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Formulations and proofs of optimal expressions for control index
matrices for a class of double — delay differential equations.
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ABSTRACT: This paper derived the structure of the indices of control systems for a class of double — delay
autonomous linear differential equations on any given interval of length equal to the delay h for non —negative
time periods. The formulations and the development of the theorem relied on an earlier work by Ukwu (2013i)

on the interval [t - 4n,t 1. The derivation of the associated solution matrices exploited the continuity of these

matrices for positive time periods, the method of steps and backward continuation recursions to obtain these
matrices on successive intervals of length equal to the delay h. The proofs were achieved using ingenious
combinations of summation notations, greatest integer functions and multiple integrals. The indices were
derived using the stage — wise algorithmic format, starting from the right — most interval of length h. Our results
globally extend the time scope of applications of these matrices to the solutions of terminal function problems
and rank conditions for controllability and cores of targets.
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l. INTRODUCTION

The importance of indices of control systems matrices stems from the fact that they not only pave the
way for the derivation of determining matrices for the determination of Euclidean controllability and
compactness of cores of Euclidean targets but can be used independently for such determination. In sharp
contrasts to determining matrices the use of indices of control systems for the investigation of the Euclidean
controllability of systems can be quite computationally challenging; however this difficulty can be mitigated if
the coefficient matrix associated with the state variable at time t is diagonal. This paper pioneers the
development of the structure of these indices.

Literature on state space approach to control studies is replete with indices of control systems as key
components for the investigation of controllability. See Chukwu (1992), Gabsov and Kirillova (1976), Manitius
(1978), Tadmore (1984), and Ukwu (1987, 1992, 1996). Regrettably no author has made any attempt to obtain
general expressions for the associated matrices or special cases of such matrices involving the double -
delayh and 2h. Effort is usually focused on the single — delay mode with the usual approach being to start

from the interval [t - h,t ] and compute the index matrices for given problem instances; then the method of
steps and backward continuation recursive procedure are deployed to extend these to the intervals
[t - (k+1)h, t - kh], for positive integral k , not exceeding 2, for the most part. Such approach is rather

restrictive and doomed to failure in terms of structure for arbitrary k . In other words such approach fails to
address the issue of the structure of control index matrices. The need to address such short-comings has become

imperative; this is the major contribution of this paper, in the case the scalar counterparts, with its wide-ranging
implications for extensions to systems and holistic approach to controllability studies.
1. PRELIMINARIES

Consider the system:

o
— X (r,t)=-X (r,t)AO— X (7 + h,t)Al— X (r+2h,t)A2 1)
or

foro<r<t,r 2t—kh,k=0,1,... where
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o= { g ®

A, A ,A,arenxn constant matrices and = - X (z,t),z > X (z,t+ h)are nxn matrix functions. See

Chukwu (1992), Hale (1977) and Tadmore (1984) for properties of X (t, ). Of particular importance is the
factthat - — X (z,t) isanalytic ontheintervals(t - (j+1)h,t - jh), j=0,1,..; t -(j+1)h>0.Any

such r e (t, - (j+1)h,t — jh) iscalled aregular pointofr - X (t,7).

2.1 Definition
The expression ¢ X (z,t,)B is called the index of a given control system, where ¢ isan n -
dimensional constant column vector, X (z,t,) isdefinedin (1), B isan nx m constant matrix associated
with the control system:
X(t) = A x(t) + A x(t—h)+ A,x(t — 2h) + Bu(t)

and u(.) isan m- vector admissible control function. Thus the control index matrix, X (z,t,) determines the
structure of the index of a given control system.

We proceed to determine the structure of the above matrix. This will be achieved using the method of steps
and a Backward Continuation Recursive procedure.

LetK = [tl—(j+l)h,t1— jh],v jit,—(j+1)h >0, and fixedt > 0.
Ukwu (2013i) obtained the following expressions for the control index matrices,
X (T'tl) on KJ, for je{0,-,3}:

[ Aq (t, 71) .
|e e K (2)
| T
Ag(ti=r) Ao (t,—h-s,) Ay (s,-7)
e J’e“1 VAe T ds,, T e Ki; (3)
t,-h
— T s,+h
X (z, tl) - Ay (ty—7) Ay (t;—h=-s,) Ao(sl—r) A (t,—h-s.) Ay (s, —h=s,) Ay (s,—7)
|e - _[ e Ae I _" e Ae Ae ds ds,
| t,-h
Ay (t,—2h-5s)) -
| — J’ e ! AZeA”‘ )dsg, forr e K ; (4)
L t 2h
[ T s, +h
Ay (t,-7) Ay (ty—h-s,) Ay (s —r) Ag(ty=h-s,) Ag (s, —h=-s,) Ay (s,=7)
e _J‘e"l Yae j _[ e’ Ae’ “Ae ' " ldsds,
| ty=h t,-2h t,-h
Ay (t,~h=s) Ay(s,—h-s,) Ay (s, —h-s3) A, (s3—7)
- '[ I j e Ae Ae Ae ds ds,ds,
J t,-3h t;-2h t,-h
X(z,t) = | ; . ty-h
A, (t;—2h-s;) _ A, (s,—2h-s,) A, (t,-h-s) A -
(VRN A S3—T
- [ e Tt s - [ [ e A R TR A e M g s,
| ,-2h t,-3h s +2h
| . t,-2h
| A (s, ~s,~h) Ag(t;-2h-s,) Ay (s5-7)
J' J' 'Ae Ae ds,ds,, 7 e K, (5)
{ t,-3h s;+h

He also interrogated some topological dispositions of the solution matrices and deduced that the solution

matrices are continuous on the interval [t; — 4h, t; ] but not analytic due to the break-down of analyticity for

WWWw.ijmsi.org 12|Page



Derivation of an optimal expression for control index matrices...

re{t,t - h, t -2h,t —-3h}. These results are consistent with the existing qualitative theory on X (z,t).

See Chukwu (1992), Hale (1977), Tadmore (1984) and Ukwu (1987, 1996). See also analytic function (2010)
and Chidume (2007) for discussions on analytical functions and topology.

The objective of this paper is to formulate and prove a theorem on the general expression for
X (z,t,) on K, for je {0,1, 2,3}, byappropriating the above expression for

X (r,t,), for the case n =1, where n is the dimension of the state space.

Let r,, 1, r, be nonnegative integers and let P

o I ) denote the set of all permutations of

(1) 1(r).2(r,
0,0,...0 1,1,...1 2,2,...2: the permutations of the objects 0,1,and 2 in which i appears r, times,

— [S— ————

ro times r times r, times

ie {0,1, 2} .
3. Theorem: Ukwu-Garba’s Control Index Formula for Autonomous, Double — Delay Linear Systems (1),
with state space dimensionn = 1.

In (1),setn=1, A/ =a, A,=a,=b,A, =a,=c.Then:

(
|
| e ,7e K_; (6)
| i
|at—1 ! _'[1—[T+ih] a(t,—[r+i

X(z',tl):{e(l )+Zb.¥e(1[ n1)
|
|
|
|
(

i+k

i
HZHJ*Zk O (tl—[T+(|+2k)h]) ea(tl’[’J’(i*Zk)h])

+ b'c ,TeK ,j=1 7
2 ikt i "
k=1 i=0
The third component:
it .
2] i2x . (tl—[r+(i+ 2k)h]) a(t, e+ 260))
bc e
k=1 i=0 I'k'
il .
2] -2« (tl—[f+(i+2k)h]) a(t,~[z+(i+2k)h])
= > a,a, --a, e (8)
k=1 =0 (v, .V P e (i+k)!
V2 Vi) eP iy, 2 (k)

The equivalent form in (8) will be exploited to achieve the proof of the theorem.

Note that the formula can be rewritten in the form:

] .(tl—[T‘*‘ih])i a(t,-[r+ih])
—¢

X(r,t)=1.e"""+3 b sgn(max{0, j})

i=1 II
il .
L2 i-2x (t,-Le+(+2K)0]) o pgeaom)
+ 2 a, a, - a, e sgn(max{0, j —1}) (9)
k=1 =0 (v,.,v, .'vi+k)EP1(I)‘2(K) (I+ k)!
Proof

First, we prove that the theorem is true for z € K |, j € {0,1, 2,3} by comparing the results with
expressions (2) through (5) above. Then we use induction to complete the proof:
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a(tlfr).

tek,= X(r,t)=¢e""""(2)= X(r,1,)=¢ ,

a(t,-r) —a(r+h-t,) a(t,-r) a(t,-[z+h])
te K, = X (r,t)=¢ ~b(r+h-t)e e +b(t,— [z +h])e

T

o “lee -7 t,—[z+h
(3)= X (r.t,) = gt J. el o L o )+b(t1—[1’+ h])ea(l [r+h])
t,-h
( )
2 t, — [z +ih] )
177 i 1 L[z +ih]
reK,= X(T,t1):ea(t )+Zb .—ea(t in1)
i=1 il
( )0+1
t, — [z + (0 +2)h] “[r+(0+2)h]
+ Z av 1 ea(t1 )

(0 +1)!

Vieri0).20)

N zz bi (tl [z + ih]) ea(tl—[1+ih])

]
i=1 12

(ty-7)

= X(T't1)=ea +C(t1_[z—+2h])ea(t1—[r+2h])

(4)=> X (T’tl) _ ea(trr) +b (tl B [T N h])ea(tf[ﬂrh])

T sz+h T
Ay (t;—h-s) Ay(s;—h-s,) Ay(s,—7)
b e pe M e M s g, —

t;-2h t,-h t,-2h

a(t,-2h-s;)
c

e ds,

t,-[r+2h])

= X(rt)=e""" 4 b(t,~[7+ h])ea(tl_[ﬂh]) +e(t,—[7+ Zh])e(

2
b2 (tl - [T + h]) ea(tl—[r+2h])
2

2 t, - ih afty—[z+i
+Zb‘(1[f—+l])e (ta=[r+in])

i
i=1 12

a(t,-7) t,—[r+2h])

= X(r.t)=¢e +c(t17[r+2h])e(
(=T +in])
a(t,-7) i ( 1 a(tl [T+Ih])
K,= X(r,t.)=¢ + b' — e
T e K, (z.t) ?:l .
! (tl —[r+ (i+ Z)h]) a(t,-[r+(i+2)h])
e

+ z z aV1aV2 " avw+1

i=0 (vl,v2

(i +1)!

Viiner Gy, 21

a(t,-r ! i t_[T+ih] a(t,—[z+i
= X (r,t)=e"" )+Zb'¥e (t,-Te+in))

il
i=1 I

a(tl—[HZh])

+c(t1—[r+ 2h])e

2

t. — [z + 3h] alt. —[r+
+(bc+cb)—(1 ) g (ttresn)
21

e (t=[r+ih])
a(t,-7) ,( 1 a(t,—[r+ih])
5 X(r,t))=¢e b — e
(53)= X(r.t)) +Z1 .
sg+h s

T z*h
+c(t1 —[z+ 2h])e(l‘7[”2h]) - j J J eA“(l‘fhfs‘)be8(5‘7“2)bea(sthfsa)bea(s“’)dsldszds3

ll—Bh t,-2h t,-h
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t,—h

T T
a(t,—-2h-s;) _r a(s,—2h-s a(t,-h-s -

- [e T Teet™ ds, - [ [ e mzhms)p gl =) gty gs,

t,-2h t,-3h S;+2h
. t,-2h
a(s,-s,—h) a(t;-2h-s,) A, (s,—7)
- [ [ e Tee T The T Tds,ds,
t;=3h s;+h

s (t-[r+in]) e
- X(T,tl):ea(trr)JFZblue (ty-[z+in])

i=1

(11—[r+2h])
t — 2h
” + c( e+ ])e

2

(tl —[r+ 3h])

2!

ea(ll—[l+3h])

+(bc+ch)

2

(t, - [z +3h])

2!

a(\17[1+3h])
e

a(t,-[r+3h]
needless to say: (bc +cb) ( )

=be(t, —[r+ 3h])2 e

Therefore the theorem has been be verified for j e {0,1, 2,3}. Assume that the theorem is valid for
reK ,4<ps<j for some integers p and j. Then

j+l

r,s,eK =t -[j+llheK,, s+ heK ands  +2heK, . Hence:

T

N a(t,-[j+1]h-7) a(sﬁlfr)
= X (r,t)=X(t,-[j+1]h, t)e - J' X (s, +h t)be ds,
t,-[j+11h

T

- X(sj+1+2h,tl)cea(s’”iz)ds

t,-[j+11h

i (10)

s DB ([i+1-i01h) e
(), ([ ] )e(ll ) a1
i=1 il

([i+1-i-2kln)""

) (12)
k=1 =0 (ViVy V)€ Py oo i+ (I " k)'
o t —[s._ +(i+1)h]) _
i ally=r i+ 1 +1 a(t,-[r+(i+1)h]
#b(t~[e+(J+Dh])e™ 7= [ Fb g : L s, (13)
t-(i+n =1 I
[rim
ol ] ek (t,=[s,, +(i+1+2k)h]) a(ty—Tr (425 2K0h])
[ D a,a, - a, be ds,, (14)
t,-(j+1)h k=1 =0 (Vl)Vz«“rvnk)epl(i)vz(k) i+ k)!
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[ ‘ I (t,=[s,,,+(i+2)h] a(t,—[r+(i+2)h]
we(t —[r+(j+1h])e 7 - [ zb'c(l ”_I ) ot )dsM (15)
t,-(j+1)h =1 I
e
: 2 -2k t,—[s,, +({+2+2k)h] a(t,~[r+(i+2+2k)h]
- XX 3 a a - a & ) ce" )dsm (16)
t-(i+h K=l =0 ViV Vi er (k) (i+k)!

The expression (13) yields:

o S (t=Tewdnd) Ly B (L1 010) e
b(tl—[r+(j+1)h])e<l)+Zb.( )e(]l 1)_Z ( )c(ll ])(17)
i=2 II i=2 ||
The expression (14) yields:
HLH i+k
-2k t, [z + (i +2k)h] et
> a,a, - a, (. ) perttencaom (18)
K=t =0 Y YO eP Gy k) T+t
il
2 j-2k . . i+k .
[j+1-i-2k]h] t,-[r+(i+2k)h]
- D a a -~ a ( ) pe ) 19)
k=1 i=0 (V .V, .,V o o (i + k)!
1:V2 i+k)eP1(i1),2(k)

since the summations with i = 0 are infeasible and so may be equated to zero, yielding:
il
2] j-2k t,—[z+ (i+ 2k)h] aft,~[r+(i+
( 1 ) e (ta—lr+( 2k)h1), (20)

A A - A
kzl 2 2 iV (i+k)!

B R T P PPN

(with a trailing a, = c)

2]} j-2k j 1—'—2khl+ a(t,~[r+(i+2k)h
([j+1-i 1h) g (1t ezon) (21)

j-
1

a a ...a
2 2 it (i + k)!

K=t 20 VeV Vi er )y g

with a trailing a, = ¢
The expression (15) yields:

i+l

P N (PR o (3111 ) R
c(t,~[r+(i+Dh])e"™ ’+Zb'c(1 ) e 1
- (i+1)!
ple([j-1-i10)" a e
-y : gl (22)
i1 (i+1)!
The expression (16)
yields:
iyl
2 |12k tl—[r+(i+2k)h] alt. —fe+ (it
( ) e (1[ ( 2k)h]) (23)

g‘z 2 2z RIS (i +k)!

R0 e Vinkger () aq)

(with a trailing a, = c)

16|Page
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[Miet)]
. i+k
L Hﬁizk 5 ([i+1-i-2klh)  a(t,-[r+(i+2K)n]) (24)
_ a a --a €
k=2 120 (Ve Vi) eP iy 2 (k) o (o
(with a trailing a, = ¢)
IMi+11] i+k
[[72 )] jeam2x (tl—[r+(i+2k)h]) a(ty-[r+(i+2k)h]) (25)
— a a ---a €
2 ot (i +k)!
K=t =0 (Ve Vi e ) gk

(with a trailing a, = c)

(G-l G+ 2)h])
b'c

ea(tl—[7+(i+2)h])

(26)
o (i+1)!
IMi+17
i+k
W2l e ([j+1-i-2k]h) a(ty-[r+(i+2k)h])
- ) ) a,a, -a, . : e (27)
k=1 =0 (Vv Vi) e Py 20 - (I+ k)l

(with a trailing a, = c)

o i ([j —]-—i]h)i+1 a(ty=[r+(i+2k)h])
b 28
iZ:;; ¢ (i +1)! ¢ (28)

Therefore:

Y(t)=011)+(12)+ A7)+ (20)+ (21) + (22) + (25) + (26) + (27) + (28) = (29) + (30) + --- + (38)

aft,-r jbi j 1-i]h a(t,—[r+i
o i)y 3o DIHLZN) efcfevin)

. (29)
i=1 i!
Mi+111
] i+k
L2 ]) ea-ax ([i+1-i-2k]h) a(ty~[r+(i+2K)h])
* Z avlav2 e a, K € (30)
= =0 (v Vi) € Pag, 2 - (i+k)!
alty-7 o (T _[T+ih] | a(t,—[r+i j+1bi [J+1—|]h I a(t,~[r+i
b(tl—[‘r+(j+1)h])e(11 )+Zb|¥e (ti-r h])_ z ( )e(tl[ n1) (31)
i=2 11

i=2 it

i+k

(tl —[r+(i+ 2k)h])

a(ll—[r+(i+2k)h])

+ZZ z a a

Vi Vo Viek

: (32)
(Vo Vi ) e PGy a0 (|+ k)l

(with a leading a, = b)

[ j;LlH —1 and the fact that\\

|( noting that k even = |_|—l—|—| = rrlﬂ, jodd = rrlﬂ :r
( L2172 ]] [12]]7]
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( IMi+171 \
| INEEN e |
| jodd,kzu H:> j+1-2k=0> Z (.) = 0,being infeasible. So (.)is appropriate. |
L 2 i=0 k=1 J
[Mi+17]
. i+k
Lz ] e ([i+1-i-2k]h) a(ty-[r+(i+2k)h])
- > > a,a, --a, - e (33)
k=1 i=0 (V1*Vzv"'*‘/.+k)EP1(.)‘2(k) v (I+ k)'
(with a leading a, = b)
( )i+1
(- [r+ (i + 2)h] t,~[r+(i+2)h]
+c(tl—[r+(j+1)h])ea([1 )+Zb'c - . ea( )
1 (i+1)!
hie([i-1-i1h) " aft, tescison]
) ( ) alteem) (34)
- (i +1)!
el -
2 ] g t=li+2jlh)"" e
+ > > aa, a, | Lt (35)
k=1 o 1 2 i+k (i+ k)!
= i= (vl.vz,---.ka)ePl(‘)‘Z(k)
(with a leading a, = ¢)
i (t=Ti+ 210) "
B bic ea(tl—[r+(|+2)h]) (36)
o (i +1)!
] |
2 )] -z [i+1-i-2klh) " s peas
- )y )y a,a, - a, ( ) ) g\l (37)
j=1 =0 (Ve e Pr s P o (i+k)!
(with a leading a, = c)
N (et i () TS
A aft,—[z+(i+
b Y bl "t | (38)
o (i +1)!
(29)+(31) yields:
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o ( —[‘[+Ih]) Cteai
a(t a(t1 [r+|h])
b' ————e 39
Z . (39)
(32) + (35)
”iﬂ i+k
U2 ] jerea (tl—[r+(i+2k)h]) a(ty-Lr+ (s 2000))
yields: Z > > a,a, —-a, : e (40)
=0 (v v, I+k)EP ) 2(k) (|+ k)l
Expressions (30) + (33) + (37) yield zero; the expressions cancel out.
Expressions (34) + (34) + (38) yield zero; the expressions cancel out.
Therefore,on K |, X (r,t,) reducesto X (z,t) = expression (39) + expression (40)
ot —[T+|h]) alt,~[r+ih]
= X(r,t) Zb & SELARLAPL )
[+l i+k
L2l g (tl—[7+(i+2k)h]) afty-[r+(i+2k)h])
DIEED) > a,a, ~a, . _ e (41)
K=l 020 (Ve )€ Py 20 (i+k)!
for 7 € K, ;. This completes the proof of the theorem.
3.1 Corollary
If A, =a=0, then
[
|
|1, 7€ K, (42)
| |
|0 (t, - [z +ih])
X(r,t)=41+Y b’
| i=1 I'
| H—iﬂ i+k
ERiBET. [t~ [z + (i + 2k)h])
| + b'c ,reK ,j21 (43)
. J
L k=1 i=0 itk!
Proof
The proof is immediate, noting that A =0 = " =1,

I1l. CONCLUSION
This paper relied greatly on the optimal deployment of combinatorial analysis and change of variables
technique, without which its development would be impossible. The paper has provided a sound basis for its
extension to more general systems. Such extension must of necessity rely on multinomial distributions, the
method of steps and backward continuation recursive procedure.
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