# Some New Types of Soft Irresolute Mappings in Soft Generalized Topological Spaces

M. Supriya<sup>1\*</sup> and Dr. R. Selvi<sup>2</sup>

<sup>1</sup>Research Scholar (Reg. No: 20211202092007), Department of Mathematics, Sri Parasakthi College for Women, Courtallam - 627802, Tamilnadu, India, Affiliated to ManonmaniamSundaranar University, Abishekapatti, Tirunelveli - 627012, Tamilnadu, India.

<sup>2</sup>Associate Professor and Head, Department of Mathematics, Sri Parasakthi College for Women, Courtallam - 627802, Tamilnadu, India, Affiliated to ManonmaniamSundaranar University, Abishekapatti, Tirunelveli - 627012, Tamilnadu, India.

#### Abstract

In this paper, we introduced the notion of some new types of soft irresolute functions namely soft minimal  $(\mu, \eta)$ -irresolute, soft maximal  $(\mu, \eta)$ -irresolute, soft para  $(\mu, \eta)$ -irresolute, soft  $(\mu, \eta)$ -pre-irresolute, soft  $(\mu, \eta)$ -a-irresolute and soft  $(\mu, \eta)$ - $\beta$ -irresolute mappings in soft generalized topological spaces. Also, we investigate some of the properties of the above irresolute mappings.

**Key words:** soft minimal  $(\mu, \eta)$ -irresolute, soft maximal  $(\mu, \eta)$ -irresolute, soft para  $(\mu, \eta)$ -irresolute, soft  $(\mu, \eta)$ -pre-irresolute, soft  $(\mu, \eta)$ - $\beta$ -irresolute.

2010 Mathematics Subject Classification: 54A05, 54C05, 54G20.

Date of Submission: 25-02-2024 Date of acceptance: 08-03-2024

#### I. Introduction:

Topology is an important area of mathematics, with many applications in the domain of computer science and physical sciences. In 1999 D. Molodtsov [17] initiated the concept of soft set theory as a mathematical tool for modelling uncertainties. A soft set is a collection of approximate descriptions of an object. Molodtsov [18] applied the soft set theory in several areas of mathematics such as game theory, probability, Perron and Riemann Integration and theory of measurements. He has analysed that the soft set is used to eradicate problems occurring in the field of economics, social science, engineering, medical science, etc. Maji et al. [15] have further improved the theory of soft sets. N. Cagman et al. [1] modified the definition of soft sets which is similar to that of Molodtsov and also Cagman [8] formulated the maximum decision making method by means of soft matrix theory. Many researchers have worked on the topological structure of soft sets. Bashir Ahmad et al.[6] have defined the soft topological structures by using soft points, B.chen [10] was the first one who studied the weak forms of soft open sets and scrutinized soft semiopen sets in soft topological spaces and studied some of its properties. Arockiarani and Arokialancy[3] determined soft β-open sets and prolonged to study weak forms of soft open sets in soft topological space. Gunduz Aras et al.[2] investigated some soft continuous functions for a fixed number of parameters on the initial universe. Mahanta and Das [14] classified many forms of soft mappings such as irresolute, semicontinuous and semiopensoft mappings. Muhammad Shabir et al. [22] introduced soft topological spaces. In 2002 A. Csaszar [11] introduced the concept of generalized topology and also studied some of its properties.

Soft generalized topology is relatively new and promising domain wich lead to the development of new mathematical models and innovative approaches that will give solution to complex problems in engineering and environment. Sunil Jacob John et al. [12] introduced the concept of soft generalized topological spaces in 2014. sunil Jacob John [13] also introduced some interesting properties of the soft mapping  $\pi: S(U)_E \to S(U)_E$  which satisfy the condition  $\pi F_B \subset \pi F_D$  whenever  $F_B \subset F_D \subset F_E$  in soft  $\pi$ -open sets in soft generalized topological spaces in 2015. S. Z. Bai and Y. P. Zuo [5] introduced the concept of g- $\alpha$ -irresolute functions in generalized topological spaces in the year 2011.

These concepts motivate us to enhance our further study in some new types of soft irresolute functions in soft generalized topological spaces.

#### II. **Preliminaries:**

#### **Definition: 2.1 [13]**

A soft set  $F_A$  on the universe U is denoted by the set of ordered pairs

 $F_A = \{(e, f_A(e)) \mid e \in E, f_A(e) \in \mathcal{P}(U)\}$  where  $f_A : E \to \mathcal{P}(U)$  such that  $f_A(e) = \emptyset$  if  $e \notin A$ . Here  $f_A$  is called an approximation function of the soft  $set F_A$ . The value of  $f_A(e)$  may be arbitrary, some of them may be empty, some may have nonempty intersection. The set of all soft sets over U with E as the parameter set will be denoted by  $S(U)_E$  or simply S(U).

### **Definition: 2.2 [13]**

Let  $F_A \in S(U)$ . If  $f_A(e) = \emptyset$ , for all  $e \in E$ , then  $F_A$  is called an empty soft set, denoted by  $F_0$ .  $f_A(e) = 0$ Ømeans there is no element in U related to the parameter e in E. Therefore we do not display such elements in the soft sets as it is meaningless to consider such parameters.

#### **Definition: 2.3 [12]**

Let  $F_A \in S(U)$ . If  $f_A(e) = U$ , for all  $e \in A$ , then  $F_A$  is called an A-universal soft set, denoted by  $F_{\tilde{A}}$ . If A = E, then the A-universal soft set is called an universal soft set, denoted by  $F_{\tilde{E}}$ .

#### **Definition: 2.4 [13]**

Let  $F_A \in S(U)$ . Then, the soft complement of  $F_A$ , denoted by  $(F_A)^c$ , is defined by the approximate function,  $f_A{}^c(e) = (f_A(e))^c$ , where  $(f_A(e))^c$  is the complement of the set  $f_A(e)$ , that is,  $(f_A(e))^c = U \setminus f_A(e)$  for all  $e \in E$ .

#### **Definition: 2.5 [12]**

Let  $F_A \in S(U)$ . A Soft Generalized Topology (SGT) on  $F_A$ , denoted by  $\mu$  (or)  $\mu_{F_A}$  is a collection of soft subsets of  $F_A$  having the following properties:

i. 
$$F_{\emptyset} \in \mu$$
  
ii.  $\{F_{A_i} \subseteq F_A \mid i \in J \subseteq N\} \subseteq \mu \implies \bigcup_{i \in J} F_{A_i} \in \mu$ 

ii.  $\{F_{A_i} \subseteq F_A \ / \ i \in J \subseteq N\} \subseteq \mu \implies \bigcup_{i \in J} F_{A_i} \in \mu$ The pair  $(F_A, \mu)$  is called a Soft Generalized Topological Space (SGTS). Observe that  $F_A \in \mu$  must not hold.

### **Definition: 2.6 [12]**

Let  $(F_A, \mu)$  be a SGTS. Then every element of  $\mu$  is called a soft  $\mu$ -open set.

### **Definition 2.7 [19]**

Let  $(X,\tau)$  be a topological space. A nonempty open set U of X is said to be a minimal open set if and only if any open set which is contained in U is Ø or U.

### **Definition 2.8[20]**

Let  $(X, \tau)$  be a topological space. A proper nonempty open subset U of X is said to be a maximal open set if any open set which contains U is X or U.

### **Definition 2.9[4]**

Any open subset U of a topological space X is said to be a paraopen set if it is neither minimal open nor maximal open set.

### **Definition: 2.10 [12]**

A soft generalized topology  $\mu$ on  $F_A$  is said to be strong if  $F_A \in \mu$ .

### **Definition: 2.11 [24]**

A proper non-empty soft  $\mu$ -open subset  $F_K$  of a soft generalized topological space ( $F_A$ ,  $\mu$ ) is said to be soft minimal  $\mu$ -open set if any soft $\mu$ -open set which is contained in  $F_K$  is  $F_\emptyset$  or  $F_K$ . The family of all soft minimal μ-open sets in a soft generalized topological space (  $F_A$ , μ ) is denoted by  $S\mathcal{M}_μO(F_A)$ .

#### **Definition: 2.12 [13]**

Let  $(F_{\tilde{E}}, \mu)$  be a SGTS. Then a soft set  $F_G \subset F_{\tilde{E}}$  is said to be a soft  $\mu$ -pre-open set iff  $F_G \subset i_\mu c_\mu F_G$  (i.e., the case when  $\pi = i_\mu c_\mu$ ). The class of all soft  $\mu$ -pre-open sets is denoted by  $\rho_{(\mu)}$  or  $\rho_\mu$ .

#### **Definition: 2.13 [13]**

Let  $(F_{\tilde{E}}, \mu)$  be a SGTS. Then a soft set  $F_G \subset F_{\tilde{E}}$  is said to be a soft  $\mu$ -semi-open set iff  $F_G \subset c_\mu i_\mu F_G$  (i.e., the case when  $\pi = c_\mu i_\mu$ ). The class of all soft  $\mu$ -semi-open sets is denoted by  $\delta_{(\mu)}$  or  $\delta_\mu$ .

### **Definition: 2.14 [13]**

Let  $(F_{\tilde{E}}, \mu)$  be a SGTS. Then a soft set  $F_G \subset F_{\tilde{E}}$  is said to be a soft  $\mu$ - $\alpha$ -open set iff  $F_G \subset i_\mu c_\mu i_\mu F_G$  (i.e., the case when  $\pi = i_\mu c_\mu i_\mu$ ). The class of all soft  $\mu$ - $\alpha$ -open sets is denoted by  $\alpha_{(\mu)}$  or  $\alpha_\mu$ .

#### **Definition: 2.15 [13]**

Let  $(F_{\tilde{E}}, \mu)$  be a SGTS. Then a soft set  $F_G \subset F_{\tilde{E}}$  is said to be a soft  $\mu$ - $\beta$ -open set iff  $F_G \subset c_\mu i_\mu c_\mu F_G$  (i.e., the case when  $\pi = c_\mu i_\mu c_\mu$ ). The class of all soft  $\mu$ - $\beta$ -open sets is denoted by  $\beta_{(\mu)}$  or  $\beta_\mu$ .

### **Definition: 2.16 [16]**

A soft mapping  $g: A \to B$  is called soft pre-continuous (resp., soft semicontinuous) if the inverse image of each soft open set in B is soft pre-open (resp., soft semiopen) set in A.

### **Definition: 2.17 [16]**

A soft mapping  $g: A \to B$  is called soft  $\alpha$ -continuous if the inverse image of each soft open set in B is soft  $\alpha$ -open set in A.

## **Definition: 2.18 [6]**

A soft mapping  $g: A \to B$  is called soft  $\beta$ -continuous (resp., soft  $\alpha$ -continuous, soft precontinuous, and soft semicontinuous) if the inverse image of each soft open set in B is soft  $\beta$ -open (resp., soft  $\alpha$ -open, soft preopen, and soft semiopen) set in A.

### III. Soft( $\mu$ , $\eta$ ) -Irresolute Functions:

### **Definition: 3.1**

Let  $(F_A, \mu)$  and  $(F_B, \eta)$  be two SGTS's. A soft mapping  $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$  is said to be soft minimal  $(\mu, \eta)$ -irresolute (soft min $(\mu, \eta)$ -irresolute) if for each soft minimal  $\eta$ -open set $F_L$  in  $F_B$ , its inverse image  $\psi_{\chi}^{-1}(F_L)$  is a soft minimal  $\mu$ -open set in  $F_A$ .

### **Definition: 3.2**

Let  $(F_A, \mu)$  and  $(F_B, \eta)$  be two SGTS's. A soft mapping  $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$  is said to be soft maximal  $(\mu, \eta)$ -irresolute (soft max $(\mu, \eta)$ -irresolute) if for each soft maximal  $\eta$ -open set $F_L$  in  $F_B$ , its inverse image  $\psi_{\chi}^{-1}(F_L)$  is a soft maximal  $\mu$ -open set in  $F_A$ .

#### **Definition: 3.3**

Let  $(F_A, \mu)$  and  $(F_B, \eta)$  be two SGTS's. A soft mapping  $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$  is said to be soft para $(\mu, \eta)$ -irresolute (soft para $(\mu, \eta)$ -irresolute) if for each soft para  $\eta$ -open set $F_L$  in  $F_B$ , its inverse image  $\psi_{\chi}^{-1}(F_L)$  is a soft para  $\mu$ -open set in  $F_A$ .

#### Theorem: 3.4

Each soft minimal  $(\mu, \eta)$ -irresolute function is soft minimal  $(\mu, \eta)$ -continuous but not conversely.

#### **Proof:**

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft minimal  $(\mu, \eta)$ -irresolute mapping. Let  $F_G$  be any soft minimal  $\eta$ -open set in  $F_B$ . Then by definition 3.1, its inverse image  $\psi_{\chi}^{-1}(F_G)$  is a soft minimal  $\mu$ -open set in  $F_A$ . Since every soft minimal  $\mu$ -open set is soft  $\mu$ -open,  $\psi_{\chi}^{-1}(F_G)$  is a soft  $\mu$ -open set in  $F_A$ . Hence  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  is soft minimal  $(\mu, \eta)$ -continuous.

### Example: 3.5

```
Let \mathfrak{S}=\{s_1,s_2,s_3,s_4,s_5,s_6\}, I=\{i_1,i_2,i_3\}, \mathbb{A}=\{i_1,i_2\} \widetilde{\subseteq}\ I, then
(F_{A}, \mu) = \{F_{\emptyset}, F_{A_{1}}, F_{A_{2}}, F_{A_{3}}, F_{A_{4}}\} is a SGTS where
F_{\emptyset} = \{(i_1, \emptyset), (i_2, \emptyset)\}
F_{A} = \{(i_1, \{s_1, s_2, s_3, s_4, s_5\}), (i_2, \{s_1, s_2, s_4, s_5\})\}
F_{\rm A_1} = \{(i_1, \{s_1, s_3, s_4, s_5\}), (i_2, \{s_1, s_4, s_5\})\}
F_{A_2} = \{(i_1, \{s_1, s_4, s_5\}), (i_2, \{s_1, s_5\})\}
F_{A_3} = \{(i_1, \{s_4, s_5\}), (i_2, \{s_1, s_4\})\}
              Let T = \{t_1, t_2, t_3, t_4, t_5\}, J = \{j_1, j_2, j_3\}, B = \{j_1, j_2\} \subseteq J, then
(F_{\rm B}\,,\eta)=\{F_{\emptyset},F_{B_1},F_{B_2},F_{B_3}\}{\rm is} a SGTS where
F_{\emptyset} = \{(j_1, \emptyset), (j_2, \emptyset)\}
F_{\rm B} = \{(j_1, \{t_1, t_2, t_3, t_4\}), (j_2, \{t_1, t_2, t_3\})\}
F_{B_1} = \{(j_1, \{t_2, t_3, t_4\}), (j_2, \{t_2, t_3\})\}
F_{\rm B_2} = \{(j_1, \{t_3, t_4\}), (j_2, \{t_3\})\}
F_{\rm B_3} = \{(j_1, \{t_2, t_4\}), (j_2, \{t_2, t_3\})\}
              Define a map \psi : \mathfrak{S} \to T by \psi(s_1) = t_3, \psi(s_2) = t_2, \psi(s_3) = t_4, \psi(s_4) = t_1, \psi(s_5) = t_3, \psi(s_6) = t_4
t_5 \text{ and } \chi : I \to J \text{ by } \chi(i_1) = j_1 , \psi(i_2) = j_2 , \psi(i_3) = j_3.
Then \psi_{\chi}: (F_A, \mu) \to (F_B, \eta) is a soft minimal (\mu, \eta)-continuous function but it is not soft minimal (\mu, \eta)-
```

### Theorem: 3.6

irresolute function.

Each soft maximal  $(\mu, \eta)$ -irresolute function is soft maximal  $(\mu, \eta)$ -continuous but not conversely.

### **Proof:**

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft maximal  $(\mu, \eta)$ -irresolute mapping. Let  $F_G$  be any soft maximal  $\eta$ -open set in  $F_B$ . Then by definition 3.2, its inverse image  $\psi_{\chi}^{-1}(F_G)$  is a soft maximal  $\mu$ -open set in  $F_A$ . Since every soft maximal  $\mu$ -open set is a soft  $\mu$ -open set,  $\psi_{\chi}^{-1}(F_G)$  is a soft  $\mu$ -open set in  $F_A$ . Hence  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  is soft maximal  $(\mu, \eta)$ -continuous.

### Example: 3.7

Let 
$$G = \{g_1, g_2, g_3, g_4, g_5, g_6\}$$
,  $R = \{r_1', r_2', r_3'\}$ ,  $A = \{r_1', r_2'\} \cong R$ , then  $(F_A, \mu) = \{F_\emptyset, F_{A_1}, F_{A_2}, F_{A_3}, F_{A_4}\}$  is a SGTS where 
$$F_\emptyset = \{(r_1', \emptyset), (r_2', \emptyset)\}$$

$$F_A = \{(r_1', \{g_1, g_2, g_3, g_4, g_5\}), (r_2', \{g_1, g_2, g_4, g_5\})\}$$

$$F_{A_2} = \{(r_1', \{g_2, g_3, g_5\}), (r_2', \{g_2, g_5\})\}$$

$$F_{A_3} = \{(r_1', \{g_2, g_3, g_4, g_5\}), (r_2', \{g_2, g_4, g_5\})\}$$

$$F_{A_3} = \{(r_1', \{g_4, g_5\}), (r_2', \{g_2, g_4\})\}$$

```
Let H = \{h_1, h_2, h_3, h_4, h_5\}, V = \{v_1', v_2', v_3'\}, B = \{v_1', v_2'\} \cong V, then (F_B, \eta) = \{F_\emptyset, F_{B_1}, F_{B_2}, F_{B_3}\} is a SGTS where F_\emptyset = \{(v_1', \emptyset), (v_2', \emptyset)\} F_B = \{(v_1', \{h_1, h_2, h_3, h_4\}), (v_2', \{h_1, h_2, h_3\})\} F_{B_1} = \{(v_1', \{h_2, h_3, h_4\}), (v_2', \{h_2, h_3\})\} F_{B_2} = \{(v_1', \{h_2, h_4\}), (v_2', \{h_2, h_3\})\} F_{B_3} = \{(v_1', \{h_3, h_4\}), (v_2', \{h_3, h_3\})\}
```

Define a map  $\psi: G \to H$  by  $\psi(g_1) = h_3$ ,  $\psi(g_2) = h_2$ ,  $\psi(g_3) = h_4$ ,  $\psi(g_4) = h_1$ ,  $\psi(g_5) = h_3$ ,  $\psi(g_6) = h_5$  and  $\chi: I \to J$  by  $\chi(r_1') = v_1'$ ,  $\psi(r_2') = v_2'$ ,  $\psi(r_3') = v_3'$ .

Then  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  is a soft maximal  $(\mu, \eta)$ -continuous function but it is not a soft maximal  $(\mu, \eta)$ -irresolute function.

#### Theorem: 3.8

Each soft para  $(\mu, \eta)$ -irresolute function is soft para  $(\mu, \eta)$ -continuous but not conversely.

#### **Proof:**

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft para  $(\mu, \eta)$ -irresolute mapping. Let  $F_G$  be any soft para  $\eta$ -open set in  $F_B$ . Then by definition 3.3, its inverse image  $\psi_{\chi}^{-1}(F_G)$  is a soft para  $\mu$ -open set in  $F_A$ . Since every soft para  $\mu$ -open set is a soft  $\mu$ -open set,  $\psi_{\chi}^{-1}(F_G)$  is a soft  $\mu$ -open set in  $F_A$ . Hence  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  is soft para  $(\mu, \eta)$ -continuous.

### Example: 3.9

```
Let M = \{m_1, m_2, m_3, m_4, m_5, m_6\}, C = \{c_1', c_2', c_3'\}, A = \{c_1', c_2'\} \subseteq C, then (F_A, \mu) = \{F_\emptyset, F_{A_1}, F_{A_2}, F_{A_3}, F_{A_4}\} is a SGTS where F_\emptyset = \{(c_1', \emptyset), (c_2', \emptyset)\} F_{A_1} = \{(c_1', \{m_1, m_2, m_3, m_4, m_5\}), (c_2', \{m_1, m_3, m_4, m_5\})\} F_{A_2} = \{(c_1', \{m_2, m_3, m_4, m_5\}), (c_2', \{m_3, m_4, m_5\})\} F_{A_3} = \{(c_1', \{m_2, m_3, m_4, m_5\}), (c_2', \{m_3, m_4\})\} F_{A_4} = \{(c_1', \{m_2, m_4, m_5\}), (c_2', \{m_3, m_4\})\} Let N = \{n_1, n_2, n_3, n_4, n_5\}, D = \{\widehat{d_1}, \widehat{d_2}, \widehat{d_3}\}, B = \{\widehat{d_1}, \widehat{d_2}\} \subseteq D, then (F_B, \eta) = \{F_\emptyset, F_{B_1}, F_{B_2}, F_{B_3}\} is a SGTS where F_\emptyset = \{(\widehat{d_1}, \emptyset), (\widehat{d_2}, \emptyset)\} F_B = \{(\widehat{d_1}, \{n_1, n_2, n_3, n_4\}), (\widehat{d_2}, \{n_1, n_2, n_4\})\} F_{B_1} = \{(\widehat{d_1}, \{n_1, n_2, n_4\}), (\widehat{d_2}, \{n_1, n_4\})\} F_{B_2} = \{(\widehat{d_1}, \{n_1, n_2\}), (\widehat{d_2}, \{n_1, n_4\})\} F_{B_3} = \{(\widehat{d_1}, \{n_1, n_2\}), (\widehat{d_2}, \{n_1, n_4\})\}
```

Define a map  $\psi: M \to N$  by  $\psi(m_1) = n_4$ ,  $\psi(m_2) = n_3$ ,  $\psi(m_3) = n_2$ ,  $\psi(m_4) = n_1$ ,  $\psi(m_5) = n_4$ ,  $\psi(m_6) = n_5$  and  $\chi: I \to J$  by  $\chi(c_1') = \widehat{d_1}$ ,  $\psi(c_2') = \widehat{d_2}$ ,  $\psi(c_3') = \widehat{d_3}$ . Then  $\psi_\chi: (F_A, \mu) \to (F_B, \eta)$  is a soft para  $(\mu, \eta)$ -continuous function but it is not a soft para  $(\mu, \eta)$ -irresolute function.

### **Definition: 3.10**

The SGTS( $F_A$ ,  $\mu$ ) is said to be soft  $\mu$ - $T_{min}$  space if for each nonempty proper soft  $\mu$ -opensubset of  $F_A$  is soft minimal  $\mu$ -open.

#### Proposition:3.11

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft minimal  $(\mu, \eta)$ -irresolute, onto map and  $F_B$  be a Soft  $\mu$ - $T_{min}$  space. Then  $\psi_{\chi}$  is soft  $(\mu, \eta)$ -continuous.

#### **Proof:**

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft minimal  $(\mu, \eta)$ -irresolute function. Let  $F_{B_i}$  be any non-empty proper soft  $\eta$ -open set in  $F_B$ . Since  $F_B$  is a soft  $\mu$ - $T_{min}$  space,  $F_{B_i}$  is a soft minimal  $\eta$ -open set in  $F_B$ . Since  $\psi_{\chi}$  is soft minimal  $(\mu, \eta)$ -irresolute,  $\psi_{\chi}^{-1}(F_{B_i})$  is a soft minimal  $\mu$ -open set in  $F_A$ . Also, each soft minimal  $\mu$ -open set is soft  $\mu$ -open and  $\psi_{\chi}$  is an onto map which implies  $\psi_{\chi}^{-1}(F_{B_i})$  is a soft  $\mu$ -open set in  $F_A$ . Hence  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  is soft  $(\mu, \eta)$ -continuous.

#### **Definition: 3.12**

The SGTS  $(F_A, \mu)$  is said to be soft  $\mu$ - $T_{max}$  space if for each nonempty proper soft  $\mu$ -opensubset of  $F_A$  is soft maximal  $\mu$ -open.

#### **Proposition: 3.13**

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft maximal  $(\mu, \eta)$ -irresolute, onto map and  $F_B$  be a Soft  $\mu$ - $T_{max}$  space. Then  $\psi_{\chi}$  is soft  $(\mu, \eta)$ -continuous.

#### **Proof:**

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft maximal  $(\mu, \eta)$ -irresolute function. Let  $F_{B_i}$  be any non-empty proper soft  $\eta$ -open set in  $F_B$ . Since  $F_B$  is a soft  $\mu$ - $T_{max}$  space,  $F_{B_i}$  is a soft maximal  $\eta$ -open set in  $F_B$ . Since  $\psi_{\chi}$  is soft maximal  $(\mu, \eta)$ -irresolute,  $\psi_{\chi}^{-1}(F_{B_i})$  is a soft maximal  $\mu$ -open set in  $F_A$ . Also, each soft maximal  $\mu$ -open set is soft  $\mu$ -open and  $\psi_{\chi}$  is an onto map which implies  $\psi_{\chi}^{-1}(F_{B_i})$  is a soft  $\mu$ -open set in  $F_A$ . Hence  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  is soft  $(\mu, \eta)$ -continuous.

### **Definition: 3.14**

The SGTS  $(F_A, \mu)$  is said to be soft  $\mu$ - $T_{para}$  space if for each nonempty proper soft  $\mu$ -opensubset of  $F_A$  is soft para  $\mu$ -open.

### **Proposition: 3.15**

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft para  $(\mu, \eta)$ -irresolute, onto map and  $F_B$  be a Soft  $\mu$ - $T_{para}$  space. Then  $\psi_{\chi}$  is soft  $(\mu, \eta)$ -continuous.

#### **Proof:**

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft para  $(\mu, \eta)$ -irresolute function. Let  $F_{B_i}$  be any non-empty proper soft  $\eta$ -open set in  $F_B$ . Since  $F_B$  is a soft  $\mu$ - $T_{para}$  space,  $F_{B_i}$  is a soft para $\eta$ -open set in  $F_B$ . Since  $\psi_{\chi}$  is soft para $(\mu, \eta)$ -irresolute,  $\psi_{\chi}^{-1}(F_{B_i})$  is a soft para  $\mu$ -open set in  $F_A$ . Also, each soft para  $\mu$ -open set is soft  $\mu$ -open and  $\psi_{\chi}$  is an onto map which implies  $\psi_{\chi}^{-1}(F_{B_i})$  is a soft  $\mu$ -open set in  $F_A$ . Hence  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  is soft  $(\mu, \eta)$ -continuous.

#### Remark: 3.16

Soft minimal  $(\mu, \eta)$ -irresolute and soft  $(\mu, \eta)$ -continuous (resp. Soft maximal  $(\mu, \eta)$ -continuous, soft para  $(\mu, \eta)$ -continuous) maps are independent.

#### Remark: 3.17

Soft maximal  $(\mu, \eta)$ -irresolute and soft  $(\mu, \eta)$ -continuous (resp. Soft minimal  $(\mu, \eta)$ -continuous, soft para  $(\mu, \eta)$ -continuous) maps are independent.

#### Remark: 3.18

Soft para  $(\mu, \eta)$ -irresolute and soft  $(\mu, \eta)$ -continuous (resp. Soft minimal  $(\mu, \eta)$ -continuous, soft maximal  $(\mu, \eta)$ -continuous) maps are independent.

#### Remark: 3.19

Soft minimal  $(\mu, \eta)$ -irresolute and soft maximal  $(\mu, \eta)$ -irresolute maps are independent.

#### Remark: 3.20

Soft minimal  $(\mu, \eta)$ -irresolute and soft para  $(\mu, \eta)$ -irresolute maps are independent.

#### Remark: 3.21

Soft maximal  $(\mu, \eta)$ -irresolute and soft para  $(\mu, \eta)$ -irresolute maps are independent.

#### Theorem: 3.22

Let  $(F_A, \mu)$  and  $(F_B, \eta)$  be two SGTS's. A soft mapping  $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$  is said to be soft minimal  $(\mu, \eta)$ -irresolute (soft min $(\mu, \eta)$ -irresolute) if and only if the inverse image of each soft maximal  $\eta$ -closed set in  $F_B$  is a soft maximal  $\mu$ -closed set in  $F_A$ .

#### **Proof:**

The proof follows from the definition that the complement of soft minimal  $\mu$ -open set is a soft maximal  $\mu$ -closed set.

#### Theorem: 3.23

Let  $(F_A, \mu)$  and  $(F_B, \eta)$  be two SGTS's. A soft mapping  $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$  is said to be soft maximal  $(\mu, \eta)$ -irresolute (soft max $(\mu, \eta)$ -irresolute) if and only if the inverse image of each soft minimal  $\eta$ -closed set in  $F_B$  is a soft minimal  $\mu$ -closed set in  $F_A$ .

### **Proof:**

The proof follows from the definition that the complement of soft maximal  $\mu$ -open set is a soft minimal  $\mu$ -closed set.

### Theorem: 3.24

Let  $(F_A, \mu)$  and  $(F_B, \eta)$  be two SGTS's. A soft mapping  $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$  is said to be soft para  $(\mu, \eta)$ -irresolute (soft para  $(\mu, \eta)$ -irresolute) if and only if the inverse image of each soft para  $\eta$ -closed set in  $F_B$  is a soft para  $\mu$ -closed set in  $F_A$ .

#### **Proof:**

The proof follows from the definition that the complement of soft para  $\mu$ -open set is a soft para  $\mu$ -closed set.

### Theorem: 3.25

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft minimal  $(\mu, \eta)$ -irresolute and  $\pi_{\phi}: (F_B, \eta) \to (F_C, \xi)$  be a soft minimal  $(\eta, \xi)$ -irresolute map, then  $\pi_{\phi}$  o  $\psi_{\chi}: (F_A, \mu) \to (F_C, \xi)$  is a soft minimal  $(\mu, \xi)$ -irresolute map.

#### **Proof:**

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft minimal  $(\mu, \eta)$ -irresolute map and  $\pi_{\phi}: (F_B, \eta) \to (F_C, \xi)$  be a soft minimal  $(\eta, \xi)$ -irresolute map. Let  $F_{C_i}$  be any soft minimal  $\xi$ -open set in  $F_C$ . Since  $\pi_{\phi}$  is a soft minimal  $(\eta, \xi)$ -irresolute function,  $\pi_{\phi}^{-1}(F_{C_i})$  is a soft minimal  $\eta$ -open set in  $F_B$ . Also,  $\psi_{\chi}$  is soft minimal  $(\eta, \xi)$ -irresolute,  $\psi_{\chi}^{-1}(\pi_{\phi}^{-1}(F_{C_i})) = (\pi_{\phi} \circ \psi_{\chi})^{-1}(F_{C_i})$  is a soft minimal  $\mu$ -open set in  $F_A$ . Hence  $\pi_{\phi} \circ \psi_{\chi}: (F_A, \mu) \to (F_C, \xi)$  is a soft minimal  $(\mu, \xi)$ -irresolute map.

#### Theorem: 3.26

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft maximal  $(\mu, \eta)$ -irresolute and  $\pi_{\phi}: (F_B, \eta) \to (F_C, \xi)$  be a soft maximal  $(\eta, \xi)$ -irresolute map, then  $\pi_{\phi}$   $o\psi_{\chi}: (F_A, \mu) \to (F_C, \xi)$  is a soft maximal  $(\mu, \xi)$ -irresolute map.

#### **Proof:**

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft maximal  $(\mu, \eta)$ -irresolute map and  $\pi_{\phi}: (F_B, \eta) \to (F_C, \xi)$  be a soft maximal  $(\eta, \xi)$ -irresolute map. Let  $F_{C_i}$  be any soft maximal  $\xi$ -open set in  $F_C$ . Since  $\pi_{\phi}$  is a soft maximal  $(\eta, \xi)$ -irresolute function,  $\pi_{\phi}^{-1}(F_{C_i})$  is a soft maximal  $\eta$ -open set in  $F_B$ . Also,  $\psi_{\chi}$  is soft maximal  $(\eta, \xi)$ -irresolute,  $\psi_{\chi}^{-1}(\pi_{\phi}^{-1}(F_{C_i})) = (\pi_{\phi} \circ \psi_{\chi})^{-1}(F_{C_i})$  is a soft maximal  $\mu$ -open set in  $F_A$ . Hence  $\pi_{\phi} \circ \psi_{\chi}: (F_A, \mu) \to (F_C, \xi)$  is a soft maximal  $(\mu, \xi)$ -irresolute map.

#### Theorem: 3.27

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft para  $(\mu, \eta)$ -irresolute and  $\pi_{\phi}: (F_B, \eta) \to (F_C, \xi)$  be a soft para  $(\eta, \xi)$ -irresolute map, then  $\pi_{\phi}$  o $\psi_{\chi}: (F_A, \mu) \to (F_C, \xi)$  is a soft para  $(\mu, \xi)$ -irresolute map.

#### **Proof:**

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft para  $(\mu, \eta)$ -irresolute map and  $\pi_{\phi}: (F_B, \eta) \to (F_C, \xi)$  be a soft para  $(\eta, \xi)$ -irresolute map. Let  $F_{C_i}$  be any soft para $\xi$ -open set in  $F_C$ . Since  $\pi_{\phi}$  is a soft para  $(\eta, \xi)$ -irresolute function,  $\pi_{\phi}^{-1}(F_{C_i})$  is a soft para  $\eta$ -open set in  $F_B$ . Also,  $\psi_{\chi}$  is soft para  $(\eta, \xi)$ -irresolute,  $\psi_{\chi}^{-1}(\pi_{\phi}^{-1}(F_{C_i})) = (\pi_{\phi} \circ \psi_{\chi})^{-1}(F_{C_i})$  is a soft para  $\mu$ -open set in  $F_A$ . Hence  $\pi_{\phi} \circ \psi_{\chi}: (F_A, \mu) \to (F_C, \xi)$  is a soft para  $(\mu, \xi)$ -irresolute map.

### **Definition: 3.28**

Let  $(F_A, \mu)$  and  $(F_B, \eta)$  be two SGTS's. A soft mapping  $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$  is said to be  $\operatorname{soft}\rho_{(\mu,\eta)}$ -irresolute ( $\operatorname{soft}(\mu, \eta)$ -pre-irresolute) if for each  $\operatorname{soft}\eta$ -pre-open set in  $F_B$ , its inverse image  $\psi_{\chi}^{-1}(F_L)$  is a  $\operatorname{soft}\mu$ -pre-open set in  $F_A$ .

### **Definition: 3.29**

Let  $(F_A, \mu)$  and  $(F_B, \eta)$  be two SGTS's. A soft mapping  $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$  is said to be  $\mathrm{soft}\delta_{(\mu,\eta)}$ irresolute  $(\mathrm{soft}(\mu, \eta)\text{-semi-irresolute})$  if for each  $\mathrm{soft}\eta$ -semi-open set in  $F_B$ , its inverse image  $\psi_{\chi}^{-1}(F_L)$  is a  $\mathrm{soft}\mu$ -semi-open set in  $F_A$ .

#### **Definition: 3.30**

Let  $(F_A, \mu)$  and  $(F_B, \eta)$  be two SGTS's. A soft mapping  $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$  is said to be  $\operatorname{soft}\alpha_{(\mu,\eta)}$ -irresolute ( $\operatorname{soft}(\mu, \eta)$ - $\alpha$ -irresolute) if for each  $\operatorname{soft}\eta$ - $\alpha$ -open set in  $F_B$ , its inverse image  $\psi_{\chi}^{-1}(F_L)$  is a  $\operatorname{soft}\mu$ - $\alpha$ -open set in  $F_A$ .

#### **Definition: 3.31**

Let  $(F_A, \mu)$  and  $(F_B, \eta)$  be two SGTS's. A soft mapping  $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$  is said to be  $\operatorname{soft}\beta_{(\mu,\eta)}$ -irresolute ( $\operatorname{soft}(\mu, \eta)$ - $\beta$ -irresolute) if for each  $\operatorname{soft}\eta$ - $\beta$ -open set in  $F_B$ , its inverse image  $\psi_{\chi}^{-1}(F_L)$  is a  $\operatorname{soft}\mu$ - $\beta$ -open set in  $F_A$ .

### Theorem: 3.32

Each soft  $\rho_{(\mu,\eta)}$ -irresolute function is soft  $\rho_{(\mu,\eta)}$ -continuous but not conversely.

#### **Proof:**

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft  $\rho_{(\mu, \eta)}$ -irresolute mapping. Let  $F_G$  be any soft  $\eta$ -open set in  $F_B$ . Since every soft $\eta$ -open set is soft  $\eta$ -pre-open,  $F_G$  is a soft  $\eta$ -pre-open set in  $F_B$ . Also  $\psi_{\chi}$  is soft  $\rho_{(\mu, \eta)}$ -irresolute, then by definition 3.28, its inverse image  $\psi_{\chi}^{-1}(F_G)$  is soft  $\mu$ -pre-open set in  $F_A$ . Hence  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  is soft  $\rho_{(\mu, \eta)}$ -continuous.

#### Theorem: 3.33

Each soft $\delta_{(\mu,\eta)}$ -irresolute function is soft  $\delta_{(\mu,\eta)}$ -continuous but not conversely.

#### **Proof:**

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft  $\delta_{(\mu, \eta)}$ -irresolute mapping. Let  $F_G$  be any soft  $\eta$ -open set in  $F_B$ . Since every soft $\eta$ -open set is soft  $\eta$ -semi-open,  $F_G$  is a soft  $\eta$ -semi-open set in  $F_B$ . Also  $\psi_{\chi}$  is soft  $\delta_{(\mu, \eta)}$ -irresolute, then by definition 3.29, its inverse image  $\psi_{\chi}^{-1}(F_G)$  is soft  $\mu$ -semi-open set in  $F_A$ . Hence  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  is soft  $\delta_{(\mu, \eta)}$ -continuous.

### Theorem: 3.34

Each soft $\alpha_{(\mu,\eta)}$ -irresolute function is soft  $\alpha_{(\mu,\eta)}$ -continuous but not conversely.

## **Proof:**

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft  $\alpha_{(\mu, \eta)}$ -irresolute mapping. Let  $F_G$  be any soft  $\eta$ -open set in  $F_B$ . Since every soft $\eta$ -open set is soft  $\eta$ - $\alpha$ -open,  $F_G$  is a soft  $\eta$ - $\alpha$ -open set in  $F_B$ . Also  $\psi_{\chi}$  is soft  $\alpha_{(\mu, \eta)}$ -irresolute, then by definition 3.30, its inverse image  $\psi_{\chi}^{-1}(F_G)$  is soft  $\mu$ - $\alpha$ -open set in  $F_A$ . Hence  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  is soft  $\alpha_{(\mu, \eta)}$ -continuous.

### Theorem: 3.35

Each soft $\beta_{(\mu,\eta)}$ -irresolute function is soft  $\beta_{(\mu,\eta)}$ -continuous but not conversely.

#### **Proof:**

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft  $\beta_{(\mu, \eta)}$ -irresolute mapping. Let  $F_G$  be any soft  $\eta$ -open set in  $F_B$ . Since every soft $\eta$ -open set is soft  $\eta$ - $\beta$ -open,  $F_G$  is a soft  $\eta$ - $\beta$ -open set in  $F_B$ . Also  $\psi_{\chi}$  is soft  $\beta_{(\mu, \eta)}$ -irresolute, then by definition 3.31, its inverse image  $\psi_{\chi}^{-1}(F_G)$  is soft  $\mu$ - $\beta$ -open set in  $F_A$ . Hence  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  is soft  $\beta_{(\mu, \eta)}$ -continuous.

### Theorem: 3.36

Let  $(F_A, \mu)$  and  $(F_B, \eta)$  be two SGTS's. A soft mapping  $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$  is said to be soft  $\rho_{(\mu, \eta)}$ -irresolute (soft $(\mu, \eta)$ -pre-irresolute) if and only if the inverse image of each soft  $\eta$ -pre-closed set in  $F_B$  is a soft $\mu$ -pre-closed set in  $F_A$ .

#### **Proof:**

The proof follows from the definition that the complement of soft  $\mu$ -pre-open set is soft  $\mu$ -pre-closed set.

#### Theorem: 3.37

Let  $(F_A, \mu)$  and  $(F_B, \eta)$  be two SGTS's. A soft mapping  $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$  is said to be soft  $\delta_{(\mu, \eta)}$ irresolute (soft $(\mu, \eta)$ -semi-irresolute) if and only if the inverse image of each soft  $\eta$ -semi-closed set in  $F_B$  is a soft $\mu$ -semi-closed set in  $F_A$ .

#### **Proof:**

The proof follows from the definition that the complement of soft  $\mu$ -semi-open set is soft  $\mu$ -semi-closed set.

#### Theorem: 3.38

Let  $(F_A, \mu)$  and  $(F_B, \eta)$  be two SGTS's. A soft mapping  $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$  is said to be soft  $\alpha_{(\mu, \eta)}$ -irresolute (soft $(\mu, \eta)$ - $\alpha$ -irresolute) if and only if the inverse image of each soft  $\eta$ - $\alpha$ -closed set in  $F_B$  is a soft $\mu$ - $\alpha$ -closed set in  $F_A$ .

#### **Proof:**

The proof follows from the definition that the complement of soft  $\mu$ - $\alpha$ -open set is soft  $\mu$ - $\alpha$ -closed set.

#### Theorem: 3.39

Let  $(F_A, \mu)$  and  $(F_B, \eta)$  be two SGTS's. A soft mapping  $\psi_{\chi} : (F_A, \mu) \to (F_B, \eta)$  is said to be soft  $\beta_{(\mu, \eta)}$ -irresolute (soft  $(\mu, \eta)$ - $\beta$ -irresolute) if and only if the inverse image of each soft  $\eta$ - $\beta$ -closed set in  $F_B$  is a soft  $\mu$ - $\beta$ -closed set in  $F_A$ .

#### **Proof:**

The proof follows from the definition that the complement of soft  $\mu$ - $\beta$ -open set is soft  $\mu$ - $\beta$ -closed set.

### Theorem: 3.40

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft  $\rho_{(\mu, \eta)}$ -irresolute and  $\pi_{\phi}: (F_B, \eta) \to (F_C, \xi)$  be a soft  $\rho_{(\eta, \xi)}$ -irresolute map, then  $\pi_{\phi}$  of  $\psi_{\chi}: (F_A, \mu) \to (F_C, \xi)$  is a soft  $\rho_{(\mu, \xi)}$ -irresolute map.

### **Proof:**

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft  $\rho_{(\mu, \eta)}$ -irresolute map and  $\pi_{\phi}: (F_B, \eta) \to (F_C, \xi)$  be a soft  $\rho_{(\eta, \xi)}$ -irresolute map. Let  $F_{C_i}$  be any soft  $\xi$ -pre-open set in  $F_C$ . Since  $\pi_{\phi}$  is a soft  $\rho_{(\eta, \xi)}$ -irresolute function,  $\pi_{\phi}^{-1}(F_{C_i})$  is a soft  $\eta$ -pre-open set in  $F_B$ . Also,  $\psi_{\chi}$  is soft  $\rho_{(\eta, \xi)}$ -irresolute,  $\psi_{\chi}^{-1}(\pi_{\phi}^{-1}(F_{C_i})) = (\pi_{\phi} \circ \psi_{\chi})^{-1}(F_{C_i})$  is a soft  $\mu$ -pre-open set in  $F_A$ . Hence  $\pi_{\phi} \circ \psi_{\chi}: (F_A, \mu) \to (F_C, \xi)$  is a soft  $\rho_{(\mu, \xi)}$ -irresolute map.

### Theorem: 3.41

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft  $\delta_{(\mu, \eta)}$ -irresolute and  $\pi_{\phi}: (F_B, \eta) \to (F_C, \xi)$  be a soft  $\delta_{(\eta, \xi)}$ -irresolute map, then  $\pi_{\phi}$  of  $\psi_{\chi}: (F_A, \mu) \to (F_C, \xi)$  is a soft  $\delta_{(\mu, \xi)}$ -irresolute map.

#### **Proof:**

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft  $\delta_{(\mu, \eta)}$ -irresolute map and  $\pi_{\phi}: (F_B, \eta) \to (F_C, \xi)$  be a soft  $\delta_{(\eta, \xi)}$ -irresolute map. Let  $F_{C_i}$  be any soft  $\xi$ -semi-open set in  $F_C$ . Since  $\pi_{\phi}$  is a soft  $\delta_{(\eta, \xi)}$ -irresolute,  $\pi_{\phi}^{-1}(F_{C_i})$  is a soft  $\eta$ -semi-open set in  $F_B$ . Also,  $\psi_{\chi}$  is a soft  $\delta_{(\eta, \xi)}$ -irresolute,  $\psi_{\chi}^{-1}(\pi_{\phi}^{-1}(F_{C_i})) = \pi_{\phi} \circ \psi_{\chi}^{-1}(F_{C_i})$  is a soft  $\mu$ -semi-open set in  $F_A$ . Hence  $\pi_{\phi} \circ \psi_{\chi}: (F_A, \mu) \to (F_C, \xi)$  is a soft  $\delta_{(\mu, \xi)}$ -irresolute map.

#### Theorem: 3.42

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft  $\alpha_{(\mu, \eta)}$ -irresolute and  $\pi_{\phi}: (F_B, \eta) \to (F_C, \xi)$  be a soft  $\alpha_{(\eta, \xi)}$ -irresolute map, then  $\pi_{\phi}$  of  $\psi_{\chi}: (F_A, \mu) \to (F_C, \xi)$  is a soft  $\alpha_{(\mu, \xi)}$ -irresolute map.

#### **Proof:**

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft  $\alpha_{(\mu, \eta)}$ -irresolute map and  $\pi_{\phi}: (F_B, \eta) \to (F_C, \xi)$  be a soft  $\alpha_{(\eta, \xi)}$ -irresolute map. Let  $F_{C_i}$  be any soft  $\xi$ - $\alpha$ -open set in  $F_C$ . Since  $\pi_{\phi}$  is a soft  $\alpha_{(\eta, \xi)}$ -irresolute function,  $\pi_{\phi}^{-1}(F_{C_i})$  is a soft  $\eta$ - $\alpha$ -open set in  $F_B$ . Also,  $\psi_{\chi}$  is soft  $\alpha_{(\eta, \xi)}$ -irresolute,  $\psi_{\chi}^{-1}(\pi_{\phi}^{-1}(F_{C_i})) = (\pi_{\phi} \circ \psi_{\chi})^{-1}(F_{C_i})$  is a soft  $\mu$ - $\alpha$ -open set in  $F_A$ . Hence  $\pi_{\phi} \circ \psi_{\chi}: (F_A, \mu) \to (F_C, \xi)$  is a soft  $\alpha_{(\mu, \xi)}$ -irresolute map.

#### Theorem: 3.43

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft  $\beta_{(\mu, \eta)}$ -irresolute and  $\pi_{\phi}: (F_B, \eta) \to (F_C, \xi)$  be a soft  $\beta_{(\eta, \xi)}$ -irresolute map, then  $\pi_{\phi}$  of  $\psi_{\chi}: (F_A, \mu) \to (F_C, \xi)$  is a soft  $\beta_{(\mu, \xi)}$ -irresolute map.

### **Proof:**

Let  $\psi_{\chi}: (F_A, \mu) \to (F_B, \eta)$  be a soft  $\beta_{(\mu, \eta)}$ -irresolute map and  $\pi_{\phi}: (F_B, \eta) \to (F_C, \xi)$  be a soft  $\beta_{(\eta, \xi)}$ -irresolute map. Let  $F_{C_l}$  be any soft  $\xi$ - $\beta$ -open set in  $F_C$ . Since  $\pi_{\phi}$  is a soft  $\beta_{(\eta, \xi)}$ -irresolute function,  $\pi_{\phi}^{-1}(F_{C_l})$  is a soft  $\eta$ - $\beta$ -open set in  $F_B$ . Also,  $\psi_{\chi}$  is soft  $\beta_{(\eta, \xi)}$ -irresolute,  $\psi_{\chi}^{-1}(\pi_{\phi}^{-1}(F_{C_l})) = (\pi_{\phi} \circ \psi_{\chi})^{-1}(F_{C_l})$  is a soft  $\mu$ - $\beta$ -open set in  $F_A$ . Hence  $\pi_{\phi} \circ \psi_{\chi}: (F_A, \mu) \to (F_C, \xi)$  is a soft  $\beta_{(\mu, \xi)}$ -irresolute map.

### **References:**

- H. Aktas and N. Cagman, Soft sets and soft groups, Inform. Sci., 177, (2007), pp.2726-2735 https://doi.org/10.1016/j.ins.2006.12.008.
- [2]. C.G. Aras, A. Sonmez, H. Cakalli, On soft mappings, arXiv: 1305.4545 v1, 16 May 2013.
- [3]. I. Arockiarani, A. A. Lancy, Generalized soft gβ-closed sets and soft gsβ-closed sets in soft topological spaces, International Journal of Mathematical Archive, 4 (2),(2013), pp.1-7.
- [4]. Basavaraj M. Ittanagi, S. S. Benchalli and R. S.Wali, On Paraopen sets and Maps in Topological Spaces, Kyungpook Math. J. 56 (2016), pp.301 310.http://dx.doi.org/10.5666/KMJ.2016.56.1.301.
- [5]. S. Z. Bai and Y. P. Zuo, On g-α-irresolute functions, Acta Mathematica Hungarica, 134 (4), (2011), pp.382-389. https://doi.org/10.1007/s10474-010-0014-x.
- [6]. Bashir Ahmad, Sabir Hussain, On some structures of soft topology, J. of Math.Sciences, 64 (6), (2012), pp.1-7.
- [7]. S. S. Benchalli, Basavaraj M. Ittanagi and R. S. Wali, On Minimal Open Sets and Maps inTopological Spaces, J. Comp. & Math. Sci., Vol.2 (2), (2011),pp.208 220.
- [8]. N. Cagman, S. Enginoglu, Soft matrix theory and its decision making, Comput. Math. Appl., 59 (10), (2010), pp.3308-3314.
- [9]. C. Carpintero, E. Rosas, M. Salas-Brown and J. Sanabria, Minimal open sets on generalized topological space, Proyecciones Journal of Mathematics, Vol. 36, No.4, December 2017, pp.739 751.doi: 10.4067/S0716-09172017000400739.
- [10]. B. Chen, Soft semi-open sets and related properties in soft topological spaces, Applied Mathematics & Information Sciences, 7 (1), (2013), pp.287-294.
- [11] A. Csaszar, Generalized Topology, generalized continuity, ActaMathematica Hungarica, 96, (2002), pp.351-357. https://doi.org/10.1023/A:1019713018007.
- [12]. Jyothis Thomas and Sunil Jacob John, On Soft Generalized Topological Spaces, Journal of New Results in Science, 4, (2014), pp.01-15.
- [13]. Jyothis Thomas, Sunil Jacob John, Soft π-Open Sets in Soft Generalized Topological Spaces, Journal of New Theory, 5, (2015), pp.53-66.
- [14]. J. Mahanta, P. K. Das, On soft topological space via semiopen and semiclosed soft sets, arXiv:1203.4133, (2012).
- [15]. P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Computers Math. Appl., 45, (2003), pp.555-562. https://doi.org/10.1016/S0898-1221(03)00016-6.

- [16]. MetinAkdag, AlkanOzkan, Soft α-Open Sets and Soft α-Continuous Functions, Abstract and Applied Analysis, Article ID 891341, (2014), pp.1-7.https://dx.doi.org/10.1155/2014/891341.
- [17]. D. Molodtsov, Soft set theory-first results, Computers Math. Appl., 37, (1999), pp.19-31. https://doi.org/10.1016/S0898-1221(99)00056-5.
- [18]. D. Molodstov, V. Y. Leonov and D. V. Kovkov, Soft sets technique and its application, NechetkieSistemyiMyagkieVychisleniya 1 (1), (2006), pp.8-39.
- [19]. F. Nakaoka and N. Oda, Some applications of minimal open sets, International Journal of Mathematics and Mathematical Sciences, 27 (8), (2001), pp.471-476.10.1155/S0161171203207262.
- [20]. F. Nakaoka and N. Oda, Some properties of maximal open sets. Int. J. Math. Sci.,21(2003), pp.1331 1340.http://dx.doi.org/10.1155/S0161171203207262.
- [21]. B.Roy, Ř. Sen, On Maximal μ-open and Minimal μ-closed sets via Generalized Topology, Acta Math. Hungar., 136 (4) (2012), pp.233 239. http://dx.doi.org/10.1007/s10474-012-0201-z.
- [22]. M. Shabir, M. Naz, On soft topological spaces, Computers Math. Appl. 61 (2011), pp.1786 1799. https://doi.org/10.1016/j.camwa.2011.02.006.
- [23]. K. Shakila, R. Selvi, A Note on Fuzzy Soft Maximal open set and Fuzzy Soft Minimal openset, International Journal of Scientific Research and Review, Volume 7, Issue 7, 2018, pp.472 477. http://doi.org/10.28919/jmcs/4339.
- [24]. M. Supriya, R. Selvi, Soft Minimal open sets on Soft Generalized Topological Spaces, Proceedings of the International Conference on Recent Innovations in Applications of Mathematics (2023), ISBN: 978-93-91563-72-1, pp.152-157.
- [25]. I. Zorlutuna, M. Akdag, W. K. Min and S. Atmaca, Remark on Soft Topological Spaces, Annals of Fuzzy Mathematics and Informatics, 3 (2), (2011), pp.171-185.