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ABSTRACT: In this paper, new two steps family of iterative methods of order two and three constructed based 

on composite trapezoidal rule and fundamental theorem of calculus, for solving nonlinear equations. Several 

numerical examples are given to illustrate the efficiency and performance of the iterative methods; the methods 

are also compared with well known existing iterative method. 
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I. INTRODUCTION 
 Solving nonlinear equations is one of the most predominant problems in numerical analysis. A classical 

and very popular method for solving nonlinear equations is the Newton’s method. Some historical points on this 

method can be found in [1]. Recently, some methods have been proposed and analyzed for solving nonlinear 

equations [2-13]. Some of these methods have been suggested either by using quadrature formulas, homotopy, 

decomposition or Taylor’s series [2-13]. Motivated by these techniques applied by various authors [2-13] and 

references therein, in constructing numerous iterative methods for solving nonlinear equations, we suggest a two 

steps family of iterative method based on composite trapezoidal rule and fundamental theorem of calculus for 

solving nonlinear equations. We also considered the convergence analysis of these methods. Several examples 

of functions, some of which are same as in [2-13] were used to illustrate the performance of the methods and 

comparison with other existing methods. 

 

II. PRELIMINARIES 
We use the following definitions: 

 

Definition 1. (See Dennis and Schnable [2] ) Let 𝛼 ∈ ℝ, 𝑥𝑛 ∈ ℝ, 𝑛 = 0,1,2, … Then, the sequence  𝑥𝑛   is said 

to converge to 𝛼 if 

                                                               𝑙𝑖𝑚
𝑛→∞

 𝑥𝑛 − 𝛼 = 0                                                  (1)  

If, in addition, there exists a constant 𝑐 ≥ 0, an integer 𝑥0 ≥ 0,  and 𝑝 ≥ 0 such that for all 𝑛 ≥ 𝑥0,  

                                                           𝑥𝑛+1 − 𝛼 ≤ 𝑐 𝑥𝑛 − 𝛼 𝑝                                         (2) 

then  𝑥𝑛  is said to converge to 𝛼 with 𝑞-order at least 𝑝. If 𝑝 = 2, the convergence is said to be of order . 

 

Definition 2 (See Grau-Sanchez et al. [14]) The computational local order of convergence, 𝜌𝑛   , (CLOC) of a 

sequence  𝑥𝑛  𝑛≥0 is defined by 

                                                     𝜌𝑛   =
𝑙𝑜𝑔 𝑒𝑛  

𝑙𝑜𝑔 𝑒𝑛−1 
 ,                                                              (3) 

where 𝑥𝑛−1 and 𝑥𝑛  are two consecutive iterations near the roots 𝛼 and 

 𝑒𝑛 = 𝑥𝑛−1 − 𝛼 . 

 

Notation 1: (See [6]) The notation 𝑒𝑛 = 𝑥𝑛 − 𝛼 is the error in the n
th

 iteration. The equation 

                                               𝑒𝑛+1 = 𝑐𝑒𝑛
𝑝

+ 𝑂 𝑒𝑛
𝑝+1

 ,                                                      (4) 

is called the error equation. By substituting 𝑒𝑛 = 𝑥𝑛 − 𝛼 for all 𝑛 in any iterative method and simplifying, we 

obtain the error equation for that method. The value of 𝑝 obtained is called the order of this method. 
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III. DEVELOPMENT OF THE METHODS 

Consider a nonlinear equation 

                                                                            𝑓 𝑥 = 0                                                             (5) 

By the Fundamental Theorem of Calculus, if 𝑓(𝑥) is continuous at every point of [𝑎, 𝑏] and 𝐹 is any anti-

derivatives of  𝑓(𝑥) on [𝑎, 𝑏], then 

                                      𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 = 𝐹 𝑏 − 𝐹 𝑎                                                                   (6) 

Differentiating both side of (6) with respect to 𝑥, we have; 

 

                                                 𝑓 𝑥 = 𝑓 𝑏 − 𝑓 𝑎                                                                    (7) 

 

where 𝑓(𝑏) and 𝑓(𝑎) are derivatives of 𝐹(𝑏) and 𝐹(𝑎) respectively. 

 

Recall the Composite Trapezoidal rule given by; 

                      𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 =
𝑏 − 𝑎

2𝑛
 𝑓 𝑎 + 2 𝑓𝑖

𝑛−1

𝑖=1

+ 𝑓(𝑏)                                                  (8) 

If 𝑛 = 2 in (8) we have; 

                                      𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 =
𝑏 − 𝑎

4
 𝑓 𝑎 + 2𝑓  

𝑎 + 𝑏

2
 + 𝑓(𝑏)                           (9) 

Differentiating (9) with respect to 𝑥, we have; 

 

                                      𝑓 𝑥 =
𝑏 − 𝑎

4
 𝑓 ′ 𝑎 + 2𝑓 ′  

𝑎 + 𝑏

2
 + 𝑓 ′ 𝑏                                 (10) 

 

Equating (7) and (10) we have; 

                                    𝑓 𝑏 − 𝑓 𝑎 =
𝑏 − 𝑎

4
 𝑓 ′ 𝑎 + 2𝑓 ′  

𝑎 + 𝑏

2
 + 𝑓 ′ 𝑏                     (11) 

From(5), we have; 

                                    𝑥 = 𝑎 − 4
𝑓(𝑎)

𝑓 ′ 𝑎 
−  𝑥 − 𝑎 

𝑓 ′ 𝑥 

𝑓 ′ 𝑎 
− 2 𝑥 − 𝑎 

𝑓 ′  
𝑎 + 𝑏

2
 

𝑓 ′ 𝑎 
             (12) 

Using(12), one can suggest the following iterative method for solving the nonlinear equation(5). 

 

Algorithm 1: Given an initial approximation 𝑥0 (close to 𝛼 the root of (5)), we find the approximate solution 

𝑥𝑛+1 by the implicit iterative method: 

             𝑥𝑛+1 = 𝑥𝑛 − 4
𝑓(𝑥𝑛)

𝑓 ′ 𝑥𝑛 
−  𝑥 − 𝑎 

𝑓 ′ 𝑥𝑛+1 

𝑓 ′ 𝑥𝑛 
− 2 𝑥 − 𝑎 

𝑓 ′  
𝑥𝑛 + 𝑥𝑛+1

2
 

𝑓 ′ 𝑥𝑛 
,   𝑛 = 0,1,2, …       (13) 

The implicit iterative method in (13) is a predictor-corrector scheme, with Newton’s method as the predictor, 

and Algorithm 1 as the corrector. The first consequence of  (13) is the suggested two-step iterative method for 

solving (5) stated as follows: 

 

Algorithm 2: Given an initial approximation 𝑥0 (close to 𝛼 the root of (5)), we find the approximate solution 

𝑥𝑛+1 by the iterative schemes: 

                                          𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓 ′ 𝑥𝑛 
                                                                              (14𝑎) 

           𝑥𝑛+1 = 𝑥𝑛 − 4
𝑓(𝑥𝑛)

𝑓 ′ 𝑥𝑛 
−  𝑦𝑛 − 𝑥𝑛 

𝑓 ′ 𝑦𝑛 

𝑓 ′ 𝑥𝑛 
− 2 𝑦𝑛 − 𝑥𝑛 

𝑓 ′  
𝑥𝑛 + 𝑦𝑛

2
 

𝑓 ′ 𝑥𝑛 
,   𝑛 = 0,1,2, …      (14𝑏) 

From(14𝑎), we have that; 

                                                          𝑦𝑛 − 𝑥𝑛 = −
𝑓(𝑥𝑛)

𝑓 ′ 𝑥𝑛 
                                                                              (15) 

Using (15) in (14𝑏) we suggest another new iterative scheme as follows: 

 

Algorithm 3: Given an initial approximation 𝑥0 (close to 𝛼 the root of (5), we find the approximate solution 

𝑥𝑛+1 by the iterative schemes: 
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               𝑥𝑛+1 = 𝑥𝑛 − 4
𝑓(𝑥𝑛)

𝑓 ′ 𝑥𝑛 
+  

𝑓(𝑥𝑛)

𝑓 ′ 𝑥𝑛 
 
𝑓 ′ 𝑦𝑛 

𝑓 ′ 𝑥𝑛 
− 2  

𝑓(𝑥𝑛)

𝑓 ′ 𝑥𝑛 
 
𝑓 ′  

𝑥𝑛 + 𝑦𝑛
2

 

𝑓 ′ 𝑥𝑛 
,   𝑛 = 0,1,2, …      (16) 

 

From (5) and (11) we can have the fixed point formulation given by 

                                              𝑥 = 𝑎 −
4𝑓(𝑎)

𝑓 ′ 𝑎 + 2𝑓 ′  
𝑎 + 𝑥

2
 + 𝑓 ′ 𝑥 

                                                        (17 ) 

The formulation (17 ) enable us to suggest the following iterative method for solving nonlinear equations. 

 

Algorithm 4: Given an initial approximation 𝑥0 (close to 𝛼 the root of (5), we find the approximate solution 

𝑥𝑛+1 by the iterative schemes: 

                                                                   𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓 ′(𝑥𝑛)
 

                                     𝑥𝑛+1 = 𝑥𝑛 −
4𝑓(𝑥𝑛)

𝑓 ′ 𝑥𝑛 + 2𝑓 ′  
𝑥𝑛 + 𝑦𝑛

2
 + 𝑓 ′(𝑦𝑛)

,    𝑛 = 0,1,2, …                    (18) 

In the next section, we present the convergence analysis of Algorithm 2 and 4. Similar procedures can be 

applied to analyze the convergence of Algorithm 3. 

 

IV. CONVERGENCE ANALYSIS OF THE METHODS 
Theorem 1: Let 𝛼 ∈ 𝐼 be a simple zero of sufficiently differentiable function 𝑓: 𝐼 ⊆  ℝ → ℝ for an open interval 

𝐼. If 𝑥0 is sufficiently close to 𝛼, then the iterative method defined by (14) is of order two and it satisfies the 

following error equation: 

                                         𝑒𝑛+1 = 𝛼 − 3𝑐2𝑒𝑛
2 +  𝑐3 + 6𝑐2

2 −
3

2
𝑐2 𝑒𝑛

3 + 𝑂 𝑒𝑛
3                                      (19 ) 

where  

                                                             𝑐2 =
𝑓 ′′(𝛼)

2𝑓 ′(𝛼)
                                                                                         (20) 

Proof Let 𝛼 be a simple zero of 𝑓, and 𝑒𝑛 = 𝑥𝑛 − 𝛼. Using Taylor expansion around 𝑥 = 𝛼 and taking into 

account 𝑓 𝛼 = 0, we get 

                          𝑓 𝑥𝑛 = 𝑓 ′ 𝛼  𝑒𝑛 + 𝑐2𝑒𝑛
2 + 𝑐3𝑒𝑛

3 + 𝑐4𝑒𝑛
4 + ⋯  ,                                                           (21) 

                         𝑓 ′ 𝑥𝑛 = 𝑓 ′ 𝛼  1 + 2𝑐2𝑒𝑛 + 3𝑐3𝑒𝑛
2 + 4𝑐4𝑒𝑛

3 + 5𝑐5𝑒𝑛
4 + ⋯                                       (22) 

where 𝑐𝑘 =
𝑓𝑘(𝛼)

𝑘!𝑓 ′(𝛼)
,   𝑘 = 2,3,4, …                                                                                                                (23) 

Using   21  and  22 , we have; 

                   
𝑓(𝑥𝑛)

𝑓 ′ 𝑥𝑛 
=  𝑒𝑛 − 𝑐2𝑒𝑛

2 + 2(𝑐2
2 − 𝑐3)𝑒𝑛

3 + (7𝑐2𝑐3 − 4𝑐2
3 − 3𝑐4)𝑒𝑛

4 + ⋯                          (24) 

But    

                          𝑦𝑛 = 𝑥𝑛 −
𝑓 𝑥𝑛 

𝑓 ′ 𝑥𝑛 
                                                                                                                   25  

                               =  𝛼 + 𝑐2𝑒𝑛
2 + 2(𝑐2

2 − 𝑐3)𝑒𝑛
3 − (7𝑐2𝑐3 − 4𝑐2

3 − 3𝑐4)𝑒𝑛
4 + ⋯                             (26) 

Hence, 

                𝑦𝑛 − 𝑥𝑛 = −𝑒𝑛 + 𝑐2𝑒𝑛
2 + 2(𝑐2

2 − 𝑐3)𝑒𝑛
3 − (7𝑐2𝑐3 − 4𝑐2

3 − 3𝑐4)𝑒𝑛
4 + ⋯                          (27) 

 

From  26 , we have; 

 

𝑓 ′ 𝑦𝑛 = 𝑓 ′ 𝛼  1 + 2𝑐2
2𝑒𝑛

2 + 4 𝑐2𝑐3 − 𝑐2
3 𝑒𝑛

3 + (−11𝑐2
2𝑐3 + 6𝑐2𝑐4 + 8𝑐2

4)𝑒𝑛
4 + ⋯                 (28) 

 

Combining (22) and (28), we have; 

 

        
𝑓 ′ 𝑦𝑛 

𝑓 ′ 𝑥𝑛 
= −2𝑐2𝑒𝑛 +  −3𝑐3 + 6𝑐2

2 𝑒𝑛
2 +  −16𝑐2

3 − 4𝑐4 + 16𝑐2𝑐3 𝑒𝑛
3 + ⋯                                (29) 

 

From (27) and (29) we have; 

 

 𝑦𝑛 − 𝑥𝑛 
𝑓 ′ 𝑦𝑛 

𝑓 ′ 𝑥𝑛 
= −𝑒𝑛 + 3𝑐2𝑒𝑛

2 + (5𝑐3 − 10𝑐2
2)𝑒𝑛

3 +  −30𝑐2𝑐3 + 30𝑐2
3 + 7𝑐4 𝑒𝑛

4 + ⋯ (30) 
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From the relation; 

 

 
𝑥𝑛 + 𝑦𝑛

2
= 𝑥𝑛 −

𝑓 𝑥𝑛 

2𝑓 ′ 𝑥𝑛 
    

                = 𝛼 +
1

2
𝑒𝑛 +

1

2
𝑐2𝑒𝑛

2 −  𝑐2
2 − 𝑐3 𝑒𝑛

3 −
1

2
 7𝑐2𝑐3 − 4𝑐2

3 − 3𝑐4 𝑒𝑛
4 + ⋯                                  (31 ) 

we have; 

 𝑓  
𝑥𝑛 + 𝑦𝑛

2
 = 𝑓  𝑥𝑛 −

𝑓 𝑥𝑛 

2𝑓 ′ 𝑥𝑛 
  

                        = 𝑓(𝛼)  
1

2
𝑒𝑛 +

3

4
𝑐2𝑒𝑛

2 +  −
1

2
𝑐2

2 +
9

8
𝑐3 𝑒𝑛

3 +  
5

4
𝑐2

3 −
17

8
𝑐2𝑐3 +

25

16
𝑐4 𝑒𝑛

4

                                   

  

                                                        +  −3𝑐2
4 +

57

8
𝑐3𝑐2

2 −
9

4
𝑐3

2 −
13

4
𝑐2𝑐4 +

65

32
𝑐5 𝑒𝑛

5 + ⋯       (32) 

𝑓 ′  
𝑥𝑛 + 𝑦𝑛

2
 = 𝑓(𝛼)  1 + 𝑐2𝑒𝑛 +  𝑐2

2 +
3

4
𝑐3 𝑒𝑛

2 +  −2𝑐2
3 +

7

2
𝑐2𝑐3 +

1

2
𝑐4 𝑒𝑛

3   

                                                                                 +  
9

2
𝑐2𝑐4 + 𝑐2

4 −
37

4
𝑐2

2𝑐3 + 3𝑐3
2 +

5

16
𝑐5 𝑒𝑛

4 + ⋯        (33) 

Using (22) and (33) we have; 

 

          
𝑓 ′  

𝑥𝑛 + 𝑦𝑛
2

 

𝑓 ′ 𝑥𝑛 
= 1 − 𝑐2𝑒𝑛 +  3𝑐2

2 −
3

4
𝑐3 − 3𝑐3 𝑒𝑛

2 + ⋯                                                                    (34) 

 

And (27) with (34) gives; 

 

   𝑦𝑛 − 𝑥𝑛 
𝑓 ′  

𝑥𝑛 + 𝑦𝑛
2

 

𝑓 ′ 𝑥𝑛 
= −𝑒𝑛 + 2𝑐2𝑒𝑛

2 +  
3

4
𝑐2 + 𝑐3 − 2𝑐2

2 𝑒𝑛
3 + ⋯                                                   (35) 

 

Using  29 , (30) and (35) in 

 

𝑥𝑛+1 = 𝑥𝑛 − 4
𝑓 𝑥𝑛 

𝑓 ′ 𝑥𝑛 
−  𝑦𝑛 − 𝑥𝑛 

𝑓 ′ 𝑦𝑛 

𝑓 ′ 𝑥𝑛 
− 2 𝑦𝑛 − 𝑥𝑛 

𝑓 ′  
𝑥𝑛 + 𝑦𝑛

2
 

𝑓 ′ 𝑥𝑛 
 

          = 𝛼 − 3𝑐2𝑒𝑛
2 +  𝑐3 + 6𝑐2

2 −
3

2
𝑐2 𝑒𝑛

3 + 𝑂 𝑒𝑛
4 ∎                                                                               (36) 

 

Thus, we observe that the Algorithm 2 is second order convergent. 

 

 

Theorem 2: Let 𝛼 ∈ 𝐼 be a simple zero of sufficiently differentiable function 𝑓: 𝐼 ⊆  ℝ → ℝ for an open interval 

𝐼. If 𝑥0 is sufficiently close to 𝛼, then the iterative method defined by (18) is of order three and it satisfies the 

following error equation: 

                                           𝑒𝑛+1 = 𝛼 +  
1

8
𝑐3 + 𝑐2

2 𝑒𝑛
3 + 𝑂 𝑒𝑛

4                                                                      (37 ) 

where        𝑐3 =
𝑓 ′′(𝛼)

3!𝑓 ′(𝛼)
                                                                                                                                           (38) 

Proof  Using  22 , (33) and (28) we have; 

   𝑓 ′ 𝑥𝑛 + 2𝑓 ′  
𝑥𝑛 + 𝑦𝑛

2
 + 𝑓 ′ 𝑦𝑛 = 𝑓 ′ 𝛼  4 + 4𝑐2𝑒𝑛 +  

9

2
𝑐3 + 4𝑐2

2 𝑒𝑛
2   

                            + 5𝑐4 + 11𝑐2𝑐3 − 8𝑐2
3 𝑒𝑛

3 + (−11𝑐2
2𝑐3 + 6𝑐2𝑐4 + 8𝑐2

4)𝑒𝑛
4 + ⋯              (39) 

and from (21) we have; 

 

                           4𝑓 ′ 𝑥𝑛 = 𝑓 ′ 𝛼  4𝑒𝑛 + 4𝑐2𝑒𝑛
2 + 4𝑐3𝑒𝑛

3 + 4𝑐4𝑒𝑛
4 + ⋯                                                    (40) 

 

Combining (39) and (40) in (18) gives; 
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                𝑒𝑛+1 = 𝑥𝑛 −
4𝑓 𝑥𝑛 

𝑓 ′ 𝑥𝑛 + 2𝑓 ′  
𝑥𝑛 + 𝑦𝑛

2
 + 𝑓 ′ 𝑦𝑛 

 

                          =  𝛼 +  
1

8
𝑐3 + 𝑐2

2 𝑒𝑛
3 + 𝑂 𝑒𝑛

4 ∎                                                                                      (41) 

This means the method defined by (18) is of third-order. That completes the proof. 

 

V. NUMERICAL EXAMPLES 
 In this section, we present some examples to illustrate the efficiency of our developed methods which 

are given by the Algorithm 1 – 4. We compare the performance of Algorithm 2 (AL2) and Algorithm 4 (AL4) 

with that of Newton Method (NM). All computations are carried out with double arithmetic precision. Displayed 

in Table 1 are the number of iterations (NT) required to achieve the desired approximate root 𝑥𝑛  and respective 

Computational Local Order of Convergence (CLOC), 𝜌𝑛   . The following stopping criteria were used. 

 

                                            𝑖.        𝑥𝑛+1 − 𝑥𝑛  < 𝜀             𝑖𝑖.      𝑓 𝑥𝑛+1 < 𝜀                                            (37) 

where 𝜀 = 10−15 . 

We used the following functions, some of which are same as in [2-4,6-12,14] 

 

                                     

 
 
 
 
 

 
 
 
 

𝑓1 𝑥 =  𝑥 − 1 3 − 1     

𝑓2 𝑥 = cos 𝑥 − 𝑥         

    𝑓3 𝑥 = 𝑥3 − 10                  

    𝑓4(𝑥) = 𝑥2 − 𝑒𝑥 − 3𝑥 + 2

        

𝑓5 𝑥 =  𝑥 + 2 𝑒𝑥 − 1           

𝑓6(𝑥) = 𝑥3 + 4𝑥2 − 10          

𝑓7 𝑥 = 𝑙𝑛𝑥 +  𝑥 − 5              

𝑓8 𝑥 = 𝑒𝑥𝑠𝑖𝑛𝑥 + ln⁡(𝑥2 + 1)

                                                            (38) 

 

Table 1: Comparison between methods depending on the number of iterations (IT) 

and Computational Local Order of Convergence. 

 

 

𝑓(𝑥) 

 

𝑥0 

Number of iterations 

(NT) 

Computational Local Order of 

Convergence (CLOC) 

𝑵𝑴 𝑨𝑳 𝟐 𝑨𝑳 𝟒 𝑵𝑴 𝑨𝑳 𝟐 𝑨𝑳 𝟒 

𝑓1 3.5 7 8 5 1.99999 1.92189 2.99158 

𝑓2 1.7 4 5 3 2.19212 1.89891 3.55514 

𝑓3 1.5 6 34 4 2.05039 1.97063 3.18850 

𝑓4 2 5 6 4 2.17194 2.10516 3.42355 

𝑓5 2 9 34 5 2.03511 1.03401 3.17161 

𝑓6 2 5 6 3 2.06888 1.97365 3.42128 

𝑓7 7 4 5 3 2.38378 2.16311 4.17738 

𝑓8 0.5 6 14 5 1.94071 1.86901 2.00000 

 

The computational results presented in Table 1 shows that the suggested methods are comparable with Newton 

Method. This means that; the new methods (Algorithm 4 in particular) can be considered as a significant 

improvement of Newton Method, hence; they can serve as an alternative to other second and third order 

convergent respectively, methods of solving nonlinear equations. 

 

VI. CONCLUSION 
 We derived a two step family of iterative methods based on composite trapezoidal rule and 

fundamental theorem of calculus, for solving nonlinear equations. Convergence proof is presented in detail for 

algorithm 2 and 4 and they are of order two and three respectively. Analysis of efficiency showed that these 

methods can be used as alternative to other existing order two and three iterative methods for zero of nonlinear 

equations. Finally, we hoped that this study makes a contribution to solve nonlinear equations. 
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