NEVER PRIME!

D.Bratotini and M.Lewinter

Abstract

We find pairs, (a, b) of opposite parity, where a and b are natural numbers greater than 1 such that $f(n)=a^{n}+b$ is composite for all $n \geq 2$.

Let $f(n)=a^{n}+b$, where a, b, and n are natural numbers greater than 1 . Note that if a and b have the same parity, then a^{n} and b have the same parity, in which case $f(n)$ is even and is, therefore, composite. Can we find pairs, (a, b) of opposite parity such that $f(n)$ is composite for all $n \geq 2$? We will show, as an illuminating example, that $f(n)$ $=14^{n}+11$ is composite for all $n \geq 2$. We shall take the moduli of both sides of $f(n)=14^{n}+11, \bmod 15$, obtaining

$$
\begin{equation*}
f(n)=(-1)^{n}+11(\bmod 15) \tag{*}
\end{equation*}
$$

Case 1: n even. $\left(^{*}\right)$ becomes $f(n)=1+11=12(\bmod 15)$, implying that $f(n)=12+15 k$, for some integer, k, so $3 \mid f(n)$.

Case 2: n odd. $\left({ }^{*}\right)$ becomes $f(n)=-1+11=10(\bmod 15)$, implying that $f(n)=10+15 k$, for some integer, k, so $5 \mid f(n)$. Done.

Remark: $f(n)=14^{n}+(11+30 k)$ is composite for all $n \geq 2$, and for all integers, k. Note that will assume positive and negative values.

We have the following theorems:

Theorem 1: Let m be a given positive odd integer > 1, and let $f(n)=(2 m+1)^{n}+(m-1)$, that is, $\quad a=2 m+1$, which is odd, and $b=m-1$, which is even. Then $f(n)$ is composite for all $n \geq 2$.

Proof: By the Binomial Theorem, we have

$$
\begin{aligned}
f(n)= & (2 m)^{n}+\binom{n}{1}(2 m)^{n-1}+\binom{n}{2}(2 m)^{n-2}+\binom{n}{3}(2 m)^{n-3}+\cdots+\binom{n}{n-1}(2 m)+1+(m-1)= \\
& (2 m)^{n}+\binom{n}{1}(2 m)^{n-1}+\binom{n}{2}(2 m)^{n-2}+\binom{n}{3}(2 m)^{n-3}+\cdots+\binom{n}{n-1}(2 m)+m
\end{aligned}
$$

Since every term in this last expression contains a factor, m, we see that $3 \mid f(n)$.
We can generalize the Theorem by changing $(m-1)$ to $(k m-1)$ for any odd natural number, k.

Theorem 2: Let $f(x)=x^{2}+x+2$, where x is a natural number. Even though $f(x)$ can't be factored algebraically, it never assumes a prime value.

Proof: Since x and x^{2} have the same parity (both even or both odd), their sum, $x^{2}+x$, is even. Then $f(x)=x^{2}+x$ +2 is always even. As the only even prime is 2 and since $f(x)>2$, we are done.

Remark: The repunit, R_{m}, consists of m ' 1 's. Let $f(n, k)=10^{n}+\mathrm{R}_{3 k+2}$, where $n \geq 2$ and $k \geq 0$. Then $f(n, k)$ never assumes prime values. This follows from the fact that $f(n, k)$ has exactly 3 ' 1 's and any number of ' 0 's, so its digit sum is 3 .

References

[1]. M.Lewinter, J.Meyer, Elementary Number Theory with Programming, Wiley \& Sons. 2015.
[2]. D. Burton, Elementary Number Theory, McGraw-Hill, 2005.

