a + 332b + area of 4.5 inscribed dodecagon – area of 4.5 circle		
	$= 44a + 332b + 4.5(3r^{2}) - area of 4.5 circle$		
Area of 5 square + area of 4.5 circle	$= 44a + 332b + 4.5(3r^2)$		
Area of 4.5 circle	= 44(0.125 $\sqrt{3}$) r ² + 332(0.25 - 0.125 $\sqrt{3}$) r ² + 13.5r ² - area of 5 square		
	$= (5.5\sqrt{3}) r^{2} + (83 - 41.5\sqrt{3}) r^{2} + 13.5r^{2} - 5(4r^{2})$		
	$= (96.5 - 36\sqrt{3}) r^2 - 20r^2$		
	$=(76.5-36\sqrt{3}) r^{2}$		
Area of circle	$=(76.5-36\sqrt{3}) r^2/4.5$		
	$=(17-8\sqrt{3}) r^{2}$		
One more example			
(Area of 12 square – area of 9 square)	= (124a + 380b + 60c + 36d) - 9(12a + 12b + 12c + 4d)		
= area of 3 square	= (124a + 380b + 60c + 36d) - (108a + 108b + 108c + 36d)		
	=(16a + 272b - 48c)		
	= 16a + 272b + area of 4 inscribed dodecagon – area of 4 circle		
	$= 16a + 272b + 4(3r^{2}) - area of 4 circle$		
Area of 3 square + area of 4 circle	$= 16a + 272b + 4(3r^2)$		
Area of 4 circle	= $16(0.125\sqrt{3}) r^2 + 272(0.25 - 0.125\sqrt{3}) r^2 + 12r^2$ - area of 3 square		
	$= (2\sqrt{3}) r^{2} - (68 - 34\sqrt{3}) r^{2} + 12r^{2} - 3(4r^{2})$		
	$= (80 - 32\sqrt{3}) r^2 - 12r^2$		
	$=(68-32\sqrt{3}) r^{2}$		
Area of circle	$=(68-32\sqrt{3}) r^2/4$		
	$=(17-8\sqrt{3}) r^{2}$		
Found the value of 3c & d			
Area of square $=4r^2$	Area of circle = $(17 - 8\sqrt{3}) r^2$		
(Area of square $-$ area of circle) = 4d)			
$= 4r^{2} - (17 - 8\sqrt{3}) r^{2} = (8\sqrt{3} - 13) r^{2} d = (2\sqrt{3} - 3.25) r^{2}$			

Area of square = $16a+16b = 4r^2$ (a + b) = $(3c+d) = (4r^2/16) = 0.25r^2$ (a + b) - d = 3c = $[0.25 - (2\sqrt{3} - 3.25)]r^2 = 3c = (3.5 - 2\sqrt{3})r^2$ a = $(0.125\sqrt{3})r^2$ b = $(0.25 - 0.125\sqrt{3})r^2$ 3c = $(3.5 - 2\sqrt{3})r^2$ d = $(2\sqrt{3} - 3.25)r^2$ By using value of (a, b, c & d) in the above equations we get same answer = $4r^2$ & total ... $4r^2$

I have prepared all examples of this type but answer remains same.

Conclusions:-

Exact area of circle = $(17 - 8\sqrt{3}) r^2$ Exact value of pi $\pi = (17 - 8\sqrt{3})$

REFERENCES

Exact area of equilateral triangle formula = $(\sqrt{3} \div 4) \times \text{side}^2$

Basic Algebra & Geometry concept, History of pi (π) from internet

Complete thesis of my research titled as "Exact value of pi" is being published in following journals:

IOSR(international journal of scientific research) journal of mathematics in May-June 2012.

IJERA(international journal of Engineering research and applications) in July-August 2013.

Soft copy of my thesis is now also available on internet and one can get it by making search with following key words:

"Laxman Gogawale.

"Pi value Gogawale.

