A Study on Star Intuitionistic Sets

S.Indira, R.Raja Rajeswari.

1,2 Department of Mathematics, Sri Paraskthi College for Women, Courtallam-627818, Tamil Nadu, India.

ABSTRACT. The aim of this paper is to introduce a new type of Intuitionistic sets known as the star Intuitionistic sets and study some of its properties. 2000 Math. Subject Classification: 54C10, 54C08.

KEYWORDS and Phrases: Intuitionistic sets; Intuitionistic topological spaces;

I. INTRODUCTION AND PRELIMINARIES

The concept of fuzzy sets were introduced and investigated by "Zadeh[11]" in 1965. For the rst time, the concept of a topological structures was generalized to fuzzy topological spaces[5] in 1968 and the concept of generalized Intuitionistic fuzzy sets was considered by K.Atanassov [2] in 1983. "Intuitionistic fuzzy topological space"were introduced by Coker in [7]. Intuitionistic sets in point set was also de ned by Coker[8] in 1996. In this paper, we de ne a new operator on intuitionistic sets, which results again an intuitionistic set which we call it as a star intuitionistic set. We also study some of their properties.

De nition 1.1. [9]

Let X be a non empty fixed set. Then the set A = < X, A1, A2 > Where A1 and A2 are subsets of X is called an intuitionistic set if A1 A2 = ø The set A1 is called the set of member of A, A2 is called the set of non member of A Here after let us represent the intuitionistic set as IS-sets.

De nition 1.2. [9]

(a) Let X and Y are two non empty fixed sets. Let A = < X, A1, A2 > and B = < Y, B1, B2 > be two IS sets defined on X and Y respectively. Then the image of A under f, denoted by f(A), is the IS in Y defined by f(A) = < Y, f(A1), f(A2) >, where f(A2) = (f(A2)c)c.

(b) If X and Y are two non empty fixed sets. Let A = < X, A1, A2 > and B = < Y, B1, B2 > be two IS sets defined on X and Y respectively. Then the preimage of B under f, denoted by f−1(B), is the IS in X defined by f−1(B) = < X, f−1(B1), f−1(B2) >.

De nition 1.3. [9]

An intuitionistic topology(IT for short) on a nonempty set X is a family τ of ISs in X satisfying the following axioms:

(T 1) ø, X ∈ τ

(T 2) G1 G2 ∈ τ for any G1, G2 ∈ τ.

(T 3) ∪ Gi ∈ τ for any arbitrary family {Gi : i ∈ J } ⊆ τ.
Definition 1.4. [9] Let (X, τ) be an ITS and $A = \langle X, A^1, A^2 \rangle$ be an IS in X. Then the interior and closure of A are defined by
\[\text{Cl}(A) = \cap \{K : K \text{ is an ICS in } X \text{ and } A \subseteq K\}. \]
\[\text{int}(A) = \cup \{G : G \text{ is an IOS in } X \text{ and } G \subseteq A\}. \]

Definition 1.5. [8] Let X be a nonempty set and $p \in X$ a fixed element in X. Then the IS $\bar{p} = \langle x, \{p\}, \{p\}^c \rangle$ is called an intuitionistic point/IP for short) in X.

IP’s in X can sometimes be inconvenient when express an IS in X in terms of IP’s. This situation will occur if $A = \langle X, A^1, A^2 \rangle$ and $p \notin A_1$. Therefore we shall define vanishing IP’s as follows:

Definition 1.6. [8] Let X be a nonempty set and $p \in X$ a fixed element in X. Then the IS $p_\infty = \langle x, \phi, \{p\}^c \rangle$ is called a vanishing intuitionistic point (VIP for short) in X.

Definition 1.7. [8] Let $f : X \to Y$ be a function.

(a) Let \bar{p} be an IP in X. Then the image of \bar{p} under f, denote by $f(\bar{p})$, is defined by $f(\bar{p}) = \langle Y, \{q\}, \{q\}^c \rangle$, where $q = f(p)$ and

(b) Let p_∞ be a VIP in X. Then the image of p_∞ under f, denoted by $f(p_\infty)$, is defined by $f(p_\infty) = \langle Y, \phi, \{q\}^c \rangle$, where $q = f(p)$.

It is easy to see that $f(\bar{p})$ is indeed an IP in Y, namely $f(\bar{p}) = \bar{q}$ where $q = f(p)$, and it has exactly the same meaning of the image of an IS under the function f. $f(p_\infty)$ is also a VIP in Y, namely $f(p_\infty) = p_\infty$, where $q = f(p)$.

Definition 1.8. [9]

Let X be a nonempty fixed set. Then the operators $\llbracket, \rrbracket, \ll , \lll$ are defined on an intuitionistic set as $\llbracket A \rrbracket = \langle X, A^1, (A^1)^c \rangle$ and $\ll, \lll A = \langle X, (A^2)^c, A^2 \rangle$.

Lemma 1.9. [9]

If $A = \langle X, A^1, A^2 \rangle$ is an IS set, then $\overline{A} = \langle X, A^2, A^1 \rangle$.
Definition 1.10. [9] Let (X, τ) be a ITS.

(a) $\tau_1 = \{G^1 : \in X, G^1, G^2 \in \tau\}$ is a topological space on X. Similarly $\tau_2 = \{G^2 : \in X, G^1, G^2 \in \tau\}$ is a family of all closed sets of the topological space $\tau_2 = \{(G^2)^c : \in X, G^1, G^2 \in \tau\}$ on X.

(b) Since $G^1 \cap G^2 = \emptyset$ for each $G = \in X, G^1, G^2 \in \tau$, we obtain $G^1 \subseteq (G^2)^c$ and $G^2 \subseteq (G^1)^c$. Hence (X, τ_1, τ_2) is a bitopological space.

II. STAR INTUITIONISTIC SETS

In this chapter, we define a new IS namely star intuitionistic set and studied some of their basic properties.

Definition 2.1. Let X be a non empty fixed set and $A = \in X, A^1, A^2 \in \tau$ be an intuitionistic set. Then we define the star intuitionistic set $A^* = \in X, (A^2)^c \cap (A^1)^c >$, where A^1 and A^2 are the subsets of X.

Lemma 2.2. Let X be a non empty set and $A = \in X, A^1, A^2 >$ be an intuitionistic set. Then $A^* = \in X, (A^2)^c \cap (A^1)^c >$ is also an intuitionistic set.

proof:

To Prove: $\in X, (A^2)^c \cap (A^1)^c >$ is an IS, we have to prove that $((A^2)^c \cap (A^1)^c) \cap ((A^2) \cap (A^1)^c) = \emptyset$, which is so obvious and so

A^* is also an intuitionistic set.

Corollary 2.3. Let X be a non empty set. Then $\bar{\phi}^* = \in X, \phi^c - X^c, \phi \cap X^c >$ and $\bar{X}^* = \in X, X \cap \phi^c, X^c - \phi^c >$ are also star intuitionistic set.

Theorem 2.4. Let X be a non empty set with $A = \in X, A^1, A^2 \in \tau$ and $B = \in X, B^1, B^2 \in \tau$ be two given intuitionistic sets with $A^i, B^i (i = 1, 2)$ are subsets of X. If $A^* = \in X, (A^2)^c \cap (A^1)^c >$ and $B^* = \in X, (B^2)^c - (B^1)^c, (B^2) \cap (B^1)^c >$ are star intuitionistic sets on X, then $A \subseteq B$ implies $A^* \subseteq B^*$.

proof:

Given $A \subseteq B$. Then $A^1 \subseteq B^1$ and $B^2 \subseteq A^2$

It is easy to prove that $(A^2)^c - (A^1)^c \subseteq (B^2)^c - (B^1)^c$ and $(B^2) \cap (B^1)^c \subseteq A^2 \cap (A^1)^c$. So, $A^* \subseteq B^*$.

www.ijmsi.org

53 | P a g e
Remark 2.5. \(A^* = B^* \) iff \(A^* \subseteq B^* \) and \(B^* \subseteq A^* \).

Corollary 2.6. We can also prove the equalities

(i) \(\overline{A^*} = \overline{(X, A_2^* - A_1^*), (A^2) \cap (A^1)c, A_2^* - A_1^*} \).

(ii) \(\cup A_i^* = \overline{(X, \cup A_i^2), (\cup A_i^1)c, (\cup A_i^2) \cap (\cup A_i^1)c} \).

(iii) \(\cap A_i^* = \overline{(X, (\cap A_i^2)c, (\cap A_i^1)c, (\cap A_i^2) \cap (\cap A_i^1)c} \).

(iv) \(A^* - B^* = A^* \cap B^c \).

and it is easy to show that each R.H.S is also a star intuitionistic sets.

Corollary 2.7. The operators \([\cdot], \prec \) defined on an intuitionistic set can also be extended to star intuitionistic set as follows.

(i) \(\overline{A^*} = \overline{(X, (A^2)c - (A^1)c, (A^2)c - (A^1)c)c} \).

(ii) \(\prec A^* = \overline{(X, (A^2) \cap (A^1)c, ((A^2) \cap (A^1)c)c} \).

Here are some of the basic properties of the inclusion and complementation of star IS.

Corollary 2.8. Let \(A_i \) be IS’s in \(X \) where \(i \in J \), where \(J \) is an index set and \(A_i \) are corresponding star IS sets defined on \(X \) then

(a) \(A_i^* \subseteq B^* \) for each \(i \in J \Rightarrow \cup A_i^* \subseteq B^* \).

(b) \(B^* \subseteq A_i^* \) for each \(i \in J \Rightarrow B^* \subseteq \cup A_i^* \).

(c) \(\cup A_i^* = \cap A_i^* \); \(\cap A_i^* = \cup A_i^* \).

(d) \(A^* \subseteq B^* \Leftrightarrow B^* \subseteq A^* \).

(e) \(\overline{(A^*)} = A^* \).

(f) \(\overline{\phi^*} = \overline{X^*}, \overline{X^*} = \overline{\phi^*} \).

Now we shall define the image and preimage of star ISs. Let \(X, Y \) be two nonempty fixed sets and \(f: X \rightarrow Y \) be a function.

Let \(A \) and \(B \) be the IS sets on \(X \) and \(Y \) respectively.

Definition 2.9. (a) If \(B^* = \prec Y, (B^2)c - (B^1)c, B^2 \cap (B^1)c \) is a star IS in \(Y \), then the preimage of \(B \) under \(f \), denoted by \(f^{-1}(B) \), is the star IS in \(X \) defined by \(f^{-1}(B^*) = \prec X, f^{-1}((B^2)c - (B^1)c), f^{-1}(B^2 \cap (B^1)c) \).

(b) If \(A^* = \prec X, (A^2)c - (A^1)c, A^2 \cap (A^1)c \) is a star IS in \(X \), then the image of \(A \) under \(f \), denoted by \(f(A^*) \), is the star IS in \(X \) defined by \(f(A^*) = \prec Y, f((A^2)c - (A^1)c), f(A^2 \cap (A^1)c) \). Where \(f(A^2 \cap (A^1)c) = (f(A^2 \cap (A^1)c)c = Y - f(X - (A^2 \cap (A^1)c)) \).
Lemma 2.10. Let $A^* = \prec X, (A^0)^c - (A^1)^c, A^2 \cap (A^1)^c \succ$ is an Intuitionistic set. Then $A^2 \cap (A^1)^c \supseteq f^{-1}(f_+(A^2 \cap (A^1)^c))$.

proof:

$f^{-1}(f_-(A^2 \cap (A^1)^c)) = f^{-1}(Y - f(X - (A^2 \cap (A^1)^c)))$

$= f^{-1}(Y) - f^{-1}(f(X - (A^2 \cap (A^1)^c)))$

$\subseteq X - (X - (A^2 \cap (A^1)^c))$

$= A^2 \cap (A^1)^c$

$f^{-1}(f_-(A^2 \cap (A^1)^c)) \subseteq A^2 \cap (A^1)^c$

Theorem 2.11. Let $A_i^*(i \in J)$ be star IS sets corresponding to the IS sets A_i in X and $B_j^*(j \in k)$ be star IS's corresponding to the IS sets B_j in Y, and $f : X \rightarrow Y$ be a function. Then

(a) $A_i^* \subseteq A_j^* \Rightarrow f(A_i^*) \subseteq f(A_j^*)$.

(b) $B_i^* \subseteq B_j^* \Rightarrow f^{-1}(B_i^*) \subseteq f^{-1}(B_j^*)$.

(c) $A^* \subseteq f^{-1}(f(A^*))$ and if f is injective, then $A^* = f^{-1}(f(A^*))$.

(d) $f(f^{-1}(B^*)) \subseteq B^*$ and if f is surjective, then $f(f^{-1}(B^*)) = B^*$.

(e) $f^{-1}(\cup B_i^*) = \cup f^{-1}(B_i^*)$,

(f) $f^{-1}(\cap B_i^*) = \cap f^{-1}(B_i^*)$.

(g) $f(\cup A_i^*) = \cup f(A_i^*)$.

(h) $f(\cap A_i^*) \subseteq \cap f(A_i^*)$, and if f is injective, then $f(\cap A_i^*) = \cap f(A_i^*)$.

(i) $f^{-1}(\tilde{X}^*) = \tilde{X}^*$,

(j) $f^{-1}(\tilde{\phi}^*) = \tilde{\phi}^*$,

(k) $f(\tilde{\phi}^*) = \tilde{\phi}^*$,

(l) $f(\tilde{X}^*) = \tilde{Y}^*$, if f is surjective.

(m) If f is surjective, then $f(A^*) \subseteq f(A^*)$. If furthermore, f is injective, then have $f(A^*) = f(A^*)$.

(n) $(f^{-1}(\overline{B^*})) = f^{-1}(\overline{B^*})$.

www.ijmsi.org 55 | Page
proof:

(a) Given $A_1^t \subseteq A_2^t$, where $A_1^t = <X, (A_1^2)^c - (A_1^1)^c, A_1^2 \cap (A_1^1)^c >$

$A_2^t = <X, (A_2^2)^c - (A_2^1)^c, A_2^2 \cap (A_2^1)^c >$

To Prove: $f(A_1^t) \subseteq f(A_2^t)$

By definition $f(A_1^t) = <Y, f((A_1^2)^c - (A_1^1)^c), f_-(A_1^2 \cap (A_1^1)^c) >$. Where $f_-(A_1^2 \cap (A_1^1)^c) = (f(A_1^2 \cap (A_1^1)^c))^c$.

$f(A_2^t) = <Y, f((A_2^2)^c - (A_2^1)^c), f_-(A_2^2 \cap (A_2^1)^c) >$. Where $f_-(A_2^2 \cap (A_2^1)^c) = (f(A_2^2 \cap (A_2^1)^c))^c$. Also we can prove that

$f((A_1^2)^c - (A_1^1)^c) \subseteq f((A_2^2)^c - (A_2^1)^c)$ and $f_-(A_2^2 \cap (A_2^1)^c) \supseteq f_-(A_1^2 \cap (A_1^1)^c)$

$\Rightarrow f((A_1^2)^c - (A_1^1)^c) \subseteq f((A_2^2)^c - (A_2^1)^c)$.

Therefore $A_1^t \subseteq A_2^t \Rightarrow f(A_1^t) \subseteq f(A_2^t)$

(b) Given $B_1^t \subseteq B_2^t$, where $B_1^t = <X, (B_1^2)^c - (B_1^1)^c, B_1^2 \cap (B_1^1)^c >$. $B_2^t = <X, (B_2^2)^c - (B_2^1)^c, B_2^2 \cap (B_2^1)^c >$

To Prove: $f^{-1}(B_1^t) \subseteq f^{-1}(B_2^t)$

By definition $f^{-1}(B_1^t) = <X, f^{-1}((B_1^2)^c - (B_1^1)^c), f^{-1}(B_1^2 \cap (B_1^1)^c) >$

$f^{-1}(B_2^t) = <X, f^{-1}((B_2^2)^c - (B_2^1)^c), f^{-1}(B_2^2 \cap (B_2^1)^c) >$. One can very easily prove that $f^{-1}((B_1^2)^c - (B_1^1)^c) \subseteq f^{-1}((B_2^2)^c - (B_2^1)^c)$ and $f^{-1}(B_1^2 \cap (B_1^1)^c) \supseteq f^{-1}(B_2^2 \cap (B_2^1)^c)$.

hence $B_1^t \subseteq B_2^t \Rightarrow f^{-1}(B_1^t) \subseteq f^{-1}(B_2^t)$.

(c) To prove $A^* \subseteq f^{-1}(f(A^*))$ and if f is injective.

To prove: $A^* \subseteq f^{-1}(f(A^*))$.

$(A^2)^c - (A^1)^c \subseteq f^{-1}(f((A^2)^c - (A^1)^c))$ and $A^2 \cap (A^1)^c \subseteq f^{-1}(f_-(A^2 \cap (A^1)^c))$ (By lemma 2.10)

Hence $A^* \subseteq f^{-1}(f(A^*))$.
If \(f \) is injective then
\[
f^{-1}(f(A^*)) \subseteq f^{-1}(\langle X, (A^2)^c - (A^1)^c, (A^2 \cap (A^1)^c) \rangle)
\]
\[
\subseteq f^{-1}(\langle Y, f((A^2)^c - (A^1)^c), f_-(A^2 \cap (A^1)^c) \rangle)
\]
\[
= \langle X, f^{-1}(f((A^2)^c - (A^1)^c)), f^{-1}(f_-(A^2 \cap (A^1)^c)) \rangle
\]

Hence \(f^{-1}(f(A^*)) = \langle X, (A^2)^c - (A^1)^c, (A^2 \cap (A^1)^c) \rangle \)
\[
= A^*.
\]

(d) \(f(f^{-1}(B^*)) \subseteq B^* \) and if \(f \) is onto, then \(f(f^{-1}(B^*)) = B^* \)
\[
f(f^{-1}(B^*)) = f(f^{-1}(\langle Y, (B^2)^c - (B^1)^c, (B^2 \cap (B^1)^c) \rangle))
\]
\[
= f(\langle X, f^{-1}(B^2)^c - (B^1)^c, f^{-1}(B^2 \cap (B^1)^c) \rangle)
\]
\[
f(f^{-1}(B^*)) = \langle Y, f^{-1}(B^2)^c - (B^1)^c, f_-(f^{-1}(B^2 \cap (B^1)^c)) \rangle
\]
\[
\subseteq \langle Y, (B^2)^c - (B^1)^c, (B^2 \cap (B^1)^c) \rangle
\]
\[
= B^*
\]

Notice that
\[
f(f^{-1}(B^2)^c - (B^1)^c) \subseteq (B^2)^c - (B^1)^c
\]
\[
f_-(f^{-1}(B^2 \cap (B^1)^c)) = Y - f(X - f^{-1}(B^2 \cap (B^1)^c))
\]
\[
= Y - f(f^{-1}(Y) - f^{-1}(B^2 \cap (B^1)^c))
\]
\[
= Y - f(f^{-1}(Y - (B^2 \cap (B^1)^c)))
\]
\[
\supseteq Y - (Y - (B^2 \cap (B^1)^c))
\]
\[
= B^2 \cap (B^1)^c
\]

\[
f_-(f^{-1}(B^2 \cap (B^1)^c)) \supseteq B^2 \cap (B^1)^c
\]

(e) To prove \(f^{-1}(\cup B_j^*) = \cup(f^{-1}(B_j)^*) \)
\[
f^{-1}(\cup B_j) = f^{-1}(\langle Y, \cup B_j^1 \cap B_j^2 \rangle)
\]
\[
f^{-1}(\cup B_j^*) = f^{-1}(\langle Y, (\cup B_j^2)^c - (\cup B_j^1)^c, (\cap B_j^2) \cap (\cup B_j^1)^c \rangle)
\]
\[
= \langle X, f^{-1}((\cap B_j^2)^c - (\cup B_j^1)^c), f^{-1}((\cap B_j^2) \cap (\cup B_j^1)^c) \rangle
\]
\[
= \langle X, \cup(f^{-1}(B_j^2)^c - f^{-1}(B_j^1)^c), \cap(f^{-1}(B_j^2) \cap f^{-1}(B_j^1)^c) \rangle
\]
\[
= \cup f^{-1}(\langle Y, (B_j^2)^c - (B_j^1)^c, (B_j^2) \cap (B_j^1)^c \rangle
\]
\[
= \cup(f^{-1}(B_j)^*)
\]

Therefore \(f^{-1}(\cup B_j^*) = \cup(f^{-1}(B_j)^*) \)

(f) We need \(f^{-1}(\cap B_j^*) = \cap(f^{-1}(B_j)^*) \)
\[
f^{-1}(\cap B_j) = f^{-1}(\langle Y, \cap B_j^1 \cup B_j^2 \rangle)
\]

Now, \(f^{-1}(\cap B_j^2) = f^{-1}(\langle Y, (\cup B_j^2)^c - (\cap B_j^1)^c, (\cup B_j^2) \cap (\cap B_j^1)^c \rangle)
\]
\[
= \cap f^{-1}Y, f^{-1}((B_j)^c - (B_j^1)^c), f^{-1}((B_j^2) \cap (B_j^1)^c) \rangle
\]
\[
= \cap f^{-1}(\langle Y, (B_j^2)^c - (B_j^1)^c, (B_j^2) \cap (B_j^1)^c \rangle
\]
\[
= \cap(f^{-1}(B_j)^*)
Therefore \(f^{-1}(\bigcap B_j)^* = \bigcap (f^{-1}(B_j))^* \)

(g) To prove \(f(\bigcup A_i)^* = \bigcup (f(A_i))^* \)

\[
f(\bigcup A_i) = f(\bigtriangleup X, \bigcup A_i^1, \bigcup A_i^2 \succ)
\]

\[
f(\bigcup A_i^1) = f(\bigtriangleup X, (\bigcup A_i^1)^c - (\bigcup A_i^1)^c, (\bigcup A_i^2) \cap (\bigcup A_i^1)^c \succ)
\]

\[
= \bigtriangleup X, f((\bigcup A_i^2)^c - (\bigcup A_i^1)^c), f_-(\bigcup A_i^2) \cap (\bigcup A_i^1)^c) \succ \ldots \ldots (1)
\]

Also

\[
f((\bigcup A_i^2)^c - (\bigcup A_i^1)^c) = f((\bigcup A_i^2)^c - f(\bigcup A_i^1)^c)
\]

\[
= \bigcup f(A_i^2)^c - \bigcup f(A_i^1)^c
\]

\[
= \bigcup (f(A_i^2)^c - f(A_i^1)^c) \ldots \ldots (1)
\]

\[
f_-(\bigcup A_i^2 \cap (\bigcup A_i^1)^c) = Y - f(X - ((\bigcup A_i^2) \cap (\bigcup A_i^1)^c))
\]

\[
= Y - f(X) + f((\bigcup A_i^2) \cap (\bigcup A_i^1)^c)
\]

\[
= Y - f(X) + f((\bigcup A_i^2) \cap (\bigcup A_i^1)^c)
\]

\[
= Y - f(X) + f_-(\bigcup A_i^2) \cap (\bigcup A_i^1)^c)
\]

\[
= Y - f(X) + f_-(\bigcup A_i^2) \cap (\bigcup A_i^1)^c)
\]

\[
= \bigcup (f(A_i^2) \cap (A_i^1)^c) \ldots \ldots (2)
\]

from (1) and (2) in (1) we get

\[
f(\bigcup A_i^1) = \bigcup (f(A_i)^f)
\]

(h) \(f(\bigcap A_i)^* = \bigcap (f(A_i))^* \)

\[
f(\bigcap A_i) = f(\bigtriangleup X, \bigcap A_i^1, \bigcap A_i^2 \succ)
\]

\[
f(\bigcap A_i^1) = f(\bigtriangleup X, (\bigcap A_i^1)^c - (\bigcap A_i^1)^c, (\bigcap A_i^2) \cap (\bigcap A_i^1)^c \succ)
\]

\[
= \bigtriangleup X, f((\bigcap A_i^2)^c - (\bigcap A_i^1)^c), f_-(\bigcap A_i^2) \cap (\bigcap A_i^1)^c) \succ \ldots \ldots (II)
\]

Notice that

\[
f((\bigcap A_i^2)^c - (\bigcap A_i^1)^c) = f((\bigcap A_i^2)^c - f(\bigcap A_i^1)^c)
\]

\[
= \bigcap f(A_i^2)^c - \bigcap f(A_i^1)^c
\]

\[
= \bigcap (f(A_i^2)^c - f(A_i^1)^c) \ldots \ldots (1)
\]

\[
f_-(\bigcap A_i^2) \cap (\bigcap A_i^1)^c = Y - f(X - ((\bigcap A_i^2) \cap (\bigcap A_i^1)^c))
\]

\[
= Y - f(X) + f((\bigcap A_i^2) \cap (\bigcap A_i^1)^c)
\]

\[
= \bigcup (f(A_i^2) \cap (A_i^1)^c) \ldots \ldots (2)
\]
from (1) and (2) in (I) we get

\[\begin{align*}
&= \prec f(X), \cap (f(A_2^c)^c) - f(A_1^c)^c \cup (f((A_2^c) \cap (A_1^c))^c) \succ \\
&= \cap \prec f(X), f(A_2^c)^c - f(A_1^c)^c \cup f((A_2^c) \cap (A_1^c))^c \succ \\
&= \cap f(\cap A_1^c)^* = \cap f(A_2)^*
\end{align*} \]

(i) \(f^{-1}(Y^c) = f^{-1} \prec Y, \phi^c - Y^c, \phi \cap Y^c \succ \)

\[\begin{align*}
&= \prec f^{-1}(Y^c), f^{-1}(\phi^c - Y^c), f^{-1}(\phi \cap Y^c) \succ \\
&= \prec X, X - \phi, \phi \cap \phi \succ \\
&= \prec X, \phi^c - X^c, \phi \cap X^c \succ \\
&= \bar{X}^c,
\end{align*} \]

(ii) \(f^{-1}(\phi^c) = f^{-1} \prec Y, \phi^c - \phi^c, \phi \cap \phi^c \succ \)

\[\begin{align*}
&= \prec f^{-1}(Y^c), f^{-1}(\phi^c - \phi^c), f^{-1}(Y \cap \phi^c) \succ \\
&= \prec X, \phi - X, X \cap X \succ \\
&= \prec X, \phi^c - \phi^c, \phi \cap \phi^c \succ \\
&= \phi^c,
\end{align*} \]

(k) \(f(\bar{X}^c) = \prec f \prec X, \phi^c - X^c, \phi \cap X^c \succ \)

\[\prec f(X), f(\phi^c - X^c), f_-(\phi \cap X^c) \succ \cdots \cdots (I) \]

Notice that

\[f(\phi^c - X^c) = f(\phi^c) - f(X^c) \]

\[= \phi^c - Y^c \cdots (I) \]

\[f_-(\phi \cap X^c) = f_-(X) + f(\phi \cap X^c) \]

\[= Y - f(X) + f(\phi) \cap f(X^c) \]

\[= Y - f(X) + f(\phi) \cap f(\phi) \]

\[= f(\phi) \cap f(\phi) \cdots (2) \]

from (1) and (2) in (I) we get

\[\begin{align*}
&= \prec f(X), \phi^c - Y^c, f(\phi) \cap f(\phi) \succ \\
&= \prec f(X), \phi^c - Y^c, \phi \cap \phi \succ \\
&= \prec f(X), \phi^c - Y^c, \phi \cap Y^c \succ \\
&= \bar{Y}^c
\end{align*} \]

(l) \(f(\bar{\phi}^c) = \bar{\phi}^c \)

\[f(\bar{\phi}^c) = f \prec X, X^c - \phi^c, X \cap \phi^c \succ \]

\[= \prec f(X), f(X^c - \phi^c), f_-(X \cap \phi^c) \succ \]

\[= \prec Y, Y^c - \phi^c, Y \cap \phi^c \succ = \bar{\phi}^c \]
Notice that
\[
f(X^c - \phi^c) = f(\phi - X) = f(\phi) - f(X) = \phi - Y = Y^c - \phi^c
\]
\[
f_(X \cap \phi^c) = Y - f(X - (X \cap \phi^c))
\[
= Y - f(X) + f(X \cap \phi^c)
\]
\[
= f(X) \cap f(\phi^c)
\]
\[
= Y \cap \phi^c
\]
\[\text{(m)} \ f(\overline{A^*}) = f < X, (A^2)^c - (A^1)^c, A^2 \cap (A^1)^c >=
\]
\[
= f < X, A^2 \cap (A^1)^c, (A^2)^c - (A^1)^c >=
\]
\[
= f(X), f(A^2 \cap (A^1)^c), f_-(((A^2)^c - (A^1)^c)) >=
\]
\[
= Y, f(A^2 \cap (A^1)^c), f_-(((A^2)^c - (A^1)^c)) >=
\]
\[
f(A^*) = f < X, (A^2)^c - (A^1)^c, A^2 \cap (A^1)^c >
\]
\[
= Y, f_-(A^2 \cap (A^1)^c), f_-(((A^2)^c - (A^1)^c)) >\]..............(I)

since \(f \) is onto and \(f(\overline{A^*}) \subseteq f(A^*) \)

\(f_-(A^2 \cap (A^1)^c) \subseteq f(A^2 \cap (A^1)^c) \) and

\(Y - f(X - (A^2 \cap (A^1)^c)) \subseteq f(A^2 \cap (A^1)^c) \)

\(Y - f(X) + f_-(((A^2 \cap (A^1)^c)) \subseteq f(A^2 \cap (A^1)^c) \)

\(f((A^2 \cap (A^1)^c)) \subseteq f(A^2 \cap (A^1)^c) \)..............(1)

\(f((A^2)^c - (A^1)^c) \supseteq f_-(((A^2)^c - (A^1)^c)) \)

\(f((A^2)^c - (A^1)^c) \supseteq Y - f(X - (A^2)^c - (A^1)^c) \)

\(f((A^2)^c - (A^1)^c) \supseteq Y - f(X) + f_-(((A^2)^c - (A^1)^c)) \)

\(f((A^2)^c - (A^1)^c) \supseteq f((A^2)^c - (A^1)^c)) \)..............(2)

from (1) and (2) in (I) we get

\(f(\overline{A^*}) = f < X, (A^2)^c - (A^1)^c, A^2 \cap (A^1)^c >\)

\[\text{(n)} \ f^{-1}(\overline{B^*}) = f^{-1} < Y, (B^2)^c - (B^1)^c, B^2 \cap (B^1)^c >=
\]
\[
= f^{-1} < Y, B^2 \cap (B^1)^c, (B^2)^c - (B^1)^c >=
\]
\[
= f^{-1}(Y), f^{-1}((B^2)^c - (B^1)^c) >=
\]
\[
= f^{-1}(B^2 \cap (B^1)^c), f^{-1}((B^2)^c - (B^1)^c) >=
\]
\[
f^{-1}(\overline{B^*}) = f^{-1} < Y, (B^2)^c - (B^1)^c, B^2 \cap (B^1)^c >=
\]
\[
= f^{-1}(Y), f^{-1}((B^2)^c - (B^1)^c) >=
\]
\[
= f^{-1}(B^2 \cap (B^1)^c), f^{-1}((B^2)^c - (B^1)^c) >=
\]
\[
f^{-1}(\overline{B^*}) = f^{-1}(\overline{B^*})
III. STAR INTUITIONISTIC TOPOLOGICAL SPACES

Now we generalize the concept of "Star intuitionistic topological space" by means of Star intuitionistic sets: In this case the pair \((X, \tau)\) is always known as an intuitionistic topological space and any set in \(\tau\) is known as an intuitionistic open set in \(X\).

Definition 3.1. Let \((X, \tau)\) be an IS topological space. Let \(A_i^* = \langle X, (A_i^0)^c - (A_i^1)^c, A_i^0 \cap (A_i^1)^c \rangle >\) be a star IS set with \(A_i \in \tau\)

Then \(\tau^* = \{\phi^*, \bar{\tau}^*, A_i^*\}\) is called as the star IS-topological space.

Example 3.2. Let \(X = \{a, b, c, d, e\}\) with the topology \(\tau = \{\phi, X, A_1, A_2, A_3, A_4\}\)

where \(A_1 = \langle X, \{a, b, c\}, \{d\} \rangle, A_2 = \langle X, \{c, d\}, \{e\} \rangle, A_3 = \langle X, \{c\}, \{d, e\} \rangle, A_4 = \langle X, \{a, b, c, d\}, \{\phi\} \rangle\).

Then \((X, \tau)\) is an intuitionistic topological spaces in \(X\).

We define \(A^* = \langle X, (A^0)^c - (A^1)^c, (A^0) \cap (A^1)^c \rangle >\) and \(\tau^* = \{\phi^*, \bar{\tau}^*, A_i^*, A_i^0, A_i^1\}\)

where \(A_i^* = \langle X, \{a, b, c\}, \{d\} \rangle, A_i^2 = \langle X, \{c, d\}, \{e\} \rangle, A_i^3 = \langle X, \{c\}, \{d, e\} \rangle, A_i^4 = \langle X, \{a, b, c, d\}, \{\phi\} \rangle\).

Then \((X, \tau^*)\) is an StarITS on \(X\).

Definition 3.3. Let \((X, \tau)\) be a ITS and \(\tau = \{\phi, X, G_i^* : i \in J\}\)

Then we construct two StarITS’s on \(X\) as follows:

(a) \(\tau_1^* = \{\phi^*, \bar{\tau}^*, A_i^* \} \cup \{\langle X, \phi^*, G_i^* \rangle : i \in J\}\).

(b) \(\tau_2^* = \{\phi^*, \bar{\tau}^*, A_i^* \} \cup \{\langle X, (G_i^*)^c - \phi^*, G_i^* \cap \phi^* \rangle : i \in J\}\).

Proposition 3.4. Let \((X, \tau)\) be a Intuitionistic topological space on \(X\). Then we can also construct several ITS’s on \(X\) in the following way:

(a) \(\tau_{0.1}^* = \{(G^*)^c : \tau \in \tau^*\}\) (b) \(\tau_{0.2}^* = \{\langle \phi^*, G^* \rangle : G^* \in \tau^*\}\).

Remark 3.5. Let \((X, \tau^*)\) be a StarITS.

(a) \(\tau_1^* = \{(G^0)^c - (G^1)^c : \langle X, (G^0)^c - (G^1)^c, G^0 \cap (G^1)^c \rangle \in \tau^*\}\) is a topological space on \(X\).

Similarly \(\tau_2^* = \{G^2 \cap (G^1)^c : \langle X, (G^2)^c - (G^1)^c \rangle \in \tau^*\}\) is a family of all closed sets of the topological space \(\tau^* = \{(G^2)^c - (G^1)^c : \langle X, (G^2)^c - (G^1)^c \rangle \in \tau^*\}\) on \(X\).

(b) Since \((G^2)^c - (G^1)^c \cap G^2 \cap (G^1)^c = \phi\) for each \(G^* = \langle X, (G^2)^c - (G^1)^c, G^2 \cap (G^1)^c \rangle \in \tau^*\), we obtain \((G^2)^c - (G^1)^c \subseteq (G^2 \cap (G^1)^c)\) and \(G^2 \cap (G^1)^c \subseteq ((G^2)^c - (G^1)^c)^c\).

Example 3.6. Let \((X, \tau^*)\) be a StarITS .Let \(X = \{a, b\}\) and consider the family
\(\tau^* = \{\phi^*, \bar{\tau}^*, A^*, B^*\}\) where \(A^* = \langle X, \phi, \{a\} \rangle, B^* = \langle X, \phi, \{b\} \rangle, \phi^* = \langle X, \phi, X \rangle, \bar{\tau}^* = \langle X, X, \phi \rangle\). Then \(\tau_1^* = \{\phi : \langle X, \phi, \{a\} \rangle \in \tau^*\}\) is a topological space on \(X\).

Similarly \(\tau_2^* = \{\{a\} : \langle X, \phi, \{a\} \rangle \in \tau^*\}\) is the family of all closed sets of the topological space.
\[\tau_2^* = \{ \{a\}^c : \langle X, \phi, \{a\} \rangle^c \in \tau^* \} \] on \(X \)

(b) Since \(\phi \cap \{a\} = \phi \) for each \(G^* = \langle X, \phi, \{a\} \rangle \in \tau^* \), we obtained

\[
\phi \subseteq \{a\}^c \\
\phi \subseteq \{b\} \text{ and} \\
\{a\} \subseteq \{\phi\}^c \\
\{a\} \subseteq \{a, b\}
\]

Hence we conclude that \((X, \tau_1^*, \tau_2^*) \) is a bitopological space.

Definition 3.7. The complement \(\tilde{A}^* \) of an Star IOS \(A^* \) in an ITS \((X, \tau) \) is called an Star ICS in \(X \). Now we define closure and interior operations in StarITS’s.

Definition 3.8. Let \((X, \tau) \) be an ITS and \(A = \langle X, A^1, A^2 \rangle \) be an IS in \(X \).

Then the interior and closure of \(A \) are defined by

Let \((X, \tau) \) be an ITS \(A^* = \langle X, (A^2)^c - (A^1)^c, (A^2) \cap (A^1)^c \rangle \) be an IS in \(X \).

Then the int and cl of \(A \) are defined by

\[Cl(A^*) = \bigcap \{ K^* : K^* \text{ is an Star ICS in } X \text{ and } A^* \subseteq K^* \} \]

\[int(A^*) = \bigcup \{ G^* : G^* \text{ is an Star IOS in } X \text{ and } G^* \subseteq A^* \} \]

It can be shown that \(Cl(A^*) \) is an StarICS and \(int(A^*) \) is an StarIOS in \(X \), and \(A^* \) is an StarICS in \(X \) iff \(Cl(A^*) = A^* \) and \(A \) is an StarIOS in \(X \) iff \(int(A^*) = A^* \).

Example 3.9. Consider the Star ITS \((X, \tau) \) in Examples 3.2. If \(B^* = \langle X, \{a, c\}, \{d\} \rangle \), then we can write down

\[int(B^*) = \langle X, \{c\}, \{d, e\} \rangle \text{ and } Cl(B^*) = \langle X, X, \phi \rangle \]

Proposition 3.10. Let \((X, \tau) \) be an StarITS and \(A, B \) be IS’s in \(X \). Then the following properties hold:

(a) \(int(A^*) \subseteq A^* \)

(a^1) \(A \subseteq cl(A^*) \)
(b) $A \subseteq B \Rightarrow \text{int}(A^*) \subseteq \text{int}(B^*)$

(b') $A \subseteq B \Rightarrow \text{Cl}(A^*) \subseteq \text{Cl}(B^*)$

(c) $\text{int}(\text{int}(A^*)) = \text{int}(A^*)$

(c') $\text{cl}(\text{Cl}(A^*)) = \text{Cl}(A^*)$

(d) $\text{int}(A^* \cap B^*) = \text{int}(A^*) \cap \text{int}(B^*)$

(d') $\text{cl}(A^* \cap B^*) = \text{cl}(A^*) \cap \text{cl}(B^*)$

(e) $\text{int}(X^*) = \overline{X}$

(e') $\text{cl}(\overline{X}) = \overline{X}$

REFERENCES

