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ABSTRACT: The unknotting numberof a knot is the smallest number of crossing changes required to obtain the 

unknot, the minimum taken over all theregular projections of this knot. In this paper, we extend a lower bound 

of the unknotting number of classical knots to welded knots. 
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I. INTRODUCTION 
The virtual knot theory in [4] and welded knot in theory [2] are two generalizationsof classical knot 

theory in Euclidian three space. The basic task to study theknot theory is to find knot invariants. Many knot and 

link invariants have beendiscovered and studied, mostly in the 20th and 21st centuries. Several classicalknot 

invariants can be extended to those of virtual or welded knots. For example,the knot group and the knot quandle 

are invariants of virtual knots and weldedknots. The Jones polynomial is a well-defined invariant of virtual links 

[4] but notwell defined to welded links.  Hence there is some differences between these two theories.It will be 

interesting to study the difference between them. 

A virtual knot diagram is a generic immersion of the circle into the plane, withdouble points 

representing classical crossings and virtual crossings. The branchesof a classical crossing are divided into an 

overpass and an underpass in a usual way.A virtual crossing is represented by two crossing arcs with a small 

circle placedaround the crossing point.Two virtual knot diagrams are equivalent under ambient isotopy and 

some typesof local moves (generalized Reidemeister moves): Classical Reidemeister moves (R1-R3), virtual 

Reidemeister moves (V1-V3) and mixed Reidemeister moves (V4) (seeFigure 1). 

 

 
Figure1. Generalized Reidemeister moves of virtual knot theory. 

 

A virtual knot is the equivalence class of a virtual knot diagram. To the generalized Reidemeister 

moves on virtual diagrams one could add the following localmoves in Figure 2, called forbidden moves of type 

F1 (left) and F2 (right).If allowed the forbidden move F1, then one can obtain the theory of Weldedlinks whose 

interest is growing up recently because of the fact that the weldedbraid counterpart can be defined in several 

equivalent ways (for instance in termsof configuration spaces, mapping classes and automorphisms of free 

groups [1]). Ifallowed two forbidden moves, one can get the theory called Fused knot or Unweldedknot which is 

a trivial theory, since any knot in this theory is equivalent to thetrivial knot [3, 6]. 
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Figure 2. Forbidden moves F1(left), F2(right). 

 

Several invariants in the classical knot theory can be naturally extended to avirtual knot, including the 

Jones polynomial and the knot group ( )G K . As thesame as the Wirtinger presentation for a classical knot, one 

can apply the sameprocedure to associate to a virtual knot K an abstract group ( )G K . The group ( )G K  has one 

generator for each arc starting from an under-crossing and endingat an under-crossing, and one relation for each 

classical crossing, just as in Figure3. In this construction, we ignore the virtual crossing of K. This construction 

wasfirst introduced by Kauffman in [4]. The knot group ( )G K  is invariant under allgeneralized Reidemeister 

moves and hence is an invariant of a virtual knot. Theknot group ( )G K  does not also change under the 

forbidden move F1. So the knotgroup ( )G K  is an invariant of a welded knot. It is still an open problem whether

( )G K  detects the trivial knot among welded knots. 

 
Figure3. Relation at a crossing. 

 

Let K  be an oriented tame knot in a 3-sphere
3S , and let K be a diagram i.e.the image under a regular 

projection of
3S into 

2S . On all diagrams representing K , the minimum number of exchanges of overcrossings 

and undercrossings requiredto deform K into a trivial knot is called the unknotting nunber of K  , denoted by

( )u K , and the minimum number of crossings is called the crossing number of K  ,denoted by ( )C K .Let G  

be the fundamental group of 
3 ( )S N K , and G be the commutatorsubgroup of G . Then G is the normal 

subgroup of G  such that 

/G G Z  . 

The group G  is the semi-product of Z  and G , that is, there is a homomorphism from Z  to

( )Aut G as in [2]. If there are n  elements, say 1 2, ,..., nx x x , in G such that G isthe normal closure of 

1 2, ,..., nx x x in G , that is,
1 2, ,..., G

nG x x x   ,and if n  is minimal along all such presentations of G in 

G , then we define ( ) .a K n  Since K is trivial in 
3S iff   3

1  S N K   is infinite cyclic, ( ) 0a K  iff

K is trivial in 
3S . 

In 2006, Ma and Qiu[5] showed that ( ) ( )u K a K  for any classical knot K . In thisnote, we 

generalize this result to welded knot theory. 

 

Theorem 1. For a welded knot K, ( ) ( )u K a K . 

 

II. THEPROOF OF THEOREM 1 
 

Simillar to the methods of Ma and Qiu, we give a modified Wirtinger presentation asfollows.Let K  be 

a welded knot with a given orientation and  D K be a projectiondiagram of K  with n  classical crossings, say

1 2, ,..., nv v v . Now the n crossings separate  D K  into 2n  arcs, we denote the 2n arcs by 1 2 2, ,..., na a a  such 

that ia  connectswith 1ia   and 1ia  (mod2n) as in Figure 4(left). Then we obtain a presentation of ( )G K  such 

that each arc aiinduces a generator, denoted by ix , and each crossing jv induces two relations jC  and jA , 
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where 
jC is 1 1k i i kx x x x   , and 

jA is 1k kx x  for some i  and k  as in Figure 4(right).Comparing with the 

Wirtinger presentation, note that in Wirtinger presentation,n crossings separate  D K  into just n  arcs, and 
jC

is the proper relation given bythe crossing in the Wirtinger presentation, and 
jA is just the relation that 

identifies kx and 1kx  . Since they are the same generator in the Wirtinger presentation. Sothis modified 

Wirtinger presentation gives a presentation of ( )G K  such that 

 

1 2 2 1 2 1 2( ) , ,..., | , ,..., , , ,..., .n n nG K x x x C C C A A A  

 

 
Figure4. Labeling under the crossing change. 

 

 

Proof of Theorem 1. Let jB  be the relation 1i ix x   for the crossing jv inwhich jC is 

1 1k i i kx x x x   , and jA is 1k kx x  for some i and k . Then, after doing a crossingchange on jv , jA

transforms to 
jB , but 

jC is the same, as in Figure 2. Since, afterdoing      u D K u times crossing 

changes, we obtain a trivial knot, so 

1 2 1 2
1 2 2 1 2, ,..., | , ,..., , , ,..., , , ,...,

u u j nu
n n j j j j jx x x C C C B B B A A A

 

 

 

is an infinite cyclic group, where 1 2{ , ,..., } {1,2,..., }nj j j n . 

Since [ ]ix  is the generator of /G G Z  ,so 

1 2 1 21 2 2 1 2, ,..., | , ,..., , , ,..., , , ,...,
u nn n j j j j j jx x x C C C B B B A A A  

 

is also the infinite cyclic group. Since 
1 2 1 2
, ,..., , , ,...,

u u

G

j j j j j jB B B G G B B B   ,hence 

 

( ( )) ( )u D K a K  for any ( )D K . 

 

That means ( ) ( )u K a K . 

 

 

III. CONCLUSION 
The smallest number of times  of crossing changes of a knot  must be passed through itself to untie it. 

Lower bounds can be computed using relatively straightforward techniques, but it is in general difficult to 

determine exact values.There are many algebraic invariants of classical knots which have relations with 

unknotting number. It is worth extending these invariants to virtual knot theory and welded knot theory. 
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