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ABSTRACT:  In this paper, a classical problem considered by Von Karman is extended to the laminar flow 

of a Bingham fluid over a rotating disk. The solution for the case of a Bingham fluid is also obtained as a 

validation of the numerical technique. The flow of a Newtonian fluid is a special case of the constitutive equations 

of the solution of the Bingham models. The numerical solution to the (highly) non-linear ODEs (ordinary 

differential equations) arising from the non-linear relationship between the shear stress and the shear rate is 

presented. 
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I. INTRODUCTION  
               Although the solution for a Newtonian fluid in a rotating disk system was first given many years ago 

(Von Kármán, 1921), the equivalent solutions for non-Newtonian fluids appeared more recently in the literature 

(Mitschka and Ulbricht, 1965). Several investigators have considered the flow of non-Newtonian liquids on a 

rotating disk from a theoretical prospective. Acrivos et al. (1960) investigated the flow of a non-Newtonian fluid 
(power-law fluid) on a rotating plate. The purpose of the present research is to gain a better understanding of the 

behavior of a Bingham fluid in the laminar boundary layer on a rotating disk. Numerical technique is applied to 

the flow of a Bingham fluid over a rotating disk. 

 

 Formulation of the Problem : 

 The laminar flow produced by a disk rotating in an infinite fluid, where the effects of flow confinement 

do not exist, is a classical fluid mechanics problem. For this system, it is usually convenient to use a stationary 

frame of reference.  
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                                          Figure 1.1 : Coordinate system for rotating disk flow 

 

          As shown in Fig. 1.1 the disk rotates about the z-axis with a constant angular velocity , and the origin, 0, 
is taken as the point where the axis of rotation intersects the rotating disk. A cylindrical coordinate system 

(r, ,z) is adopted such that  is orientated in the direction of rotation. Let  and  represent the 

components of the velocity vector in cylindrical coordinates. 

 

Boundary Conditions: 
The boundary conditions for the velocity components at the surface and far away from the plate are given, 

respectively, by: 

 , ,    at                               (1) 

, ,  as        (2) 
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        The value of vanishes near the surface of the disk, since there is no penetration. However, the value of  

as  is not specified; it adjusts to a negative value, which provides sufficient fluid necessary to maintain the 
pumping effect. As shown below, it becomes part of the solution to the problem. In contrast to the axial velocity, 

both the radial and tangential velocities go to zero at large axial distances from the disk. 
 

Equations of Motions: 

Applying the assumptions the transport equations for conservation of mass and momentum, in 

cylindrical co-ordinates, can be written as follows (Bird et al., 2002):  [160]  

 

Continuity equation: 

           (3) 

 

Momentum equations: 

in the r-direction: 

                    (4) 

in the -direction: 

                       (5) 

in the -direction: 

         (6) 

 

 Boundary Layer Approximations: 

Since the motion of the fluid is caused by the rotation of the disk, at sufficiently high Reynolds number 

the viscous effects will be confined within a thin layer near the disk. Therefore, further simplification can be 

obtained by considering the usual boundary-layer approximations (Owen and Rogers. 1989) [161] : 

• The component of velocity  is very much smaller in magnitude than either of the other two components; 

• The rate of change of any variable in the direction normal to the disk is much greater   than   its   rate   of   
change   in   the   radial   or   tangential directions 

 and  

• The only significant fluid stress components are  and  

• The pressure depends only on the axial distance from the axis of rotation. 
 

Therefore, equation (3) is unchanged; it is repeated as equation (7). Equations  (4)  to (6) reduce to 

equations (8) to (10). 

                            (7) 

             (8) 

            (9) 

              (10) 

 

Similarity Transformations: 

The classical approach for finding exact solutions of linear and non-linear partial differential equations is 
the similarity transformation. They are the transformations by which a system of partial differential equations 

with n-independent variables can be converted to a system with n-1 independent variables. The axisymmetric 

momentum equations associated with rotating disk flow have mainly been solved using a similarity 

transformation, which allows the governing partial differential equation set to be transformed into a set of 

ordinary differential equations. In the similarity solution, analytical relationships will be used and dimensionless 

parameters will be substituted so that the number of variables to be solved is reduced. 

 

The solution is based on the appropriate non-dimensional transformation variable given by von Karman 

(Cochran, 1934) [162] i.e., 

                   (11) 
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along with the associated set of dimensionless velocity components and pressure, i.e., 

                  (12a) 

                   (12b) 

                                (12c) 

                               (12d) 

 

This similarity transformation implies that all three dimensionless velocity components depend only on the 

distance from the disk . The boundary conditions are transformed into the  coordinate as follows: 
 

 ,      at               
 

,      as               

 

Note that the formulation above becomes problematic at the axis of the disk, where among other 

things the boundary layer assumptions break down. 

 

Bingham Model : 
        Consider the flow of a Bingham fluid over a rotating disk. A Bingham fluid does not deform until the stress 

level reaches the yield stress, after which the „„excess stress‟‟ above the yield stress drives the deformation. This 

results in a two-layered flow consisting of a „plug layer‟ and a „shear layer‟. Figure 1.1 shows a sketch of a 

Bingham fluid flowing over a rotating disk, using a cylindrical coordinate system (r, , z). 
             

 In a number of cases, the Bingham constitutive equation adequately represents the stress-deformation 

behaviour of materials with a yield stress. 
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Figure 1.2: Simplified schematic of the flow geometry of a Bingham fluid on a rotating disk 

 

This model relates the rate-of-deformation tensor,  defined below in terms of the velocity field vector , 

------------------------------------------------------                                       

to the deviatoric stress tensor, , using the following relations : 
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                      (16) 

 

When the magnitude of the shear stress  is greater than the yield stress , the material flows with an 

apparent viscosity given by: 

                    

 

where  is the viscosity of the deformed material, referred to as the plastic viscosity. The magnitudes  of 
the  shear stress and deformation  rate  are defined,  respectively,   

 --------------------------------------------------------------                            -  

 -------------------------------------------------------------                           --  

 

As using the summation convention for repeated indices. With the approximations noted in the 

preceding section, and assuming rotational symmetry, one then obtains using the conventional index notation to 

describe the individual components.  

                   

                    

 

                      

                  

 

It should be noted that it is not possible to explicitly express the deviatoric stress in terms of the rate-of-

deformation for a region where the stress is below the yield value, . The areas where   have a zero rate-

of-deformation, hence they translate like a rigid solid. Thus, this numerical method will neglect any unsheared 

region which might exist outside the boundary layer region, and instead focus on the sheared region which flows 

with apparent viscosity,  It follows that the apparent viscosity for a Bingham plastic fluid takes the following 
form 

 

                                  

 

For cylindrical coordinates, the two pertinent stress components in the plastic region assume the following 

forms: 

        

                    

 

For following boundary    layer    theory,    the tangential component,  and the 

radial component, , of the stress tensor become 

          

 

-------------------------------------------------------------                         -  
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Substitution of equation (21) into (24) and (25), gives 

-------------------                                

                     

 

These are the components of stress required to close the momentum equations given by Eqs. (8) and (9). 

            A useful parameter is the “Bingham Number”, which is the ratio of the yield stress, , to viscous stress. 

It is used to assess the viscoplastic character of the flow and is defined as: 

                                      

 

which is expressed by the following relation [152]:  

                        

 

where  is the kinematic plastic viscosity of the fluid,  is a characteristic length scale, 

and  indicates that this a local Bingham number. 
 

It is possible to reduce the continuity and momentum equations to a set of ordinary differential 

equations by substitution of equations (12 a, b, c, d) for velocity, equations (26) and (27) for the shear stress 

components, and equation (29) for the ratio , into equations (7) to (10). This was accomplished with the aid of 

Maple software, and the resultant equations are presented below.  

 

Continuity Equation: 

         
Momentum Equations: 

r-wise 

 

    

-wise 

 

                             

-wise 

-------------------------------------------                 
 

where a prime denotes differentiation with respect to . 

Since the last equation, (33), is the only one involving P , it may be integrated directly to give 

-----------------------    

 

where  is the value of  at the disk. Hence no numerical integration for  is necessary once F 
and H are determined. 

 

For solution purposes, it is advantageous to eliminate the second derivatives on the right hand side of 

equations (31) and (32) so as to obtain a single second order variable for each equation. Algebraic calculations 
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yield: 

-----------

------  

 

 
                                                            

 
 

The resultant equations can be considered as a generalized case including both Bingham and Newtonian 

fluids,  

since setting  will simplify these equations to represent a Newtonian fluid, i.e., 

         

      

      

        
      

The constitutive equation of the Bingham fluid has generated additional nonlinear terms in the 

momentum equations in comparison to the equations for a Newtonian fluid. Equations (35) and (36) are second 

order in both F and G, and first order in F, G and H. Therefore, we expect five arbitrary constants to appear in 

the general solutions for F, G and H, which are determined from the five boundary conditions given by (13) and 

(14). 

 

Numerical Solution of Governing Equations:  
From the basic theory of ODEs, there are two ways to solve the nonlinear second-order system of ODEs, 

either as an initial value problem (IVP) or boundary value problem (BVP). One of the most popular methods 

for solving the general BVP is the shooting method. The system of coupled ordinary nonlinear differential 

equations given by (30), (35) and (36) for Bingham fluids are put into a standard form, suitable for numerical 

computation, by defining the functions 

 

,     ,     ,    = G',       
 

These functions will convert the two second order ODEs into five first order ODEs, which then are to be 

solved numerically. Following this approach, equations (30), (35) and (36), together with the initial and 

boundary conditions given by (13) and (14), and the initial guesses  and  become 

------------  

 

 

 
-----------  

------------                            -  
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where for each equation, the initial condition is specified on the right hand margin. 

 

The numerical solution, which satisfies equations (42) to (46), was obtained by the above-mentioned 

multiple-shooting method. In the computation, the far-field boundary  is replaced by a sufficiently large 

value, , which is determined by numerical experiments [161]. Typically,  is used to represent the far-
field flow behavior. In the present case, the boundary conditions at infinity could not be satisfied using either the 

finite-difference method or the single shooting method, but with the multiple shooting method convergence was 

obtained. 
 

Having determined a successful solution technique, the system of Eqs. (42) to (46) was solved 

numerically for different values of the Bingham number, . The program was run for fifteen values of  

ranging in increments of 0.1 from 0 to 1 and increments of 0.5 from 1 to 3. This covers a reasonable range of 

values for common industrial fluids as characterized by their yield stress. 

 

II. CONCLUSION 
               In this chapter, the flow of a Bingham fluid over a rotating disk was considered. The flow is 

characterized by the dimensionless yield stress “Bingham number”,  which is the ratio of the yield and local 

viscous stresses. Using von Karman‟s similarity transformation, and introducing the rheological behaviour law 

of the fluid into the conservation equations, the corresponding nonlinear two-point boundary value problem is 

formulated. A solution to the problem under investigation is obtained by a numerical integration of the set of 
Ordinary Differential Equations (ODEs), using a multiple shooting method, which employs a fourth order 

Runge-Kutta method to implement the numerical integration of the equations, and Newton iteration to determine 

the unknowns  and .  
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