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ABSTRACT : The effect of heat transfer on unsteady MHD couette flow between two infinite parallel porous 

plates in an inclined magnetic field has been investigated. The lower plate is considered porous. The governing 

equations of the flow field are solved by variable perturbation technique and the expression for the velocity  

and temperature  are obtained. The effects of various parameters such as Hartman number , Grashof 

number Gr, Radiation parameter N and Prandtl number  on the flow field have been studied, the results are 

presented graphically and are discussed quantitatively. 
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I. INTRODUCTION 
 The Effect of Heat Transfer on Steady MHD Couette Flow between Two Infinite Parallel Porous Plates 

in an Inclined Magnetic Field has many applications in different field of engineering and technology. The 

interaction between the conduction fluid and the magnetic field radically modifies the flow, with effects on such 

important flow properties as heat transfer, the detail nature of which is strongly dependent on the orientation of 

the magnetic field. When fluid moves through a magnetic field, an electric field or consequently a current may 

be induced, and in turn the current interacts with the magnetic field to produce a body force on fluid. The 

production of this current has led to MHD power generators, MHD devices, nuclear engineering and the 

possibility of thermonuclear power has created a great practical need for understanding the dynamics of 

conducting. The influence of a magnetic field in viscous incompressible flow of electrically conducting fluid is 

of use in extrusion of plastics in the manufacture of rayon, nylon etc. 

 

 Hannes Alfven (1942), a Swedish electrical engineer first initiated the study of MHD. Shercliff (1956) 

considered the steady motion of an electrically conducting fluid in pipes under transverse magnetic fields. 

Sparrow and Cess (1961) observed that the free convection heat transfer to liquid metals may be significantly 

affected by the presence of magnetic field. Drake (1965) considered flow in a channel due to periodic pressure 

gradient and solved the resulting equation by separation of variables methods. Singh and Ram (1978) studied 

Laminar flow of an electrically conducting fluid through a channel in the presence of a transverse magnetic field 

under the influence of a periodic pressure gradient and solved the resulting differential equation by the method 

of Laplace transform. More to this, Ram et al (1984) have analyzed Hall effects on heat and mass transfer flow 

through porous media. Soundelgekar and Abdulla Ali (1986) studied the flow of viscous incompressible 

electrically conducting fluid past an impulsively started infinite vertical isothermal plate. Singh (1993) 

considered steady MHD fluid flow between two parallel plates. John Mooney and Nick Stokes (1997) 

considered the numerical requirements for MHD flows with free surfaces. Raptis and Perdikis (1999) considered 

the effects of thermal radiation and free convection flow past a moving vertical plate. Al-Hadhrami (2003) 

discussed flow through horizontal channels of porous material and obtained velocity expressions in terms of the 

Reynolds number. Ganesh (2007) studied unsteady MHD Stokes flow of a viscous fluid between two parallel 

porous plates. Stamenkovic et al (2010) investigates MHD flow of two immiscible and electrically conducting 

fluids between isothermal, insulated moving plates in the presence of applied electric and magnetic fields. He 

matched the solution at the interface and it was found that decrease in magnetic field inclination angle flattens 

out the velocity and temperature profiles. Rajput and Sahu (2011) studied the effect of a uniform transverse 

magnetic field on the unsteady transient free convection flow of an incompressible viscous electrically 

conducting fluid between two infinite vertical parallel porous plates with constant temperature and variable 

mass diffusion. Manyonge et al (2012) studied steady MHD Poiseuille flow between two infinite parallel porous 

plates in an inclined magnetic field and discover that high magnetic field strength decreases the velocity.  

Sandeep and Sugunamma (2013) analysed the effect of an inclined magnetic field on unsteady free convection 

flow of a dusty viscous fluid between two infinite flat plates filled by a porous medium. 
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 Heat transfer effects on rotating MHD coquette flow in a channel partially field by a porous medium 

with hall current has been discussed by Singh and Rastogi (2012). Joseph et al (2014) studied the unsteady 

MHD couetteflow between two infinite parallel porous plates in an inclined magnetic field with heat transfer. 

The unsteady MHD poiseuille flow between two infinite parallel plates in an inclined magnetic field with heat 

transfer has been studied by Idowu et al (2014).In this paper, we investigated the effect of heat transfer on 

unsteady MHD Couette flow between two infinite parallel porous plates in an inclined magnetic field. 

 

II. PROBLEM FORMULATION 
 A magnetic field of field strength represented by the vector  at right angle to the flow of an 

electrically conducting fluid moving with velocity  was introduced. Here, an electric field vector denoted by  

is induced at right angle to both  and  because of their interaction. We assume that the conducting fluid 

exhibits adiabatic flow in spite of magnetic field, then we denote the electrical conductivity of the fluid by a 

scalar σ. Lorentz force comes in place because the conducting fluid cuts the lines of the magnetic field in 

electric generator. This vector  is parallel to  but in opposite direction but is perpendicular to the plane of 

both  and . Laminar flow through a channel under uniform transverse magnetic field is important because of 

the use of MHD generator, MHD pump and electromagnetic flow meter.  Here, we consider an electrically 

conducting, viscous, unsteady, incompressible fluid moving between two infinite parallel plates both kept at a 

constant distance .  

The equations of motion are the continuity equation 

 
And the Navier-Stokes equation 

 
 

Where  is the fluid density,  is the body force per unit mass of the fluid, µ is the fluid viscosity and  is the 

pressure acting on the fluid. If one dimensional flow is assumed, so that we choose the axis of the channel 

formed by the two plates as the  and assume that flow is in this direction.  Observed that  are 

the velocity components in ,  and  directions respectively. Then this implies =  and , then the 

continuity equation is satisfied. From this we infer that  is independent of  and this will make [(V.∇)V] in the 

Navier-stokes equation to vanish. The body force  is neglected and replace with Lorentz force and from the 

assumption that the flow is one dimensional, it means that the governing equation for this flow is 

                                                            

Where 𝜐 =  is the kinematics viscosity and  is the component of the magnetic force in the direction of x-axis. 

Assuming unidirectional flow so that  and  since magnetic field is along y-direction so 

that  and where  is the magnetic field strength component. Now, 

)] × j                             (2.4)    

So that we have 

                                                                                        (2.5)    

Then (2.3) becomes 

                                                      (2.6) 

From (2.6), when angle of inclination is introduced, we have 

                                            (2.7)    

Where α is the angle between V and B. Equation (2.7) is general in the sense that both field can be assessed at 

any angle α for 0 ≤ α ≤ π. 

 

 Because of the porosity of the lower plate, the characteristic velocity  is taken as a constant so as to 

maintain the same pattern of flow against suction and injection of the fluid in which it is moving perpendicular 

to the fluid flow. The origin is taken at the centre of the channel and  coordinate axes are parallel and 

perpendicular to the channel walls respectively. The governing equation,  that is, the momentum equation is as 

follows 

            (2.8)              
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Since the flow is isentropic, the energy equation is given as 

                                                        (2.9)                                

Where the thermal conductivity of the fluid, ρ is is the density,  is the specific heat constant pressure and 

the temperature. 

The q in (2.9) is called the radiative heat flux. It is given by, 

                                   (2.10) 

The boundary conditions are  

 
                                                                    (2.11) 

In other to solve equations (2.8) and (2.9) subject to the boundary conditions (2.11), we introduce the following 

dimensionless parameters: 

                                                                                                    
(2.12)          

Equations (2.8) and (2.9) now become 

                                              (2.13)    

Where   and =L . We assume that the rate of   (since it is couette 

flow)                                                

                                            (2.14) 

The boundary conditions in dimensionless form are 

 
                                       (2.15) 

III. METHOD OF SOLUTION/SOLUTION OF THE PROBLEM 
 The momentum equation and energy equation can be reduced to the set of ordinary differential 

equations, which are solved analytically. This can be done by representing the velocity, temperature and 

concentration of the fluid in the perturbation series as follows 

                                                                 (3.1) 

                                                                  (3.2) 

Substituting equations (3.1) and (3.2) into equations (2.13)-(2.15), equating the coefficients of harmonic and 

non-harmonic term and neglecting the coefficients of higher order of , we get: 

                                                             (3.3) 

                                                                 (3.4) 

Where  

                                                                                                (3.5) 

                                                                                                  (3.6) 

Where,  

The corresponding boundary condition become 
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                                          (3.7) 

We now solved equations (3.4) – (3.6) under the relevant boundary conditions for the mean flow and unsteady 

flow separately. The mean flows are governed by the equations (3.3), (3.5) where   and  are respectively 

called the mean velocity and respectively. The unsteady flows are governed by equations (3.4) and (3.6) where 

 are the unsteady components. 

 

These equations are solved analytically under the relevant boundary conditions (3.7) as follows; 

Solving equations (3.3) and (3.5) subject to the corresponding relevant boundary conditions in (3.7), we obtain 

the mean velocity and mean temperature as  

                                  (3.7) 

                                                                         (3.8) 

Similarly, solving equations (3.7) and (3.9) under the relevant boundary conditions in (3.10), the unsteady 

temperature becomes 

                                    (3.9) 

                                                                         (3.10)                                                                    

Therefore, the solutions for the velocity, temperature and species concentration profiles are 

                                                                                                  

(3.11)                                                                                              

               (3.12) 

 

IV. DISCUSSION OF RESULTS 
 To discuss the effect of Heat Transfer on Unsteady MHD Couette flow between two infinite parallel 

porous plates in an inclined magnetic field.The velocity profile u and the temperature distribution  are shown 

graphically against y using Matlab for different values of the following parameters such as Hartmann number 

Ha, Grashof number Gr, Radiation parameter N and Prandtl number Pr.Figures 1, 2, 3, and 4 depict decrease in 

velocity u as Hartmann number Ha increases with effect of increase in the angle of inclination  on velocity. To 

this effect, the magnetic field suppresses the turbulence of flow.Figure 5, 6, 7, and 8 show the effect of Grashof  

number Gr  on velocity profile u. it is observed that the velocity u increases with increase in Grashof  number 

Gr and the angle of inclination  .Figure 9 shows the effects of Radiation parameter N on temperature 

distribution . It is shown that the temperature  increases with increase in radiation parameter N.Figure 10 

depicts the effect of Prandtl number Pr on temperature distribution . It shows that the temperature  decreases 

with increase in Prandtl number Pr. 
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Figure1: Effect of Hartmann number  on velocity profile  with 
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Figure2: Effect of Hartmann number  on velocity profile  with 
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Figure3: Effect of Hartmann number  on velocity profile  with 
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Figure4: Effect of Hartmann number  on velocity profile  with 
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Figure5: Effect of Grashof number  on velocity profile  with 
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Figure6: Effect of Grashof number  on velocity profile  with 
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Figure7: Effect of Grashof number  on velocity profile  with 
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Figure8: Effect of Grashof number  on velocity profile  with 
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Figure9: Effect of Radiation parameter  on temperature distribution  with 
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Figure10: Effect of Prandtl number  on temperature distribution  with 

 

 

V. SUMMARY AND CONCLUSION 
 In this section we studied the effect of inclined Hartmann in an unsteady MHD couette flow between 

two infinite parallel porous plates in an inclined magnetic field.The momentum and energy equations are written 

in a dimensionless form using the dimensionless parameters. Perturbation method was employed to solve the 

velocity profile and temperature distribution.However, at high Hartmann number Ha and high radiation 

parameter , the velocity u decreases. When the magnetic field is high, it reduces the energy loss through the 

plates. But large Nusselt number Nu corresponds to more active convection. Also, when the Prandlt number Pr 

increases, the temperature distribution  decreases and increase in radiation parameter  increases the 

temperature distribution This work can be applied in electric power generator, extrusion of plastics in the 

manufacture of Rayon and Nylon etc 
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